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This work treats the use of composite geometric probes to reconstruct the shape 
of an unknown convex planar polygon. One composite probing comprises K line or 
finger probings done simultaneously. Probing strategies are proposed for al1 K, and 
their performances are evaluated by calculating upper bounds on the number of 
composite probings they require for reconstruction. Then lower bounds on the 
number of composite probings required by any possible strategy are also derived. It 
is proved that the difference between the performance of any of the proposed 
strategies and the corresponding lower bound is never greater than two probings, 
implying that all the strategies proposed are almost optimal. Q 1992 Academic PISS, 

Inc. 

1. INTRODLJC~I~N 

The advance of robotics and the need for intelligent systems, which 
sense their environment and interact with it, are probably the main 
reasons for the increasing attention that tactile measurements have drawn 
in the last years. This way of sensing, involving direct contact between the 
object and the sensing device, is natural to robotic tasks that require 
manipulating objects. Tactile sensing devices are modeled by defining 
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abstract devices that reveal partial information about the object’s bound- 
ary, such as a point on the edge, a normal to the edge at this point, a line 
tangent to the edge, etc. These are generally called geometric probes. 

The use of the geometric probes for reconstruction of an unknown 
object has been the subject of much study [l-4]. Comprehensive surveys 
may be found in either [7] or [9] and a list of open problems appears in [8]. 
The main effort has been aimed at finding probing strategies that ensure 
the precise reconstruction of an object after a minimal number of prob- 
ings. The strategies considered for this task must be adaptive; i.e., deter- 
mining where to probe next may depend on previous probing results. The 
two geometric probes most studied are finger probes and line probes. A 
finger probe is equivalent to a point moving along a straight line in one 
direction until it touches the object, whereupon its position is recorded. 
The position of one boundary point is thus provided by each measure- 
ment. A strategy that requires no more than 3V finger probings to 
reconstruct a convex planar polygon with V vertices is given by Cole and 
Yap [l], who also show that no probing strategy using less than 3V - 1 
such measurements can succeed in reconstructing such a polygon. A line 
probe is equivalent to an infinite line moving so that it remains perpendic- 
ular to a prespecified direction until it touches the object, whereupon its 
position is recorded. One tangent with a predetermined slope is thus 
provided by each measurement. A probing strategy that uses no more than 
3V + 1 such probings to reconstruct a convex polygon with V vertices is 
presented in [5], where 3V + 1 is also shown to be a lower bound for the 
performance of any strategy. 

A duality relation observed in [2, 41 implies that any strategy that uses 
line probes to reconstruct a convex polygon may be transformed into a 
strategy with the same performance that uses finger probes to reconstruct 
a dual polygon. Each of the dual finger probes points towards the origin, 
so the dual finger probes constitute only a subset of the general finger 
probes. It follows that reconstruction strategies using general finger probes 
are not necessarily transformable to strategies that use line probes, and 
that the small gap (one probing) between the performances of the finger 
probe strategy and the line probe strategy cannot be closed in this way. As 
suggested by Skiena, however, the line probe may be generalized to a new 
kind of probe, called the supporting line probe, that is the true dual of the 
(general) finger probe [7, 91. This duality enables a one-to-one transforma- 
tion of strategies from finger probing to supporting line probing. These 
generalized line probes are the basis for all strategies developed in this 
paper, readily implying that dual strategies based on finger probes exist. 

One composite probing (or K-probing) comprises several (K) line or 
finger probings simultaneously done. The main issue discussed in this 
paper is the performance of probing schemes that use such composite 
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probings. The problem may be looked upon as a parallel computing 
problem. K independent units, each capable of sensing (computing) some 
geometric feature, are operated at each step, and the question is whether 
increasing the number of these units may reduce the number of sensing 
(computing) steps. The main motivation for this study is the desire to 
reduce the number of probings required for reconstruction by exploiting a 
multifinger hand, which may be available. An optimistic hope would be 
that the number of probings will be divided by K, but as shown in this 
paper this is never the case. 

Some effort in this direction has already been made. Li [5] has consid- 
ered the problem of reconstructing a polygonal object from its binary 
parallel projections, which is equivalent to using a composite probe made 
of two parallel line probes (jaws) moving in opposite directions. He 
proposed a probing strategy that uses no more than 3V - 2 such probings 
to reconstruct a polygon and has shown that this is the optimal strategy. 
Lindenbaum and Bruckstein [SJ have considered using perspective binary 
projections for reconstruction, which is equivalent to using a composite 
probe made of two lines rotating about an axis point. They have presented 
an optimal probing strategy that requires no more than 3V - 3 perspective 
probings to reconstruct a polygon. A geometric duality implies that the 
same performance may be achieved by using a composite probe made of 
two finger probes moving in opposite directions on the same line. A much 
better result was achieved by Skiena [7] using a less restrictive probing. He 
considered the use of a composite probe made of two independent finger 
probes and proposed a strategy for reconstructing the polygon using no 
more than qV composite probings. 

In this paper we consider every degree of parallelization (K) and 
provide probing strategies for both composite line probing and finger 
probing. (Different strategies are provided for different values of K.) The 
performances of these strategies are characterized by proving upper bounds 
on the number of probings they require for complete reconstruction. Then 
lower bounds on the number of probings required by arbitrary strategies 
are derived. It is formally proved that the difference between the perfor- 
mance of any of the proposed strategies and the corresponding lower 
bound is never greater than two probings, implying that all the strategies 
proposed are at least almost optimal. 

First, only supporting line probing is considered and the reconstruction 
task is described. Then the proposed strategies are given and their 
performances are evaluated (Section 3). The above described lower bounds 
are derived in the next section (Section 4). Finally, we briefly discuss how 
to translate the results to the case of finger probing, summarize our 
results, comment on some aspects of the problem and proofs, and present 
some open problems. 
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2. THE TASK 

We consider the following problem. A convex polygonal planar object S 
covering the origin 5 is included in a circle of radius R centered at the 
origin, but is otherwise unknown. Only data obtained using supporting line 
probing is available. Each of these probings reveals partial information on 
the object’s boundary and is defined as follows: Choose an axis point f 
outside the object S and a direction d, which may be CW (clockwise) or 
CCW (counterclockwise). The probe is a rotating ray (half-line) initially 
placed on the line sf with its end point on f and pointing away from 5. 
The ray rotates in direction d about f until it touches the object S; then 
its position is recorded. Denote the resulting tangent line L(f, d, S) (see 
Fig. la>. Each probing restricts the unknown object to lie within a 
half-plane bounded by the tangent line and to have at least one edge point 
on this line. Choosing f at infinity implies that the slope of the tangent 
line is prespecified, and the supporting line probe is reduced to the 
traditional line probe. It is straightforward to show (Fig. lb) that the dual 
probe to the supporting line probe is the general finger probe. 

A composite probing (K-probing) comprises K simultaneous supporting 
line probings. Thus in a K-probing, say the jth one, K pairs (fkj, dkj), k = 
1,2,. . . ) K, are pre-specified, and K tangent lines L(fkj, dkj, S) are ob- 
tained. 

The task is to exactly reconstruct the object using the data obtained 
from a sequence having a minimal number of K-probings. Let Rj be the 
intersection of all half-planes corresponding to the first j K-probings. This 
convex set consists of all points satisfying the constraints imposed by the 
first j probings and must therefore contain the unknown set S (see Fig. 2 

(4 W 

FIG. 1. A supporting line probe (a) and its dual, a general finger probe (b). 
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FIG. 2. Example of the first K-probing and the set R,, known to include the unknown set 
S (K = 4 in this example). 

for an example). To reconstruct the unknown polygon one has to itera- 
tively modify the set Rj by incorporating the information gathered from 
the probings until it becomes verifiably identical to the set S. If three 
tangent lines resulting from the probing process pass through a vertex of 
Rj, then this vertex is necessarily also a vertex of S and is denoted a 
verified vertex. To show that Rj coincides with the unknown object S it is 
necessary and sufficient to verify all its vertices. The number of probings 
required to do this depends on the object and on the way the K pairs 
(fkj, d,j), k = 1927 * * * > K, are chosen for each K-probing. In case of poly- 
gonal objects with I/ vertices, it is possible to find strategies (or rules) for 
specifying the K pairs ensuring complete reconstruction after a finite and 
fixed number of probings (which depends on V). The task is thus to find a 
strategy that ensures exact reconstruction after a minimal number of 
composite probings. 

The following notation is introduced. Since only supporting line probes 
are used throughout this paper, we usually refer to them simply as line 
probes. Here Pj will be the set of parameter pairs specified in the jth 
K-probing; that is, 

q= ((fkj,dkj),k= 1,2 ,..., K). 

And -.&Pj, S> will denote the set of tangent lines obtained by the K line 
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probings specified by q: 

-q-g) = (L(f,d,s),(f,d) q}. 
Each of the vertices of the polygonal set Rj may be verified as a vertex of 
the unknown set S. Define a boundary segment of length n to be a series 
of n + 2 consecutive vertices of Rj ~a, vi,. . . , vn, u,+i, such that vO and 
u n+l are verified vertices and other n vertices are not. Note that a 
segment of length n includes n + 1 sides of Rj and a total of n + 2 
vertices. A partial description of the set Rj is a list of the lengths of all 
segments: L,, L,, . . . , L,. This will be called a segment description. Al- 
though this description does not comprise information about the positions 
of the vertices, the number of verified vertices, or the order of the 
segments, it nonetheless summarizes all the information required for our 
discussion. 

3. THE PARALLEL PROBING STRATEGIES 

3.1. The Probing Principles 

As explained above, we are looking for strategies of choosing the 
probing parameters. These strategies are required to minimize the number 
of composite probing needed for exact reconstruction in the worst case. In 
this section we provide parallel probing strategies for all values of K, as 
well as tight upper bounds on the number of probings they require. 

The concepts of efficient probing, and semi-efficient probing are central 
to the design of the strategies and to their analysis. Consider for the 
moment probing with a single line probe. This line probing is denoted 
efficient if its result, the support line L(f, d, S), passes through some 
vertex of S that was not previously verified. A vertex of Rj is verified if 
three support lines pass through it. Suppose the reconstruction is com- 
plete; i.e., Rj. has V vertices that are all verified. Then clearly no more 
than 3V efficient probings could have been made. Thus the design of a 
probing strategy should minimize the number of inefficient probings. 

Note that without knowing S, it is in general impossible to classify the 
probings as efficient or inefficient until after they are made. But by 
choosing the pair (f, d) in a clever way, it is sometimes possible to ensure 
that the probing is efficient. Consider the segment va, vi,. . . , vn, un+i of 
Rj (in which v,, and vn + i are verified vertices and the rest of the vertices 
are unverified). If more than one unverified vertex is included in the 
segment (n > 11, then choosing the axis point f on the line voy2 (outside 
Rj) and the appropriate direction d implies that either v. or v2 are 
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FIG. 3. An efficient line probing. 

verified or the line passes through some yet unknown vertex of S (see Fig. 
3). In both cases the probing is efficient. If n = 1, then v2 is already a 
verified vertex and thus, if L(f, d, S> coincides with yOyz the probing is 
not efficient. Note that in this case the segment is deleted. 

A generalization of the concept of efficient probing concept is that of 
semi-efficient probing. Denote a probing semi-efficient if it either deletes a 
segment or is efficient (or both). Since each probing that deletes an 
unverified segment corresponds. to a line L(f, d, s) coinciding with an 
edge of the unknown polygonal object, it follows that no more than V such 
probings can exist and that the number of semi-efficient probings is 
upper-bounded by 4V. 

Choosing each of the axis points on the line v,,v2 (or ~~-i~,,+i) of some 
segment, as in the single probing presented above, is defined to be the 
probing principle and is satisfied in all strategies proposed. 

The following notation is used. Probing a segment means that the axis 
point is placed on the line yOv2 or on the line ~~~i~~+i (outside Rj> and 
the direction d is chosen such that the first vertex of Rj crossed by the 
line is vi (or v,J. Probing a segment from both directions means that one 
axis point is placed on the line Y,,v* and another on the line v,,-iv,+i 
(with the corresponding directions). Probing a segment by two probes from 
one direction means placing two axis points on the line vOvz (or placing 
both of them on v, _ ivn + i 1. 

3.2. The Principles of Strategy Performance Analysis 

The number of probings required for complete reconstruction using a 
given strategy will be the measure of its performance. We first introduce 
notation and describe the principles of setting an upper bound on this 
number. Let BSEj be an upper bound on the number of semi-efficient 
probings done by all the K-probings starting from the (j + 11th. Clearly 
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BSEj I BSEjml and ABSEj 4 BSEjml - BSEj is non-negative. For every 
strategy we give a lower bound on Cy= ,ABSEj, and this bound strictly 
increases with n. As shown before, the total number of semi-efficient 
probings, BSE,, is bounded by 4V, and since 

BSE, = BSE, - k ABSEj = 4V- k ABSEj 2 0, (1) 
j-1 j=l 

it follows that n cannot be greater than a certain value. 
The jth K-probing includes K line probings. Assume that after the K 

pairs, (fkj, dkj), k = 1,. . . , K, are determined, the line probings are done 
sequentially. Let RF (k E 1,2, . . . , K) be the set satisfying both the first 
j - 1 K-probings and the first k line probings of the jth K-probing. 
Similarly, let BSEF be an upper bound on the number of semi-efficient 
probings done by the k + 1,. . . , Kth line probings included in the jth K 
probing and by the K-probings that follow. Let ABSE,! = BSEF- ’ - BSE,f 
( ABSEj = Cf= I ABSEF). Clearly, 

Ri” = Rim,, Rr=Rj 

BSEj = BSE,! I BSEi” I BSEi” = BSE, _ , , k = 1,2 ,..., K. 

The kth line probing yields ABSE,! of 0, 1, or more according to the 
following cumulative contributions (see Fig. 4 for some examples). 

(a) If the k th line probing is semi-efficient then the number of 
semi-efficients probings still possible to perform is decremented by at least 
one. ABSE,! 2 1. Let the variable SE,+ be 1 if the probing is semi-efficient 
and 0 if it is not. 

(b) If the line segment YY’ is an edge of R;-‘, V’ is a verified vertex 
of it, and v is verified by the k th line probing, then the probing principle 
implies that the line probing that results in the tangent line vv’ was done 
when both v and v’ were unverified. It therefore had to be one of the 
three efficient probings needed to verify v and v’. Hence only five 
efficient probings, instead of six, verify both v and v’. The bound on the 
total number of semi-efficient probings, which was 4V, may therefore be 
tightened by one probing. Alternatively, ABSEf is incremented by one. 
Call v, as above, a 2-verified vertex and let the number of 2-verified 
vertices verified by the kth line probing be 2-VERF. This notation follows 
from the observation that only two probings are needed to verify v (in 
addition to the one that also verifies the vertex v’). 

(c) If vv’ and vv” are both sides of RTP1 and both v’ and v” are 
verified vertices of it, then verifying v by the kth line probing implies (by 
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(4 (b) 

p Jv-$ 
(cl (4 

FIG. 4. Examples to probing results yielding different values of ABSE:. (a) No vertex is 
verified and SE! = ABSE,! = 1. (b) Vertex Y is 2-verified, vv’ is verified, and the probing is 

‘k efficient. ABSEj = SE: + 2-K& + E-VERk = 1 + 1 + 1 = 3. (c) Vertex Y is verified 
i t, and so is vu’; hence ABSE,! = SEj + E-VERj = 1 + 1 = 2. (d) No vertex is verified but 

the segment is deleted. ABSE/ = SE,!‘ = 1. 

an argument similar to the one for the previous case> that seven efficient 
probings verify V, v’, and v”. For each such verified vertex, the bound on 
the number of semi-efficient probings may be decreased by two; thus 
A&Y?! may be increased by two. Let v as defined above be called a 
1-verrfred vertex and let the number of l-verified vertices verified by the 
k th probing be l_ KERT. 

Cd) Suppose the vertex Y and the edge YV’ are both verified by the 
kth line probing. (v’ was previously verified.) This probing denies the 
possibility of a line probing that deletes a segment and coincides with VV’; 
hence ABSEF may be incremented. If two edges VV’ and W” are verified 
together with Y, ABSE,” is incremented by 2. Let the number of pairs 
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comprising a verified vertex v and a verified side VY’, verified simultane- 
ously by the kth line probing, be denoted by E-VER;. 

Summarizing all the contributions, we obtain the formula 

ABSEi” = SE; + ZVER; + 2. l-PER,” + E-VER;, (2) 

which will serve as the basis for analyzing the performance of the various 
strategies proposed in the following subsections. 

Note that 4V is an upper bound on the total number of semi-efficient 
probings in the worst case. Knowing that only five semi-efficient probings 
were used to verify two certain vertices or similar special cases allows 
tightening the bound. Thus two components combine to lower the upper 
bound BSE, as n increases. The first obviously counts the semi-efficient 
probings that were already done, and thus deducted from the remaining 
“allowance.” The second component measures a decrease in the bound on 
the “original allowance”; this decrease is enabled by knowledge on special 
cases gathered through the probing process. Counting only the semi-effi- 
cient probings yields a looser bound. 

The notations SEj k XF=,SEjk, 2_VER, g CF=,2_I/ERp, l-PER, 2 
CF= ,l -VER;, and E -VERj 2 ZF=, E -VERf are also used. Clearly, 

ABSEj = SEj + ZVER, + 2. l-PER, + EmVER. 

We propose three basic strategies for the values of K = 2, 4, and 6. 
Slight modifications of these strategies also provide probing strategies for 
K = 3 and 5 and for all K > 6. The first strategy (K = 2) and its analysis 
are presented in the next section. 

3.3. A Probing Strategy for Double Probing (K = 2) 

3.3.1. The Strategy 

A strategy is proposed for double probing. It is shown that relative to 
optimal probing with a single probe, this strategy substantially reduces the 
number of probings. This strategy, as well as latter ones, includes two 
stages. The first stage could be substituted for random probing, with some 
precautions to avoid repeating the same probing. The second stage is more 
systematic and is performed according to the probing principle. 
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STRATEGY A. 

stage a (until the first vertex is verified1 
-Let f,, = (R, 01, fz2, = C-R, O>, and the corresponding directions be 

CW; and probe the object. 
Repeat until the first vertex is verified: 
-Let the new axis points fkj (k = 1,2) be the previous axis points fk, j- i 

rotated by some angle such that they do not lie on any of the extensions 
of the sides of Rjpl, and probe the object. 

stage b (until all vertices are verified) 
Repeat until all vertices are verified. 
-If # of unverified segments 2 2, then probe 2 segments with one probe 

each. 
-If # of unverified segments = 1, then probe it with one probe from 

each side. 
3.3.2. The Number of 2-Probings Required for Reconstruction Using 
Strategy A 

THEOREM 1. Strategy A requires at most 2V 2-probings to reconstruct a 
polygon with V vertices. 

Proof. Each 2-probing performed in stage a, except the last, does not 
verify a vertex. Hence two efficient line probings are done by each of these 
2-probings; ABSE, = 2 for each of them. The last probing in this stage 
verifies one or more vertex, but since the origin is known to be inside the 
object, the positions of the axis points imply that none of the verified 
vertices lie on both line probes. Hence both line probings are efficient and 
BSE, 2 2. 

Consider now a nonfinal 2-probing in stage b. If more than one 
unverified segment existed before this probing, then each of the two line 
probings probes a different segment, which ensures that both of them are 
semi-efficient and that ABSEj 2 2. If only one unverified segment exists, 
then it is probed from both sides. The probing principle implies that both 
line probings are efficient unless they intersect at a vertex Y of Rj- i, and 
this may happen only in the final probing. Hence, for all probing but the 
last one, ABSE, 2 2. The last probing may delete a single segment and 
thus ABSE,, 2 1. 

For the n probings 

2 ABSE, L (n - 1)2 + 1 
j=l 

and thus relation (1) implies that 
n52V+i 

and as n is an integer, the theorem is proved. 
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3.4. A Probing Strategy for Triple-Probing (K = 31 

The following strategy is proposed for 3-probing: In each step choose 
the two pairs (fkj, dkj), k = 1 and 2, according to Strategy A and the last 
pair (fsj, d,j) in any reasonable way. Even if the third probing is ignored, 
the object is reconstructed by no more than 2V probings. Although the 
third probing seems not to be used optimally, we shall see later than no 
significant improvement can be achieved by a more systematic use of it. 

3.5. A Probing Strategy for 4-Probing 

The following strategy is proposed for 4-probing (K = 4). 

STRATEGY B. 

stage a - (until the first vertex is verified) 

- Let L = (R, O), f2i = C-R, O), f3i = (0, R), fdi = (0, -R) and 
d,, = CWk = 1,2,3,4; and probe the object. 

Repeat until the first vertex is verified: 
- Rotate the axis points about the origin by some angle that avoids - 

placing the axis points of the jth probing on extensions of the sides of 
Rjel; and probe the object with the same dkj. 

stage b - (until all vertices are verified) 
Repeat until all vertices are verified: 
- If # of unverified segments 2 3, then probe each segment (up to 4) 

with one probe. 
- If # of unverified segments = 2, then probe each segment from both 

sides. 
- If # of unverified segments = 1, then probe the segment with 2 probes 

from each side. 

The analysis of this strategy is omitted here and may be found in either 
[12] or [13], where the following theorem is proved. 

THEOREM 2. Strategy B requires at most [+V + $1 probings to recon- 
struct a polygon with V vertices. 

3.6. A Probing Strategy for 5-Probing 

The following strategy is proposed for 5-probing: In each step choose 
the four pairs (fkj, dkj), k = 1,2,3,4, according to Strategy B and the last 
pair (fsj, dsj> in any reasonable way. Even if the fifth probing is ignored, 
the object is reconstructed by no more than l;V + $1 probings. And as in 
the case of 3-probing, no substantial improvement can be achieved by a 
more systematic use of the additional probe. 
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3.7. A Probing Strategy for 6-Probing 

3.7.1. The Strategy 

Increasing the number of line probings in each K-probing to six and 
using the following Strategy C additionally improves performance. 

STRATEGY C. 

stage a - (until the first vertex is verified) 
- Let fkl,k = 1,. . . ,6, lie on the vertices of a perfect hexagon with sides 

= R, whose center is at the origin. Let d,, = CW, k = 1,2,. . . ,6; and 
probe the object. 

Repeat until the first vertex is verified: 
- Rotate the axis points about the origin such that the axis points of the 

jth probing do not lie on the extensions of edges of Rj- i; and probe 
the object with the same dkj. 

stage b - (until all vertices are verified) 
Repeat until all vertices are verified 
- If # of unverified segments 2 4, then probe each segment (up to 6) 

with one probe. 
- If # of unverified segments = 3, then probe each segment from both 

sides. 
- If # of unverified = 2, then probe each segment with two probes from 

one side and with a third probe from the other side. 
- If # of unverified segments = 1, then probe it with three probes from 

each side. 

3.7.2. The Number of &Probings Required for Reconstruction Using 
Strategy C 

Before Strategy C and the number of probing it requires for reconstruc- 
tion are analysed, an interesting general result is proved. 

Let the segment description of Rj be L,L, . * * L,. Define the parity of 
Rj as 

Then for any probing strategy performed according to the probing princi- 
ple, the following interesting relation holds. (The probing principle was 
defined in Section 3.1.) 
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PARITY LEMMA. For any strategy performed according to the probing 
principle, 

PAR(R,) - PAR(Rj-,) = parity(ABSEj) 

Proof. Any K-probing can be looked upon as determining the K pairs 
<fkj, d,j), k = 192, * * * 7 K, and then sequentially line-probing according to 
these pairs. First the relation 

PAR( $) - PAR( RF-‘) = parity( ABSE,!), (3) 

which uses the notation just introduced, is proved for each of the line 
probings included in the jth K-probing. 

By the probing principle, the axis point fkj is chosen on the line 
vov2bn- lvn+ 1>, where vo(vn+ J is the verified end of the segment 
~0~1~2, * * * > vn+l. Several cases are possible: 

(a) If the kth line probing verified a vertex, it must be in the triangle 
~OYlV2. 

(al) If the verified vertex v is vr and v2 is not a verified vertex, 
then Y is 2-verified (2-vERf = 11, vovl is also verified 
(E _ VERF = 11, and one probing is semi-efficient (SE: = 1). 
Thus by Eq. (2), ABSE,” = 3. The length of the segment is 
reduced by 1 (L + L - 1) and the relation (3) holds. (Shorter 
notation is used in the following cases.) 

(a2) If v = or and v2 is a verified vertex then 1 -VERf = 
1, E-KERT = 2 (voyl and v1y2), and SE,!‘ = 1; thus ABSE,k 
= 5. Here L = 1 + L = 0 and (3) holds. 

(a31 If v = u2 and yg is not a verified vertex, then SE,! = 1 and 
E-VERf = 1; thus ABSE,” = 2. Here L + L - 2 and (3) 
holds. 

(a4) If v = v2 and vs is a verified vertex, then SE,!‘ = 1,2_VER~ 
= 1, and E-VERf = 2 (vov2 and v2v3); thus ABSE,!‘ = 4. 
Here L = 2 + L = 0 and (3) holds. 

(as If V E vovl, then 2-VERj” = 1, E-VERf = 1, and SE,?‘ = 1; 
thus ABSE,! = 3. Here L + L - 1 and (3) holds. (Note that 
in this case and the following two, another probing has 
already met v.) 

(a6) If v E vlv2 and y2 is not a verified vertex, then SE,! = 1 and 
ABSE; = 1. Here L + L - 2,1 (the segment is split) and 
(3) holds. 
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(a7) If v E vIy2 and v2 is a verified vertex, then SE,!‘ = 
1,2_VERjk = 1, and E-VERF = 1; thus ABSE; = 3. Here 
L + L - 1 and (3) holds. 

(a8) If v is inside AvOvivZ, SE: = 1, and ABSEj” = 1, then L + 
L - 2,1 (the segment is split) and (3) holds. 

(b) If the k th line probing does not verify any vertex but is efficient, 
then SE; = ABSEF = 1. Here L + L + 1 and (3) holds. 

Cc) If the k th line probing is not efficient but deletes a segment and is 
thus semi-efficient, then SE: = ABSE,! = 1. Here L = 1 + L = 0 and 
(3) holds. 

(d) Finally, if the kth line probing is not semi-efficient, then ABSE,!‘ 
= 0 and there is no change in the segment representation of RT. Thus (3) 
holds. 

Since (3) holds for each of the line probings included in the K-probing, 
the lemma clearly follows. 

Assuming that more than one vertex is verified by a line probing 
included in the jth K-probing implies a zero-probability event (see discus- 
sion), but Eq. (3) nevertheless holds even in these cases. (The detailed 
case analysis is omitted here.) With the parity lemma proved, the following 
bound can be verified. 

THEOREM 3. Strategy C requires at most V + 1 f&probings to reconsttuct 
a polygon with V vertices. 

Proof: For the jth probing which is not the final one, if the number of 
segments in Rjml is four or more; then at least four probings are 
semi-efficient, implying that ABSE, 2 4. 

If the number of segments is three, then each segment is probed by two 
line probes. If a segment is not deleted, then both line probings are 
efficient. Since at least one segment is not deleted, ABSE, 2 1 + 1 + 
2 = 4. 

If the number of segments is two, then each segment is probed by three 
line probes (k = 1,2,3 for one segment and k = 4,5,6 for the other). By 
checking all the possible results of probing a segment with three probes, it 
follows that Ci,,ABSEF = 1 only if this segment is deleted and that 
C;=,ABSEf = 2 only in the case that “2” + “11.” The same results also 
hold for C”,=, ABSEF. Thus ABSE, r 4 with the possible single exception 
of “12” --) “11,” for which ABSEj = 3. 

If Rj...l consists of only a single segment, then ABSEj 2 4 with the 
possible exceptions of “1” --) “11” and “2” + “12,” for which ABSE, = 3, 
and “2 --) 11,” for which ABSE, = 2. 
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Summarizing, ABSEj 2 4 for all probings except in three cases: 
“12” --$ “11” and “2” + “12” (for which A BSEj = 3), and “2” + “11” (for 
which A BSEj = 2). 

It is not difficult to show that starting from “11,” ABSEj = 4 only for 
“11” +“ll” and for “11” +“4,” while for probings that lead to states 
other than “11” and “4,” ABSEj 2 5. Starting from “4,” ABSE, = 4 only 
for “4” +“ll” and for “4” -+“121,” while for the rest of the probings 
ABSE, 2 5. Finally, starting from “121,” ABSE = 4 only for “121” + “4” 
and for “121” +“ll,” while for the rest of the probings ABSE, 2 5. 

These observations together with the parity lemma yield the state 
diagram describing the probing process (Fig. 5a). All possible Rj’s are 
divided into two sets according to their parity. The probings that cause a 
transition between two states of different parities give an odd ABSE,. 
Since ABSE! 2 4 except for the three cases marked in the diagram, any 
other transition between states of different parity give ABSEj 2 5. Simi- 
larly, for all probings starting from Rjpl in one of the states in 
{“ll”, “4”, “121”) that yields Rj not in this subset, ABSEj may be 6,8, . . . 
if Rj is even and may be 5,7,. . . if Rj is odd. 

A simplified state diagram that is less restrictive than the original but is 
more convenient and nontheless sufficient for the following analysis is 
given in Fig. 5b. Note that in both diagrams, different transitions starting 
from the same state represent all the possible results of the probing with 
regard only to the implied constraints on A BSEj. 

No vertex is verified in the first probing (stage a) and ABSE, = 6. At 
least two efficient probings are done by the second 6-probing if vertices 
are verified by it, and six probings are efficient if no vertex is verified. 
Hence, if n, measurements are made in stage a, then Ci”~,ABSEj 2 4 * n,. 
From the simplified state diagram it follows that for any sequence of 

lib - 1 probings done in stage b (excepting the last), we have 

n,+n*-1 

c ABsEj 2 4(nb - 1) - 2. 
j=n,+l 

Summarizing and adding the last probing for which ABSE, may be as low 
as 1, we obtain 

k ABsEj 2 4n, + 4(nb - 1) - 2 + 1 = 4(n, + nb) - 5 = 4n - 5. 
j=l 

Together with (11, this implies that 

4v+5 
n<-= 

4 
v+; and, therefore, n I V + 1. 
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(4 

FIG. 5. State diagram representing different results of 6-probing and the corresponding 
constraints on ABSEj (see proof of Theorem 3). 

We have thus shown that using the proposed Strategy C, a sequence of not 
more than I/ + 1 6-probings is sufficient for reconstructing a convex 
polygon with V vertices. 

3.8. A Probing Strategy for K-Probing (K > 6) 

For K greater than six, we propose using Strategy C for six of the probes 
and using the other probes in any sensible way. 
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In this section we have proposed several probing strategies. The perfor- 
mance of each of these strategies was evaluated in a rigorous way by 
deriving corresponding upper bounds on the number of probings required 
for worst case reconstructions. The next section develops lower bounds on 
the number of probings required for reconstruction by any probing strat- 
w. 

4. LOWER BOUNDS 

4.1. General Considerations 

The performance of the strategies presented above should be examined 
with respect to the best performance achievable. In this section we derive 
lower bounds on the performance of an arbitrary strategy. We show that 
the number of K-probings needed to reconstruct a polygon with V vertices 
using any strategy is lowerbounded by B (K, V) in the worst case. This 
means that for any strategy, there is at least one object with V vertices 
that is reconstructed by B(K, V) probings. 

Duality implies that the 3V - 1 bound derived for single finger probing 
also holds for single support line probing (K = 1). It follows directly that 
[(3V - 1)/K] is a lower bound on the number of K-probings required for 
reconstruction. 

The first bound we derive is a general one that holds for every value of 
K. It states that no matter how large K is, no strategy ensures reconstruc- 
tion of a polygon with V vertices using less than V K-probings. This result 
demonstrates the inherent limitation of using parallel probing to speed up 
reconstruction. The other bounds presented depend on K and are tighter, 
proving that all the strategies we propose are almost optimal. 

The lower bounds are established in the following way. For every 
possible sequence of probings, we specify a polygon with V vertices that 
cannot be reconstructed without at least B(K, V) probings. This polygon, 
called an adversary object, is different for different sequences (strategies) 
and is adaptively defined in terms of the probing result at each step. For 
most cases, we follow a method similar to that of Li [5] and use a state 
diagram to represent the probing process, with nodes corresponding to 
different basic states. The transitions between nodes correspond to the 
probing results that induce the adversary object. Some transitions imply 
that one vertex or more is verified. For a diagram corresponding to a 
certain K value, at least B(K, V) transitions are needed to verify V 
vertices of the adversary object. Because each transition corresponds to a 
single K-probing, the lower bound is proved. 
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4.2. A General Constant Lower Bound 

In this section we prove the general lower bound. This proof uses an 
adversary object but is relatively simple and does not need the state 
diagram structure. 

THEOREM 4. Any line probing strategy requires at least V K-probings to 
reconstruct a convex polygon with V vertices. 

Proo$ The proof relies on the following principle: For any choice of 
the K pairs <fkj, dkj), k = 1,2,. . . , K, at the jth K-probing (V > j 2 2) 
there is a polygonal object, consistent with all previous K-probings as well 
as the current one, that has no more than j + 2 vertices, at least one of 
which is unverified. This object implying that the lower bound is specified 
as follows. 

Suppose the pairs (f,,, d,,), k = 1,2,. . . , K, are the probings chosen 
initially. Then let li,S, be a line segment that does not include the origin 0 
and whose interior has a nonzero intersection with all lines in &Pi, (5)). 
(see Fig. 6a). Specify the result of the first K-probing to be the lines 

L, = L(f~kl,dkl,{&,,V1}), k = 1,2,...,& 

and the line segment 5a5, to be a side of the required polygon. The origin 
0 must be included within R,. Let V* be a point inside R, such that 5 is 
inside ASaS,ii* (see Fig. 6b). 

For the jth K-probing (1 < j < VI, let Cj be a point inside VjWIS* 
satisfying 

( iI5 E AV,V,Pj; for j = 2) 

(see Fig. 6c for an example with j = 3). Specify the result of the jth 
K-probing to be the lines 

L,=L(~~j,dkj,(Vg,‘1,...,‘j}), k = 1,2 ,..., K, 

and the line segment Vj-iEj to be side of the polygon. Condition (4) 
impliesthat no support line L, coincides with CeE;i; therefore the vertex of 
Rj between Gj and ti,, is unverified. Denote this vertex 5*. The other 
points PO,. . . , Pj may or may not be verified (see Fig. 6d). After V - 1 
probings R,- i has at most V verified vertices and at least one unverified 
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FIG. 6. An adversary object used in the proof of the general constant lower bound 
(Theorem 4). 

vertex (iJ*). ‘Thus at least one more probing is needed to complete the 
reconstruction, and the bound is established. 

4.3. A Lower Bound for Triple Probing (K = 3) 

It is possible to show that any line probing strategy requires at least 
2V - 1 2-probings (double pickings) to reconstruct a convex polygon with 
V vertices. We chose, however, to omit the proof of this and go directly to 
the bound for triple probing (K = 3). The latter bound will obviously also 
hold for k = 2, and it is almost as tight because it is smaller by only a 
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state “1” state “2” state “3” 

(j, ‘OA 

E c B 

state “11” state “111” 

l -a ver if ied vertex 

FIG. 7. The five basic “states.” 

single probing. The derivation of the tighter bound for K = 2 can be found 
in either [12] or [13]. 

As mentioned before, the derivation is based on building an adversary 
object that forces the sets Rj into certain configurations. The following Rj 
sets, referred to by their segment description (defined in Section 21, are 
the basic configurations (or states): 

State 1 Rj includes one segment of length 1 
State 2 Rj includes one segment of length 2 
State 3 Rj includes one segment of length 3 
State 11 Rj includes two segments each of length 1 
State 111 Rj includes three segments each of length 1. 

(In Fig. 7, which illustrates the basic states, the segments are adjacent: this 
condition is not necessary.) Further denote by {W),. the set of the verified 
vertices’ of R,. 

THEOREM 5. Any line probing strategy requires at least 2V - 2 3-prob- 
ings (K = 3) to reconstruct a conuex polygon with V vertices. 

proof: Starting from Rj-1 being in one basic state, we show that it is 
possible to find an object that forces Rj to either remain in this state or to 
change into one of the other basic states. This adversary object is specified 
in terms of the probings’ results. 
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Suppose Rjel is in state (see Fig. 7). Let L be a point inside the triangle 
ABC satisfying Z e ~(Pj, {W)j-,>. Specify the result of the jth k-probing 
to be the lines 

L/c =L(.f/cj,d,j,{W)j-l U (Z}), k = 1,2,3: 

If Z is not included in any of these lines, then Rj is also in state “1.” 

If Z is included in one of these lines, then Rj is in state “2.” 

If X is included in two of these lines, then Rj is in state “3.” 

If f is included in each of these lines, then R, is in state “11.” 

A vertex is verified only in the last case. 
Suppose Rjel is in state “2” (see Fig. 7). Let .? be a point on the 

segment BC satisfying R G &Pi, {Wlj-,), and specify the result of the 
jth k-probing as before, leading to Rj being in either state “2,” “3,” or 
“11.” A vertex is verified only in the last case. 

Consider now the case in which Rjml is in state “3.” If one of the lines 
in -/‘(Pi, (W}j-l U {C}) coincides with AC and another with CE (see Fig. 
71, then the third line may intersect with only one of the triangles ABC 
and CDE. If it intersects with ACDE (A ABC), let i be a point inside 
AABC (ACDE) and let the result of the probings be the lines 

L,=L(fkj,d,j,(J+‘)j-l U {z}), k = 1,2,3. 

This brings Rj into state “2” and verifies one vertex. If the condition is 
not met, let the result of the probings be the lines 

L, = L(.fkj,d,j, {w}j-1 U (C))7 k = 1,2,3. 

This means that Rj either stays in state “3” or changes into state “1” or 
“11”; one vertex (C) is verified in the latter two cases. 

If Rjel is in state “11,” then the probing’s results are specified similarly 
to the last case. Here Rj is either in case “1,” “2,” or “11”; but no vertex 
is verified in any case. 

The above results specify an adversary object. They can be summarized 
graphically using the state diagram given in Fig. 8a. In this diagram, nodes 
correspond to different basic states and the transitions between them 
correspond to the probing results that induce the adversary object. Transi- 
tions that imply that a vertex is verified are marked. Note that in each 
circuit in the state diagram (which is a directed graph), the number of arcs 
is at least twice the number of marked arcs. 

Let the result of the first 3-probings be three lines creating R, that 
contains the origin 5. This R, may be either an open or a closed polygon 
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FIG. 8. An adversary object used in the proof of a lower bound for 3-probing (Theo. 

rem 5). 

(see Fig. 8b). Let 2 be a point inside the side of R, adjacent to A such 
that G e AABZ and Z E &I’,, (A, B, (0)). Let the result of the second 
3-probing be the lines 

Lk=L(fk,,dk,,{A,B,X}),’ k=l,2,3. 

The set R, may be finite, with two adjacent verified vertices and two 
unverified vertices (state “2”). Denote this specific set by Rz. Other 
results may be changed into R; by adding support lines in a way that 
ensures that 5 is inside the object. Assuming R, = R: and using the 
adversary object described below, it follows that at least 2(V - 2) addi- 
tional probings are needed to verify the rest of the vertices; i.e.,. this 
assumption establishes a lower bound of 2 + 2(V - 2) = 2V - 2. Because 
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additional information that changes R, into R: cannot increase the 
number of probings required, it follows that this lower bound holds in 
general. 

4.4. A Lower Bound for j-Probing (K = 5) 

We skip the bound for 4-probing and go directly to the bound on 
5-probing (K = 5), which obviously also holds for k = 4. We shall see that 
it is tight for both 4-probing and 5-probing. 

THEOREM 6. Any line probing strategy requires at least [$V - $15-prob- 
ings (K = 5) to reconstruct a convex polygon with V vertices. 

Proof As in the preceding proof, we show that starting from Rjel 
being in one of the basic states, it is possible to find an object that force Rj 
either to remain in this state or to change into one of the other states. This 
adversary object is specified in terms of the 5-probing results. 

If Rjel is in state “1,” then the result of the probing is specified exactly 
as in the proof of Theorem 5; i.e., the point Z inside AABC that satisfies 
X e A( Pj, (IV},- ,) is defined and the result of the 5-probing is specified 
to be the lines 

L, = L(fkj> d,j, {WI,-1 U {z}), k = 1,2,3,4,5. 

This means that Rj is in state “1,” “2, ” “3,” or “11”: one additional vertex 
is verified only in the last case. 

If Rjpl is in state “2,” then the result of the probing is also specified 
exactly as in the proof of Theorem 5; i.e., the point R inside the link 
segment BC that satisfies Z I -.&P,, (IJV},-~) is defined and the result of 
the 5-probing is specified as the lines 

L, =L(.fkj,d,j,(W)j-l U {z}), k = 1,2,3,4,5. 

This means that Rj is in states “2, ” “3,” or “11”: one additional vertex is 
verified in the last case. 

Suppose RjT1 is in statk “3.” If two of the lines (L, and L,) in 
J(P,, {W]j-,) coincide with AC and two others CL3 and L4) coincide 
with CE, then let F1 and i, be two points respectively located inside BC 
and CD such that Xi, &, and fS are not on the same line. Then let the 
result of the 5-probing be the lines 

L,=L(&,d,j,{W}j-l U {EI,~z}), k = 1,2,3,4,5, 

leading to Rj being in state “111” with two verified vertices. If, however, 
one or more of the lines in d( Pj, {Wlj- i) coincides with CE (AC) and 
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only one line coincides with AC (CE), then choose a point X inside 
AABC and let the result of the 5-probing be the lines 

Lk = L(fkj, dkj{ w)j-l u {c, %} 9 k = 1,2,3,4,5. 

Here Z should be chosen close enough to AC that only L, includes it, 
thus leading Rj to state “2” and to one additional vertex (0 being 
verified. If none of these conditions hold, then let the 5-probing result be 
the lines 

L, =L(fkjpd,jy (W}j-1 U {C}), k = 1,2,3,4,5, 

leading to an Rj that either stays in state “3” or that changes into state 
“1,” or “11,” adding one verified vertex. 

Suppose Rj- 1 is in state “11.” Each of the lines in -/(pi, {W);.- i) may 
intersect with the triangle AABC or with the triangle ACDE but not with 
both. Thus at least one of the triangles AABC and ACDE (say ARBC) 
intersects with two or less lines in d’(Pj, WV},-i). If one of the lines in 
z!U$ {W),-i) coincides with AC and another coincides with CE, then let 
i be a point inside AABC satisfying E @ dTPj, (W);-,) and specify the 
5-probing result to be the lines 

L, = L(fkj,d,j,{W)j-1 U {i}), k = 1,2,3,4,5. 

This means that Rj is in state “2” or “3.” If this condition is not met, then 
specify the 5-probing result to be the lines 

leading to Rj in state “1,” “2, ” “3,” or “11.” In all cases no vertex is 
verified. 

Finally, suppose Rjel is in state “111” (see Fig. 7). At least one of the 
triangles AABC, ACDE, and AEFG (say ABC) intersects with one line 
in J(Pj, (W},-i> or with none. If each of the segments AC, CE, and EG 
coincide with a line in d’(Pj, {Wlj- i), then let X be a point inside A ABC 
and specify the 5-probing result to be the lines 

L, =L(.f~j~d,j~{W)j-~ U {x}), k= 1,2,3,4,5, 

leading Rj into state “2.” If this condition is not met, then specify the 
5-probing result to be the lines 

Lk = L(fkjr d/cj, {W}j-I), k = 1,2,3,4,5, 
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(b) 

FIG. 9. An adversary object used in the proof of a lower bound for Sprobing (Theo, 
rem 6). 

which means that Rj is in state “1, ” “11,” or “111.” No vertex is verified 
in any case 

The probing of the adversary object may be described by the state 
diagram given in Fig. 9a, where each arc marked by 1 (2) denotes a 
probing that verifies a vertex (or two vertices). 

Suppose the pairs of (fkl, d,,), k = 1,2,. . . ,5, are the probings chosen 
initially. Then let POV1 be a line segment that does not include the origin 5 
and whose interior has a nonzero intersection with all lines in -&PI, {G}) 
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(see Fig. 6a). Specify the result of the first K-probing to be the lines 

L, = L(fk,, 41, {% q, k = 1,2 ,..., K, 

and the line segment COY1 to be a side of the required polygon. The origin 
5 must be included within R,. Let C* be a point inside R, such that 5 is 
inside AV@rF* (see Fig. 6b). 

Assume that additional probings were done and R, was changed to RT, 
which is the triangle AVaVrS* in which the vertex V* is unverified and the 
vertices 3, and 5, are verified. The results of the next probings are 
specified according to the adversary object described by the state diagram. 
In each circuit in the state diagram, the ratio between the number of arcs 
and the sum of the corresponding marks is not less than +, and this limit is 
achieved only by the circuit “3,” “111,” “2,” “11,” “3.” This implies that 
starting from a basic state, the number of probings required to verify V 
vertices is approximately lower bounded by $V. For calculating the exact 
bound, care should be taken with respect to the final states of the 
reconstruction. If in state “3” the number of verified vertices is V - 1, 
then transition to state “111” is illegal (since it implies that V + 1 vertices 
are verified), and the next probing may terminate the reconstruction. If, 
however, in state “3” the number of verified vertices is V - 2, then at 
least two additional probings may be done before the reconstruction is 
complete. Finally, if in state “3” the number of verified vertices is I’ - 3, 
then four additional probings are needed. 

Starting from RT, the sequence of probings described yields R, = “11,” 
R, = “3,” and then a repeating sequence “3,” “111,” “2,” “11,” “3” until 
in state “3” the number of verified vertices is greater than V - 4. The 
probing sequence then finishes in one of the above ways, leading to 
reconstruction via a minimal number of probings. According to the three 
ways of terminating the reconstruction, the number of probings required is 
either 1 + 2 + $(I’ - 4) + 1 = $V - l:, 1 + 2 + $0. - 5) + 2 = 
GV - 5, or 1 + 2 + $0 - 6) + 4 = :V - 1. Assuming R, = RT, the least 
of these values , :V - +, is a lower bound on the required number of 
probings. As additional information changing R, into RT cannot increase 
the number of probings required, it follows that this lower bound holds in 
general. 

5. DISCUSSION 

We have analysed composite line probings which consist of simultane- 
ous K supporting line probings. Similarly, composite finger probing com- 
prises K simultaneous finger probings. Before each K-probing, K lines and 
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K directions are specified. A finger probe (point) is moved on each of 
these lines from infinity in the corresponding prespecified direction, and it 
stops when the object’s boundary is encountered. The K points detected 
on the object’s boundary are the result of this composite probing. Duality 
implies that all strategies developed for composite line probing may be 
transformed into composite finger probing strategies with the same perfor- 
mance. Transforming the bounds meets a subtle difficulty: the dual probe 
to a finger probe that misses the object is a supporting line probe whose 
axis point is inside the dual object. Such a probing cannot be done, and 
one may thus suggest that finger probing strategies that use such “exter- 
nal” probes can be more efficient than the corresponding bound. It is easy 
to show, however, that the adversary objects created by transforming the 
adversary object for line probing, do not have to be changed to also 
account for “external” finger probing; and thus all the bounds developed 
for composite line probing hold for composite finger probing [131. 

The issue discussed in the paper is the performance of parallel probing 
strategies. We considered every degree of parallelization-i.e., any num- 
ber K of simultaneous probings- and calculated lower bounds INK, V) 
on the number of parallel probing sets (k-probings) required for recon- 
struction by any strategy. (Although the bounds were developed for 
supporting line probing, special attention was given to ensure that the 
adversary objects introduced include the origin; thus enabling these results 
to be extended to finger probing.) We also proposed specific strategies 
that almost reach these bounds. The results are summarized in Table 1. 
The corresponding figures for single probing are included for comparison. 

The small differences (never greater than two probings) between the 
performances of the proposed strategies and the bounds on the perfor- 
mance of any strategy imply that all the strategies proposed are almost 
optimal, if not optimal. 

TABLE 1 

Number of finger probings Lower bound on the Number of k-probings 
(line-probings) done number of k-probings required by the 

in parallel required for reconstruction proposed strategies 

K INK, V) 

1 3v- 1 3v+ 1 
2 2v- 1 2v 
3 2v-2 2v 

4 

5 

6 or more 

f$: q 3 
V 

gv+ f] 
gv+ f] 

v+1 
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The main conclusion drawn from the results is that probing in parallel 
(with a composite probe) reduces the number of probings required to 
ascertain the shape of a convex object. This reduction is, however, limited 
to a factor of three, no matter how many probings are done in parallel. A 
practical conclusion is that composite probes consisting of more than six 
line or finger probes need not be used. This is because the worst-case 
performance of a composite probe made of only six probes is already 
within one probing of the theoretical limit. 

The number of K-probings required for reconstruction is significantly 
reduced when K is increased from 1 to 2, from 3 to 4, and from 5 to 6; but 
not when it is increased from 2 to 3 or from 4 to 5. This step behavior is 
due to the following situations: Suppose Rj consists of two segments, one 
probed by one probe and the other by two probes (K = 3) or by one 
(K = 2). If the second segment is deleted by the probing, the contribution 
to the reconstruction of the unknown set is the same regardless of whether 
K = 2 or K = 3. If K = 4, however, then each of the segments is probed 
by two probes, and, even if one of them is deleted, the second still 
provides more information than a segment probed by a single probe, 
implying a possible reduction in the number of probings required for 
reconstruction. A similar situation in which Rj consists of three segments 
accounts for the contrast between the significant improvement when 
increasing K from 5 to 6 and the lack of improvement when increasing K 
from 4 to 5. 

An interesting issue, not discussed in this paper, is whether all probing’s 
results are equally likely. In particular, it is instructive to note that some of 
the assumed and analysed probing results are zero probability events 
(ZPEs). The generality of the unknown convex polygon implies that no 
vertex is determined when only other vertices are known. Thus before the 
ith probing we may assume that the position of each vertex v that is not a 
vertex of Rjpl is random, with some unknown continuous probability 
measure f,(X) that is nonzero in some region in the plane and that 
depends on Rjwl to ensure convexity. Suppose two vertices of S, Y and v’, 
are not vertices of Rjel but lie on L(fj, dj, S). This means that fj, Y, and 
Y’ are colinear. For any position that v may take, and for any continuous 
probability distribution f,,(X), the probability that V’ is colinear with v 
and fj is clearly zero: such a result is a ZPE. It follows that, with 
probability one, no vertex may be l-verified or 2-verified because such a 
situation would imply that a ZPE had previously occurred. Although the 
assumption that ZPEs do not occur facilitates the proofs and may even 
lead to new results (see, e.g., [lo], in which a new tighter lower bound on 
the performance of multidimensional probing strategies is derived), we 
preferred to preserve generality and therefore considered all possible 
outcomes. 
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The lower bounds derived in this paper limit the worst-case perfor- 
mance of the probing strategies. An interesting question, which is also 
more practical, is to find the average performance, or bounds on it, 
making some reasonable assumptions about the distribution of the ver- 
tices. It is expected that the average performance would benefit more from 
using composite probes. Another interesting problem, more relevant to 
nonpolygonal reality, is to find optimal probing strategies for reconstruct- 
ing convex sets up to some prespecified precision. An initial attempt 
towards this end is described in [13, 141. 
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