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On the Performance of Edited Nearest Neighbor 
Rules in High Dimensions 

ANDREI Z. BRODER, ALFRED M. BRUCKSTEIN, AND 
JACK KOPLOWITZ 

Abstract—In a Poisson process in n-dimensional Euclidian space the 
expected distance to the kth nearest neighbor (NN) is 

and the variance is 

i, x 1 1 / τ , , , / , χ T'(k)\ Jfon\ 

"2(**)=«2^r"(*>-iwM^)' ^*· 
This implies that, for sufficiently large /i, the k nearest neighbors of any 

point in the process lie in a thin hyperspherical shell, and that neighbors 
have disjoint sets of it-nearest neighbors. This makes possible the evalua-
tion of performance for /c-NN classification with edited data sets. 

I. INTRODUCTION 

Nearest neighbor rules are well-known discrimination proce-
dures that classify a pattern according to the majority class of the 
nearest samples in the data set. For the asymptotic case, as the 
number of samples becomes arbitrarily large, the risk for 
the /c-nearest neighbor (&-NN) rules can be bounded in terms of 
the Bayes risk [1]. 

Wilson [9], proposed an editing procedure which tests each 
sample using the &-NN rule with the remainder of the data. A 
sample is discarded if it is misclassified by the test. The edited 
data is then used in a single nearest neighbor rule for classifica-
tion. 

To examine the motivation of editing, consider the Bayes 
classifier. Define a sample to be of minority class if it is misclas-
sified by the Bayes rule. The proportion p(x) of minority 
samples in a neighborhood of x provides an indication of perfor-
mance. If the classified data points are locally uniformly distrib-
uted then p(x) is the probability that for an observation x the 
single nearest neighbor classifier differs from the Bayes classifier. 
Editing attempts to remove the minority samples and thus obtain 
performance closer to the Bayes classifier. 

In [5] a generalized kk' edited NN rule is proposed to maxi-
mize the remaining data set while reducing p(x). The edited set 
is obtained by taking a sample and its k - 1 neighbors. If a 
majority of k' out of k exists the sample is labeled according to 
the majority class. Otherwise it is deleted. 

Wilson [9] evaluates p(x), however, it was pointed out by 
Penrod and Wagner [6] that the editing of each sample is not 
independent and thus the samples in a small neighborhood are 
not necessarily uniformly distributed. By considering the one-
dimensional case and modifying the editing procedure to use a 
rule which selects the NN to a sample x from those greater than 
jc, an exact analysis is provided [6]. For this problem the upper 
bounds on the risk are about six percent worse than if one 
assumes independence in editing. 
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In [5], for the purpose of comparing the trade-off between the 
risk and the size of the edited set, samples are placed into 
separate groups of k. The kk' editing is then performed indepen-
dently on each group. This allows for the computation of perfor-
mance and gives the same result as the assumption of indepen-
dence in editing each sample. 

Another editing method, due to Devijver and Kittler [3], en-
sures independence in editing by partitioning the data set into 
two subsets and using the points of the first set to edit the points 
of the second set, which is subsequently used for classification. 
The drawback of this procedure is that it needs a data-rich 
environment. 

In this correspondence we show that asymptotically as the 
dimensionality of the space increases the usual sample editing 
becomes independent. This makes an accurate calculation of 
performance in a high-dimensional space straightforward. Thus, 
with high dimensionality, the grouping in [5] is not necessary for 
determining the risk and similarly the results by Wilson becomes 
very close to exact. 

Sections II and III determine the mean and variance of the 
distance to the k th NN. Letting the dimensionality become large 
we obtain the result that the expected distance to the &th NN 
does not depend on k and the variance approaches zero. This 
implies that for sufficiently large n, the A>nearest neighbors lie in 
a thin hyperspherical shell. In Section IV we show that, with high 
probability, two points that are neighbors of a sample to be 
classified are not ^-nearest neighbors of each other and, further-
more, have distinct ^-nearest neighbors. This implies that with 
high probability the editing of the neighbors of a sample is an 
independent process. 

II. DISTRIBUTION OF THE DISTANCE TO THE &TH 

NEAREST NEIGHBOR 

The spatial Poisson point process is defined as a collection of 
points ("occurrences") randomly distributed according to the 
following laws [4]. 

1) The numbers of points in disjoint regions are independent 
random variables. 

2) The number of occurrences in a region A, N(A) is a Poisson 
random variable, that is 

W M = t ) = i M ^ (I) 

where λ is the "intensity" parameter, and v(A) is the volume of 
the region A. 

In the following sections we shall consider the Poisson point 
process in the «-dimensional Euclidian space. 

Consider a fixed point O in space and a region A such that 
O e A. Initially A = O. Let the region A expand in a prede-
termined fashion (i.e., the expansion is independent of the occur-
rences of the Poisson process.). At a certain moment the region A 
will contain exactly k occurrences of the process. Let Vk denote 
the volume of A at this moment. The distribution of the random 
variable Vk is easily found from the defining properties 1) and 2) 
as follows: 

Pr( Vk < v) = Pr( k or more occurences in v) 

- ι - Σ 1 ^ - . (2) 
r = 0 

Now the probability density function (p.d.f.) of Vk is im-
mediately obtained as 

' ^ - ^ ( F ^ · (3) 
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and we can evaluate the moments of this distribution as follows: 

1 T(i + k) 

o (k-i)i&dD-Hirn)i- (4) 

In particular E(Vk) = k/X, and E(Vk
2) = k(k + 1)/λ2 so that 

the variance o2(Vk) = k/)?. 
These results are independent of the number of dimensions 

and generalize some well-known results for the Poisson process 
on the Une. Note that in the above derivations no assumptions 
were made about the shape of the region A or about the way of 
expanding it. 

Let P be an occurrence of the process and denote by SP{r) a 
"sphere" in the «-dimensional space, centered at P, and with 
radius r. If Rk is the distance to the kth nearest neighbor of P, 
then the distribution of this random variable is given by 

Pr(Rk < r) = ?i(N(SP(r) - {P}) > k) 

From (12) we obtain the expected value and the variance of the 
distance to the k th NN 

E(Rk) 
1 T(k + l/n) 

and 

so that 

° 2 ( * A ) 

, 2, 1 Tjk + 2/n) 

(15) 

(16) 
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k-\ 
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(17) 

To obtain the asymptotic behavior of the mean and the vari-
ance of the distance to the /cth nearest neighbor, consider fi/". 
Using the Stirling formula for 1ηΓ((«/2) 4- 1) [2], we obtain 

7 = 0 

and the corresponding p.d.f. is 
ß 

(5) 
\/n 

oV" -

pRk(r) = ^ ( _ % e-™>™±v(SF(r)). (6) 

The volume of a «-dimensional sphere of radius r is given by 
(see [7]) 

v(SP(r)) = Pnr" 

- * - p ( - i ( ( f + i ) h ( ! + >)-! + H) 
(18) 

where 

which means 

T«/2 

Pn = 

If-) 

(7) 

(8) 

2πβ ire lΛ A In« \ \ H1 + 0br))· " 
Since the gamma function is analytic for positive arguments, 
using its power series expansion we get 

Γ ( £ + l/n) 

( * - l ) ! 
= 1 + »ü)· - (19) 

( π" / 2 and 

< · - -
(ÎK 
2"π (n-l/2) m 

Therefore 

pRk(r)-
n (Xft,r-) ' 

if n even, 

if n odd. 

-\pnrn 

(9) 
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l[r. . ( t )-£ii£| + 0 i > 
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r (k-iy 
and in particular the p.d.f. of the distance to the nearest neighbor 
is 

(10) 

^hbor 

( Π ) pR^r) = Xnpnrn'le-xp"r". 

III. EXPECTED VALUE AND VARIANCE OF THE DISTANCE 

TO THE km NEAREST NEIGHBOR 

Straightforward calculations yield the moments of the p.d.f. of 
the random variable Rk, the distance to the kth NN. 

E{Rk)-J0 r (k-\)\e dr 

( λ Α 

- τ-Γ(Α: + m/n). 
y/n (Ä: — 1)! V / ) 

(12) 

Using the above formula we could obtain again the expected 
value of the volume of the sphere required to contain k occur-
rences: 

E(Vk) = E(P„R"k)=±. (13) 

Also, more generally 

*Cï)-^«f)-i^±Û (14) 

which is (4). 

(20) 
Finally, because λ is fixed, λ1/,? = 1 + 0 (1 /« ) . 

The above results, used in (15) and (17) generate the following 
asymptotics: 

*<**>- / i^ + 0 (^r) · "̂ 00' (21) 

and 

(22) 

Since E(Rk) is asymptotically independent of k, and o2(Rk) 
-> 0, the k-nearest neighbors to any given point He, with prob-
ability approaching 1, in a thin spherical hypershell for large n. 

Some plots of E(Rk) and o2(Rk) computed according to (15) 
and (17), for k = 1 to 10 and n = 1 to 20, clearly exhibit this 
asymptotic behavior (Figs. 1 and 2). Note that in the plane the 
variance increases with k, but decreases for all higher dimen-
sionalities (Fig. 3). 

IV. THE PROBLEM OF COMMON NEAREST NEIGHBORS AND 

INDEPENDENCE IN EDITING 

Let Q be the nearest neighbor of the point P. Using the above 
results we shall argue that, with high probability, P and Q have 
mutually disjoint ^-nearest neighbors, except for P and Q them-
selves. 
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Expected distance to /c-NN as function of dimension. 
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Fig. 4. Hemihypersphere HQ centered at Q. 

O.OS 

Ö.OG 

0 0 2 

2. 6 io d K »8 

Fig. 2. Variance of distance to /c-NN as function of dimension. 
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Fig. 3. Variance of distance to /c-NN for low dimensions. 

Let Rx be the distance between P and g. Consider a hemi-
hypersphere //ρ centered at Q with the base tangent to the 
hypersphere of radius Äx centered at P. (Fig. 4) 

Let's expand HQ until it contains k occurrences of the point 
process, and call its corresponding radius Rk. Since the volume 
of HQ is half the volume of a hypersphere of the same radius, by 
repeating our previous arguments ((5) and (6)) with p'n = pn/2 we 
obtain that 

E{R'k) = 2^"E(Rk) 

and also that the expected volume of the hemihypersphere is 
again E(Vk) = k/X, as predicted by (13) which does not depend 
on the form of Vk. 

We now complete the region HQ to the hypersphere Sg(Rk), 
which clearly contains all the /c-NN of Q. Because Q was the 
first AW of P we know that SgiRtfClSpiRJ does not contain 
any occurence of the process (the shaded region in Fig. 4). We 
also know that the /c-nearest neighbors of P are in a spherical 
shell of width Rk - Rt. 

Given the fact that the /c-nearest neighbors of P have a 
uniform radial distribution in the shell, it follows that the prob-
ability of P and Q having a common /c-NN is bounded from 
above by k times the ratio between the area of the sphere SP(RX) 
included in Sç(R'k) and the total area of the sphere SpiR^. We 
shall how show that this ratio goes to zero as the dimensionality 
goes to infinity. 

Consider a hypersphere in «-dimensional space, and intersect 
it with a (n — 1) flat (Fig. 5). The area of the resulting hyper-
dome is computed by dividing it into thin slabs by a series of 
parallel hyperplanes; the lateral area of each slab is 

(n- l)pn_1(Äsinö)w"2Ä£/ff 

and therefore the dome's total area is 

( » - l ^ / r - ' / S i n i ) " de. 

(24) 

(25) 

Hence the ratio between the area of the dome to the total area 
of the hypersphere is 

l(«o) 

But 

Pn-

1 P„-l (^ 

f>n 
f°(smey de 

1 Pn-1 

Pn 
0o(sin0o)' (26) 

Pn 
iirU.£ä -1/2 

-m 'ΛΨ\ -(in·-1/2 

(27) 
and therefore η -> 0 as n -> oo for any θ0, 0 < θ0 < m/2. 

Returning to our original problem, it is obvious that as n -> oo, 
the probability of finding a nearest neighbor of P in the shell 
region corresponding to the dome generated by the intersection 
with SU(JRjk) D e c o m e s equal to the ratio η(θ0), where θ0 is 
determined by 

R' m 
Um 0O = lim 2 aresin y ^ = - (28) 

(23) hence this probability goes to zero, as n goes to infinity. Thus 
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Fig. 5. Hypersphere in «-dimensional space. 

TABLE I 

n E(R,) o^RQ E(R5) o2(R5) fl0(rads) η(θ0) 

10 0.866 1.086 X IO2 1.059 2.435 X IO3 1.429 0.3402 
15 1.029 7.092 X IO3 1.179 1.349 X IO3 1.286 0.1464 
20 1.168 5.247 X IO3 1.294 9.174 X IO4 1.221 0.0644 
25 1.292 4.156 X IO3 1.402 6.898 X IO4 1.184 0.0288 
30 1.403 3.437 X IO3 1.503 5.508 X IO4 1.160 0.0131 

any two points, even if they are nearest neighbors, have distinct 
sets of Â>NN's, themselves excepted. Note that this holds even 
for two points closer than E(RX) since l i m ^ ^ < π/2. 

In order to illustrate the behavior of TJ, we computed θ0 as 2 
arcsin E(R'5)/(2E(R^) and η(θ0) by (26) for n between 10 and 
30 (Table I). It is clear from the very low values of σ2 that using 
expected radii to evaluate θ0 is indeed justified. 

Consider the edited NN rule. Suppose that a point x is to be 
classified. Before editing, let xa and χβ be two of its nearest 
neighbors. By the precedent discussion, with high probability 
neither xa nor Χβ is a fc-NN of the other. If so, they are further 
apart than P and Q in Fig. 4 and can be expected to have no 
common /c-nearest neighbors. Hence, with high probability they 
are tested independently in the editing procedure. 

A question of major interest is the dimensionality required to 
make the independence assumption accurate. The results of 
Penrod and Wagner [6] differ in performance by only about six 
percent from that obtained by assuming independence. Yet for 
this case nearest neighbors have an inordinate number of com-
mon /:-nearest neighbors. Thus it would be reasonable to expect 
the independence assumption to be highly accurate (perhaps 
within one percent) for an η(θ0) — 0.1 that is achieved with a 
dimensionality of about 15. 
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Information Energy of a Fuzzy Event and a Partition 
of Fuzzy Events 

LEANDRO PARDO 

Abstract—In order to define a measure of the information processed by 
a fuzzy event and by a partition of fuzzy events, the "information energy" 
provided by a fuzzy event and partition of fuzzy events is considered. This 
measure integrates the statistical uncertainty resulting from the occurrence 
of events and the uncertainty of meaning of events that is expressed by the 
membership function. The functional information energy is formally similar 
to the Onicescu's information energy, which used an analogy to kinetic 
energy from mechanics, although it is conceptually different. 

I. INTRODUCTION 

Let X be an arbitrary set and (X,jtf,P) a probability space, 
where s# is a σ-field of subsets X and P a probability on J^ . A 
fuzzy event in X is a fuzzy set Xj on X whose membership 
function / £ is Borei measurable. The lattice of all fuzzy events 
defined on X is denoted by T(X). 

K. Okuda, T. Tanaka, and K. Asai [3], in analogy with Shan-
non's entropy of information theory, studied a measure of the 
uncertainty processed by a fuzzy event XJ. This measure in-
tegrates the uncertainty resulting from the occurrence of elements 
of X on the one hand, the degree of fuzziness of XJ and on the 
other hand. This concept was extended by K. Kuriyama [2] in 
order to define the amount uncertainty processed by a fuzzy 
partition of fuzzy events. 

O. Onicescu [4] introduced the concept of information energy 
as an alternative way of building an information theory. This 
concept can be interpreted as a measure of our information 
concerning a random variable. L. Pardo [5] and A. Theodorescu 
[6] justified Onicescu's final observation of "L'energie infor-
mationeile peut servir, aussi bien que Γ entropie comme fondament 
d'une théorie de Γinformation". 

In order to define the information processed by a fuzzy event 
and a fuzzy partition of fuzzy events in a fuzzy setting, a function 
in the class of fuzzy events and a function in the class of a fuzzy 
partition of fuzzy events is defined. These functionals are called 
the "information energy of a fuzzy event" and the "information 
energy of a partition of fuzzy events", respectively. These con-
cepts are quite different from those of Onicescu's information 
theory because they integrate the information before carrying out 
an experiment with values for X, and because the meaning of 
fuzzy events in each element of a partition A, which is expressed 
by the membership function, is uncertain. 

II. INFORMATION ENERGY 

In this section several definitions are established that are 
needed in later sections. 

Definition 1: The information energy contained in the fuzzy 
event XJ is defined by 

W(XJ) = P{XJf + P{XJf 
where Xj is the complement set of Xj and 

P(V)-ffÌ(x)dP(x). 
Jx 

Example: Suppose that a machine produces a defective item 
with probability p (0 < p < 1) and produces a nondefective item 
probability 1 - p. Furthermore, 15 items produced by the ma-
chine are selected at random and inspected, and the outcomes for 
these 15 items are independents. The information energy con-
tained by the fuzzy event "approximately 15 of the items are 
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