
Annals of Mathematics and Artificial Intelligence 13(1995)227-250 227 

On differential invariants of planar curves 
and recognizing partially occluded planar shapes 

Alfred M. Bruckstein a and Arun N. Netravali b 

aDepartment of Computer Science, TECHNION, I.L T., Haifa 32000, Israel 
bAT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

Viewing transformations like similarity, affine and projective maps may distort 
planar shapes considerably. However, it is possible to associate local invariant signature 
functions to smooth boundaries that enable recognition of distorted shapes even in the 
case of partial occlusion. The derivation of signature functions, generalizing the intrinsic 
curvature versus arc-length representation in the case of rigid motions in the plane, is 
based on differential invariants associated to viewing transformation. 

1. Introduction 

The problem of recognizing and locating a partially visible planar object, 
whose shape underwent a geometric viewing transformation, often arises in various 
machine vision tasks. Attempts to address such shape recognition problems naturally 
raise the question of invariants under the viewing transformation. In this paper, we 
present, using entirely elementary methods, a theory of local invariants of  smooth 
planar curves under projective, affine and similarity transformations. A planar curve, 
assume to be the nice and smooth boundary of some planar object, is usually described 
as a mapping of an interval in R, say [0, 1 ], to points in the real plane, R 2. The curve 
may be regarded as the trajectory of a point moving in the plane, the position at 
"time" t being given by P(t) = [x(t), y(t)]. Since the boundaries of planar shapes are 
simple and closed curves, we shall have, by assumption, P(1) = P(0) and P(ti) ~ P(tj) 
for any ti ~ tj, tj ~ [0, 1 ]. We further assume the boundary curves and their traversals 
to be smooth, implying that the functions x(t), y(t) are differentiable several times. 
Obviously, a simple closed planar trajectory in the plane may be traversed at various 
speeds and therefore P(T(t)), where ?(t) = to + ~(t) and ~(t) is a smooth monotone 
function ~ : [0, 1] ~ [0, 1], describes the same trajectory as P(t), with a different 
initial position and different traversal schedule. Such elementary transformations of 
planar curve descriptions are called reparametrizations. To separate the geometric 
concept of  a planar curve from its formal algebraic description, it is useful to refer 
to the planar curve described by P(t) as the image of P(t), Im{P(t)}. Denoting 
P(~(t)) by e~(t)[P(t)], we have that 
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Im{P(t) } = Im{R/'(t)[P(t)] }, (1.1) 

for any 7(0 = to + r  above; thus, all smooth reparametrizations are equally 
good descriptions of any given curve. For a planar curve, we may choose to work 
with any valid traversal as its formal description. Suppose that the points of R 2 are 
subjected to a geometric transformation, T~,: R 2 --> R 2, 

Te [(x, y)] = [Xe (x, y), Y~ (x, y)] (1.2) 

parametrized by a vector of parameters ~ A planar curve will be distorted by Tv,, and 
the points of Im{P(t)} will be mapped to another simple and closed curve in the 
plane. Choosing an arbitrary parametric description for the distorted curve P(~'), we 
have that 

P(t') = [X(t), Y(t')l = T~, [x(~), y(t')] 

= T~[Rr{t)[x( t ) ,y( t )] l  = T~[RT(t)[P(t)I] = Rr(t)[T~,[P(t)]], (1.3) 

i.e. the curve description P(7) is always a T~[.]-distorted version of a reparametrization 
of P(t) ,  or equivalently, a reparametrization of a Tw[. I-distorted version of P(t)  (the 
operators T~ and Rr{t) commute). In this paper, we analyze ways to account for the 
consequences of looking at a planar object with smooth boundaries from various 
unknown points of view. This induces several types of geometric transformations 
T~,[. ] that distort the boundaries. The questions that we shall address are the following: 

(1) Given a library of planar objects and a distorted view of one of them, recognize 
(identify) the object from the distorted image (see fig. 1). 

Library of shapes 

Fig. 1. Shape identification, 

3. 



A.M. Bruckstein, A.N. Netravali, On differential invariants 229 

(2) Given a library of objects and the profile of a cluster of objects from the 
library, distorted by possibly different viewing transformations, resolve the 
cluster into its components (see fig. 2). 

Fig. 2. Cluster resolution. 

In both of the above problems, we assume the distortion to be of a given class 
Tv,[.], with no knowledge of its parameters gr. 

2. The viewing transformations 

The most general geometric transformations on planar shapes that we shall 
deal with are the so-called projective mappings. They arise in the context of the laws 
of perspective projections, and can be best described by representing points in the 
plane in homogeneous coordinates, as follows: 

[x,y] --> [x,;I,-1, y/I,-1, ~-1], (2.1) 

where the third coordinate is an arbitrary scaling factor. Using homogeneous coordinates, 
a planar object or curve is conceptually lifted into the three-dimensional space (3D). 
To P(t) = [x(t), y(t)] we may associate a curve in 3D described by [x(t)A-~(t), y(t)Y~-l(t), 
1-1(t)], where l ( t )  is any continuous smooth function with Z(t)> 0. The general 
projective transformation is then any linear mapping applied to the "lifted" trajectory, 
i.e. 

[X(t), Y(t), Z(t)] = [x(t) i  -I (t), y( t ) t  -l(t),  ~-l(t)]A, (2.2) 

where A = [a O] is any full rank matrix. Notice that the arbitrary scaling function 
chosen, t(t),  multiplies all entries of [X(t), Y(t), Z(t)], and projecting this 3D curve 
back to its 2D representation, we obtain 
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[ allx(t) + a21y(t) + a31 al2x(t) + a22y(t) + a32 ] 
i~(t) = [2(t), y(t)] = Lal3x(t) + a23y(t) + a33 ' a13x(t) + a23y(t) + a 3 3  . ' 

(2.3) 

This transformation will be the most general one dealt with in this paper. The important 
particular cases of this transformation that we shall analyze in some detail are the 
rigid motions in the plane, similarity transformations and affine mappings. 

The equations describing rigid (Euclidean) motion mappings in the plane are 

cos co - sin co 0 t 

[2, y, 1] = [x, y, 1] sin o9 cos o9 0 j ,  (2.4) 

Vx Vy 1 

the parameters of the transformation being the rotation angle co that defines a rotation 
matrix Rot(og), and the translation vector V = [v x, Vy]. 

The equations for similarity transformations are the same as the ones for rigid 
motions with the rotation matrix Rot(og) in (2.4) replaced by aRot(og), where a is 
a scaling factor. The parameters in this case are 09, Vx, vy and a. 

Affine mappings are defined by a general non-singular matrix A, replacing the 
rotation matrix Rot(og) in the definition of rigid motions. The parameters of an affine 
transformation are the entries of A, and the translation vector V. 

These are the geometric transformations Tv,[.] that we shall consider as viewing 
transformations. The general projective map is defined by eight parameters (one of 
the entries of A may be normalized to 1, with no effct on the 2D ----> 3D transformation). 
This map generalizes both a perspective viewing transformation and an affine map. 
Note, however, that a true perspective projection has fewer parameters. The affine 
map has six independent parameters, while the similarity transformation has four and 
rigid (Euclidean) motions are characterized by three parameters. Note that for all the 
above transformations, there exists a parameter choice ~rthat makes the transformation 
T~,[-] into the identity transformation I[. ], i.e. I(P(t)] = P(t). In fact, since the matrices 
involved are invertible, the transformation types discussed are parametrized groups 
of transformations. 

3. Canonical curve parametrizations and invariants 

Suppose we are given a planar object with a smooth boundary, the image of 
a closed planar curve described by P(t). If the object is subjected to a geometric 
transformation of the type discussed in the previous section, the transformed planar 
object will have a boundary that can be described by P(~'), 

P(?) = T~ [R~(t) [P(t)]] -- R~(t) [T~, [P(t)l], (3.1) 

because, as we have seen, the transformed boundary description is, conceptually, a 
reparametrization of the geometrically distorted original boundary. Assume that we 
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do not know the parameters N of geometric transformation and we are only given 
the images of two closed boundary curves in the plane, Im{P(t)} and Im{P(7)}. 

To solve the first object recognition problem discussed in the introduction, we 
must be able to decide whether an arbitrary description P(?) could be related to P(t) 
via eq. (3.1) for some reparametrization ~'(t) and some transformation parameters N. 
In order to solve the second, more difficult, cluster resolution problem, we should 
be able to even identify portions of a given curve P(~) as transformed and reparametrized 
portions of an original shape boundary described by P(t). 

To focus on a general approach to attack these problems, let us first analyze 
the way they are solved for the simplest case of rigid (Euclidean) motion transformations. 
It is well-known that a smooth planar curve has an intrinsic curvature versus arc 
length representation k(s). The arc length is a rotation-translation invariant and so 
is the curvature. Therefore, in so representing a closed contour the only arbitrary 
choices are an initial position on the curve and the direction of traversal. If there are 
no unambiguously defined "landmark" points on the boundary, or in the case of 
partial occlusion situations, the initial point will remain arbitrary. The direction of 
traversal may usually be chosen a priori. In any case, all shapes that are rotated and 
translated versions of the original will have boundaries described by k(s -So), i.e. 
translated versions of the same intrinsic description function. Thus, both the object 
recognition and the cluster resolution problem may be solved via a total or partial 
correlation, or 1D function matching (string matching) process. 

The curvature versus arc length representation solves both our problems by 
first devising a curve-dependent reparametrization of the boundary curve and associating 
to the curve a signature function that is invariant under the given class of geometric 
transformations. The curve-dependent reparametrization, given the description 
P(t) = [x(t), y(t)], is readily obtained as 

S(t) = -~ x(~) 
0 

d~, (3.2) 

as : [(ax(t)i2 (cly(t)Iz]l'Z 
L k ; + ar k d t J J  

(3.3) 

and, after reparametrizing P(t) as P(s) = [x(s), y(s)], the curvature k(s) is given by 

k ( s ) -  dx(s) d2y(s) d2x(s) dy(s) x(1)(s)y(2)(s)-x(2)(s)yO)(s). (3.4) 
ds ds 2 ds 2 ds = 

Having obtained the curvature invariant, we may ask whether we can obtain others, 
independent of it (since clearly we could obtain other invariants by performing 
various operations on k(s)). Such questions are central to the developments to follow. 
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The above-described procedure for identifying planar objects from portions of their 
boundaries in the case of (Euclidean) rigid motion transformations will serve as a 
model for the type of solutions that we are seeking in the case of other transformations. 
Therefore, given a parametric family of R 2 ~ R 2 transformations T~ [x, y] = [~, y] and 
a planar curve P(t) = [x(t), y(t)], we seek to determine a reparametrization, 

dT: = r{P(t)} dt 

so that for Pff(t)) we shall have 

(3.5) 

de = r{~ff)}a~l z(,)= d'r. (3.6) 

Here, F{ P(t)} is some positive function of x(t), y(t) and their derivatives, x(k)(t), y(k)(t), 
k = 1, 2, 3,..., i.e. it depends on the local behavior of the curve at the points P(t). 
After reparametrizing both P(t) and P(?) by "c and e,  respectively, we shall clearly 
have from (3.6) that 

P(e) = T~ [P(e + "r 0)1 (3.7) 

and the next step should be the search for a signature function invariant under T~,[. ]. 
Suppose we can find a transformation A mapping P('r) into a function p('r), 

based also on the local behavior of the curve P( '0 

p(~) =A[P(~)],  (3.8) 

so that the function p(.) is an invariant signature function, i.e. 

p(z) = A[P(z)] = A[P(e(z))] = O(z - Zo). (3.9) 

Then, if we are given curve P(t) that undergoes a T~ transformation and a repara- 
metrization ?(t), to yield P(7), as follows: 

i~(?) = T~ [R?(t)[P(t)]], (3.10) 

we may define the function p('r) associated to P(t) to be a generalized "curvature" 
versus "arc length" representation of P(t). From (3.5) and (3.6), we realize that we 
need to find a function of the local behavior of the planar curve that transforms under 
(3.10) as follows: 

ag(t) (3.11) r{P(t)} = r{P(?(t))} dt 

If we then reparametrize both P(t) and P(?) according to (3.5) and (3.6), we shall 
find that ~ = ~0 + "f, and for this reparametrization, we have by (3.11) 

r{p(z)} = r{P(~)}.l. (3.12) 
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It might seem that we have produced an invariant signature function too, "killing two 
birds with one stone". However, applying (3.11) to the identity transformation 
T~,[. ] = I[.] ,  we obtain 

dt 1 - 1, (3.13) F{P(v)} = F{P(t)} ~ = r{P(t('r))} F{P(t('r))} 

showing that we have associated a trivially invariant signature (a constant) to the 
curve that hardly was worth working for. If, however, we could obtain two different 
functions 1F'] and 1-'2, both obeying (3.11), then we could use one of them for 
reparametrization and the second for deriving an invariant signature, since then 
clearly we would have 

dt F2{P(t)} (3.14) 
172 {P('r)} = F2 {P(t)} dv = r l  {P(t)} 

and, using (3.11), 

dF _ F2{/'(?)} = F2{P(t(?))} = F2{P(~ - Z'o)}. (3.15) 
F2 {/'(~)} = 1-'2 {/'(?)} d~" F1 {/5(?)} F1 {P(t(F))} 

This is a key observation unifying the theory that follows. Suppose we managed 
to provide for a class of geometric transformations a generalized "p-curvature" 
versus "'r-arc length" representation. This representation enables us to locate 
corresponding points on the curves Im{P(t)} and Im{/'(?)}, i.e. if we are given some 
point f~ on Im{P(t)}, fl = P(tta), we can look for ~ = T~ {fl} by locating the point 
on /'(7) that has the same value for the generalized curvature p('r). Locating the 
corresponding points for several f~i on Im{P(t)} are writing the equations 

~i  = rv{f2i}, (3.16) 

we may obtain a system of equations for the parameters of the geometric transformations, 
and in some cases we might be able to uniquely determine ~. Therefore, we could 
use two images of a planar object to identify the geometric transformation that 
affected an image under consideration. This could be done even if the boundary of 
the object is only partially visible in the image distorted by a viewing transformation, 
since the above-discussed generalized curvature versus arc length representations are 
based on the local behavior of the boundaries. 

Several papers in the computer vision literature dealt with problems of object 
recognition under distorting, geometric viewing transformations. According to whether 
it was assumed that the entire object is visible in the distorted image, or only portions 
of it, we may classify the approaches to such problems as based on global or local 
information. When global information is available, we could attempt to identify the 
parameters grof the geometric transformation by analyzing how global shape parameters, 
like perimeters, higher-order moments, etc., are affected by a T V, transformation. For 
object recognition, we may also rely on so-called global invariants associated to 
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shapes; these are quantities that remain invariant when the planar shape undergoes 
a T v, transformation. The search for global invariants under various geometric 
transformations is an ongoing concern of current pattern recognition research. However, 
in this paper we are concentrating on methods that employ only local information. 
It is only through such methods that one can solve object identification problems 
under partial occlusion. An approach to using local information that is very popular 
in the pattern recognition literature advocates the use of special-feature points on the 
boundary, such as break points, ends of straight portions or inflection points. Such 
points can easily be located based on local information and can also be identified on 
transformed object boundaries. Then they may serve either for segmentation or for 
the identification of the transformation Tv,. These methods, however, are clearly 
unsuitable for smooth boundaries and in cases where the occlusion wipes out the 
feature points. Therefore, it is worthwhile to study the generalized, invariant signatures 
or p-curvature versus 't-arc length type representations. 

The next sections of this paper will exhibit such curve representations for 
shape recognition under perspective projection or projective transformations and 
affine and similarity transformations. 

4. Projective-invariant descriptions of planar curves 

The first type of viewing transformation for which we shall determine generalized 
"curvature" versus "arc length" representations for smooth planar curves will be the 
most general projective mapping. Suppose we are given a curve represented by 
P(t) = Ix(t), y(t)]. The question we shall address is whether we can find a reparametrization 
and a transform that will map all P([) curves related to P(t) via a mapping of the 
type (2.3) and a reparametrization 7(0 into "circular" shifts of a given periodic 
function. To do so, we need to find two functions of the local behavior of a smooth 
curve F1,2{P(t)} that obey (3.11). This problem was implicitly considered in some 
of the earliest work on differential invariants associated to curves, and laid the 
foundations of projective differential geometry. In the sequel, we shall give an elementary 
outline of the main results from this theory that are necessary to derive invariant 
signature functions. 

Let us write t--> [x(t), y(t), 1]---> [X(t), Y(t), Z(t)], i.e the curve P(t) in 
homogeneous coordinates. One can regard the coordinate functions X(t), Y(t), Z(t) as 
three linearly independent solutions of a third-order ordinary differential equation, in 
the form 

d 3 d 2 d 
dt 3 ~(t) + 3pl ( t ) - ~  ~(t) + 3p2 (t) ~(t) = O, (4.1) 

where pl,2(t) are coefficients to be determined, the domain over which the differential 
equation is defined being the domain of the curve parameter t. We see that Z(t) = 1 
indeed satisfies this equation. Writing out that, by assumption, x(t) and y(t) are 
solutions too, we get the two equations 
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~' + 3pt~ + 3p2k = 0 and ~" + 3plj~ + 3p2~9 = 0 (4.2) 

and solving for Pl and P2, we obtain (assuming kij - 55) # 0) 

1 ~ "  - ~'~ 1 ~'y - ~ "  (4 .3)  
p l ( t )=  3 , t y -  y x '  P z ( t ) = 3  Jcy-p)~ 

Introducing the notation 

K id [x, Y l t] = K id (t) = x(i)y (j) - x(J)y (i), (4.4) 

we may rewrite eq. (4.1) in a more symmetrical form as follows: 

K 1'2 (t)'~'(t) + K 3"1 (t)~(t) + K 2'3 (t)~(t) = 0, (4.5) 

An important consequence of representing x(t), y(t) and z(t) = 1 as solutions of a 
third-order differential equation follows from the fact that any other three linearly 
independent solutions of the differential equation (4.1) will be related to [x(t), y(t), 1] 
via 

[)f(t), Y(t), Z(t)] = [x(t), y(t), 1]A (4.6) 

for some constant non-singular matrix A. But [X, Y, Z] is a projective mapping of the 
curve P(t) and represents P(t) = Tv [P(t)]! We may now ask ourselves whether all 
equivalent homogeneous coordinate representations of P(t) and P(t) are characterized 
by the same differential equation. If it would be so, the the functions pl(t) and p2(t) 
would be invariant under any T~,[-] mapping. However, this turns out to be false. As 
we have already seen, we can multiply all entries of [x(t), y(t), 1] by some smooth 
function A-l(t), A(t) ~ 0, to get projectively equivalent representations of P(t), [X, Y, Z] 
= Ix/A, y/A, l/A]. Then [X, Y, Z] will obey a different third-order differential equation 

~'+ 3p1~ + 3ff2~ + P3~ = 0, (4.7) 

where the new coefficients ~i(t) a r e  related to the pi(t)'s of (4.1) as follows: 

(t) = ~ [J,(t) + Pl (t)A(t)], (4.8a) Pl 

1 
P2 (t) = ~ [,~(t) + 2pl (t)J~(t) + P2 (t)A(t)], (4.8b) 

1 
P3 (t) = ~ - ~  [~.'(t) + 3pl,~(t) + 3pz~,(t) + P3 (t)A(t)], (4.8c) 

with p3(t) = 0 in our particular case. Note that for a A(t) that obeys the differential 
equation (4.1), we shall have P3 (t) -= 0, otherwise we have to deal with the more general 
equation (4.7). Suppose that [x(t), y(t), 1] is mapped into some [X, Y, Z] by (4.6), 
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i.e. [X, Y, Z] = [x(t), y(t), 1]A. Then clearly [X, Y, Z] = [2(t)lX(t), y(t)/X(t), l/X(t)], 
for X(t) = 1/Z(t), and 1/X(t) here obviously obeys the differential equation (4.1). 
Therefore, we have P3 (t) = 0 in this case. Suppose that we map [2, y, 2] back into 
the standard representation [2(0, ~(t), 1]. By choosing the scaling function X(t) = 
we get that, in the new representation, again p3(t)= 0, as can easily be checked. 
However, from (4.8) we realize that 

1 
Pl (t) = -z--- [~(t) + Pl (t)Z(t)], (4.9a) 

z(t) 

1 [~(t) + 2pl(t)~(t)  + p2(t)z(t)]. P z ( t )  = - = - -  
Z ( t )  

(4.9b) 

Therefore, as we span all the possible projective transformations of P(t) into P(t),  
when both P(t) and P(t) are in their standard representations, with P3 - 0, the functions 
pl(t) and p2(t) will change. In other words, the coefficients pl(t) and p2(t) are not 
invariant under the mapping /~(t) = T~, [P(t)], for any ~. 

What we have done so far is to show that the standard representations of 
corresponding parametrizations (i.e. no reparametrization involved) of projectively 
related planar curves do not admit as invariants the coefficients of their differential 
equation in the canonical form of (4.1). However, we could attempt to use the 
freedom of choosing a data-dependent scaling function X(t) to put [x(t), y(t), 1] into 
a form [x/X, y/X, 1/X] so as to get another canonical form for the differential equation 
associated to any given parametrized curve P(t). We might, for example, choose to 
use ~.(t) to set pl(t) = 0, rather than zeroing P3 (t). Imposing this condition means 
finding the solution of the differential equation (see (4.8a)) 

This is easily done, providing 

%[~ + plX] = O. (4.10a) 

X(t) = Ce -S~pI(r162 (4.lOb) 

With this choice, we obtain 

I pl(t) = 0, d 

P2 (t) = P2 (t) - p l  2 (t) - ~- Pl (t), 

d 2 
P3 (t) = P3 (t) - 3pl (t)p2 (t) + 2p~ (t) - ~ Pt (t), 

(4.11) 

and it is not difficult to verify that for this canonical form, P2 (t) and P3 (t) are 
invariant to any X(t) scaling and any projective mapping. Therefore, if we obtain 
from [x(t), y(t), 1] the functions pl(t) andp2(t), via (4.3a,b) we have that the functions 
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d 
P2 (t) = P2 (t) - p? (t) - ~- Pl (t), 

d 2 
P3 (t) = - 3pl (t)p2 (t) + 2p 3 (t) - ~ Pl (t) 

are also invariant under the class of mappings 

(4.12a) 

(4.12b) 

[x,y,1] ---) [~,y,1] = Te[x,y ,  1]. 

The entire calss of curves projectively related to a given representation P(t) is 
therefore invariantly described by [0, Pz(t), P3(t)]. But, in order to obtain invariant 
signature curve descriptors, we must also analyze the effect of reparametrization 
e~(t) [P(t)] on these types of descriptions. It is not difficult to assess the effect of a 
~'(t) reparametrization on the coefficients pl(t), p2(t), p3(t) of the general differential 
equation. We have, after some easy algebraic manipulations, that the  differential 
equation coefficients corresponding to the transformed curves are given by 

~1(7(t)) = ~.dt ) pl(t) + ~ dY/dt ' (4.13a) 

~2 (7(t)) = 
(d___t] -2 (d27/dt  2 "~ 

d t )  Pz(t) + ~ ~ '] pl(t)  

+ -~ ~-~, ~ + ~ ~ - - - ~  , (4.13b) 

p3(t'(t)) = ~,dt) p3(t)" (4.13c) 

From the above relations, we can write the coefficients that would be obtained for 
either a [Pl (?), P2 (7), 0] or a [0,/52 (?),/53 (7)] "canonical" representation. 

We see that from a [Pl (t), p2(t), 0] representation, we shall obtain a similar type 
of representation; however, [0, Pz(t), P3(t)] will be mapped into a full [Pl (t'), P2 (t'), P3 (7)] 
representation under a reparametrization. In order to obtain from it the [0,152 (7),/53 (7)] 
"canonical form", we need to calculate 

d 
/52(7) = ~2(7) - ~?(7) - -~- ~1(7), (4.14a) 

d 2 
/53(~') = P3(}') - 3pl (t')p2 (t') + 2~13 (t) - ~-~- ~1 (7). (4.14b) 

For this representation (inherently invariant to ~,(t) scalings), it can be verified after 
some algebra that 
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(4.15) 

Therefore, the function 
3 d 

|  = P3(t) 2 dt P2(t) (4.16) 

associated to a curve representation P(t) changes under an arbitrary projective 
transformation and reparametrization as follows: 

O3 0"(t)) = ~, dr) O3 (t), 

and we have that 

FlIP(t)] = O~/3(t) = ~)~/3(?(t)) = FI[P(~(t))] dE @ .  

(4.17) 

(4.18) 

This is a function of the local behavior of the curve that transforms under Tv, [R~(t) ] 
as in (3.11). In order to obtain a generalized curvature verus arc length representation, 
we need to have yet another function independent of O3(t ) that will transform under 
reparametrization in the same way. The classical work on differential invariants 
under projectivity provides yet another function like this. Indeed, defining 

d 2 
OS(t) = 603(t)d--~-03(t)-  7 (  d 03(t))  2 

one can check that 

+ 27 P2 (002  (t), (4.19) 

g:)8(?) = ~dt) Os(t)" (4.20) 

Therefore, we have 

F2tP(t)] = ... s ( t )=  = F2 [P(7)] d~--7~. (4.21) 

Now we have two functions that transform according to (3.11) and therefore we may 
summarize the steps of computing the projective invariant generalized "curvature" 
versus "arc length" representation of a planar curve P(t) = Ix(t), y(t)]: 

�9 Given [x(t), y(t)], compute the associated function 03(0. 

�9 Reparametrize the curve by the projective arc length "r, so that 

dv = ~] 103 (t) l dr. 

�9 For the reparametrized curve, calculate p('r) = 8 . ~  ('r). This is the generalized 
curvature versus arc length representation of [x(t), y(t)]. 
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For a transformed curve [2(?), y(?)] = T~ [R~(t)[x(t), y(t)]], we shall have that 

= = I/o8(  - = - 

as required. This is almost deceptively simple to describe; however, note that in order 
to get the p(v) representation, we need to reliably compute | and 08(0 and this 
requires good estimates of up to the 7th derivatives of [x(t), y(t)]! Thus, our curves 
should be piecewise C 7 for all of the above described procedure to be practical. An 
important result from the classical work of Wilczynski on differential invariants, 
which we have followed in the derivations above, see [1], states that 03(0 and 08(0 
completely determine a plane curve up to an arbitrary projective transformation. 
Other invariants that might be found will always be dependent on these basic invariant 
functions. 

5. Affine invariant descriptions of planar curves 

As in the previous section, we assume that we are given a parametric description 
of a closed planar curve [x(t), y(t)]. An affine transformation on this curve is a map 
of the form 

[x(t), y(t)] ~ [x(t), y(t)]AT+ [Vx, Vy] = [2(0, ~(t)]. (5.1) 

The transformation is parametrized by six numbers. For this transformation class, we 
would like to develop an invariant, generalized-curvature versus affine-arc length 
description. Given P(t) = [x(t), y(t)] and the image of P(t), we can write a parametrized 
representation of Im{P(t)} as [2(7(t)), y(?(t))], where 

~(?) y(t(?)) 
(5.2) 

and where t(~') (and ?(t)) represent the implicit reparametrization function, assumed 
to be smooth. Let us consider the derivatives of [~(?), y(7)] in terms of those of 
[x(t), y(t)]. We have 

d x(t) ] 
=A dt d t  

d dt '  
-~ y(t) ~(t) 

(5.3a) 

dt 2 y(?) 
= A  

-~ x(t) dZt 
d ytt). ~t 2 + A 

k J 

d 2 
Tt2 x(O 
d 2 
d t  2 -" 

(5.3b) 
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d/3 Yd) =A 
d x(t) 
d 
27 y(t)_ 

d3t +A 
x(t) l 

d2 3 - -   y t>j 
d2t dt 
d? 2 di 

[ ~t~ x(t) 1 +A (dt~ 3, 

~ta Y(t ) ~,dj 
(5.3c) 

and so on. These relations may be rewritten as follows: 

and 

d _ ~ Ly( > v, y(t) 

= [x(t) 

Ly(t) 

d Yc(F) d---- T 2(?) x(t) 
d y(7)J=A[dy(t) 

L ~  ~d) d2~, 2 

[' o,1 27 
d 0 
27 y(t)Jt(? ) dt J 

" lr "] - ~  x(t) d? 2 
( a ,  " 

y(t)Jt(,)[ 0 t.ar/) 

(5.4) 

(5.5) 

Recalling that det(M �9 N) = det M.  det N, we obtain, by taking the determinant of the 
two sides in the second equality above, that 

g1,2[~,yl?] = Kl'2[x, ylt]lHt) det a . ( dt'l  3 t ,d?) " (5.6) 

In writing the above equation, we used the notation defined in (4.4). Therefore, for 
any affine transformation of P(t) into P(t), from (5.6) one readily has 

K 1'2 Ix, Y I t] = K 1'2 [x, y l t] det A (5.7) 

and for any reparametrization of P(t) into P(?) 

K l'2[x, Y l t] = K 1'2[x, y lt] (dt~ 3 
kag ) 

o r  

K 1'2 [~, Y I?] = K ~'2 [~, y lt] ----(dr) 3 
t , ~ )  �9 

Suppose now that we reparametrize P(t) so that 

(5.8a) 

(5.8b) 

d~" = ~ I K l'z Ix, Y t tll dt (5.9a) 
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and P(?) similarly 

d~" = ~] I gl '2 Ix, Y I?]I (5.9b) 

Then it is obvious from (5.6) that 

g 1'2 31711 a7 = I det A 11/3 ~/I g 1'2 Ix, y lt]l dt, (5.10) 

which implies 
d~ = I det A ll/3d't. (5.11) 

With this parametrization, we therefore have 

~(~:) = ~0 + [ det A ll/3'r (5.12) 

for some initial point "t o . Note that we have not yet succeeded in getting rid of an 
annoying scaling by [det A I 1/3. A uniform scaling like this is not really harmful if  
we want to do pattern matching, provided we can devise a generalized curvature 
function that is amplitude invariant, i.e. we can get a representation p("t) so that after 
applying an affine mapping, we shall obtain the representation 

~(~) = p( I det A 1-1/3 ('F --  "C 0 )). (5.13) 

Using for P(t) and P(?), the reparametrizations z" and ~, for which we have 

d'r = [det A [ - I / 3 ,  (5.14) d'rd--~-~ = [det A 11/3 and d~ 

all higher derivatives being zero, we obtain 

and in general 

] = + V, (5.15a) 
y(~) y('r) ~(~) 

d [Yc(~)]=aldetal_l/3 d [ x ( ~ ' ) ]  ~-~ y(~) ~-~ y('t) , (5.15b) 

d2 I Yc(~) ] = aldetAI-2/3 d2 [ x(~) ] (5.15c) 
d~ "2 y(~) d~ "2 y('t') ' 

dk I Yc(~) ] = AldetAl-k/3 dk [ x(~) ] 
d~ k y(~) d'c k y(~) " (5.16) 

Therefore, for any m, n E N, 
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r x m,]E etAn,3 0] 
y(m) J .y(n) y(m) 0 I detAI - m / 3  ' 

(5.17) 

showing, by the determinantal identity, that 

n+m 1 
Kn,m[yc, yl~] = Kn,m[x, y lr  ). (5.18) 

This formula seems to indicate that KI'2[x, Y l z] is invariant under affine mappings.  
This is true: however, recalling that we have used K 1'2 in order to determine the 
reparametrization, it is not unexpected that K 1'2 is a trivial invariant. Indeed, we have 

K1,2[x, yl z] = K1,2[x, yl z l (  dt ) 3 
k. d'c) 

1 = K 1'2 [x, Y l t] 
I K1'2 [x, y l tll 

= sign{K 1'2 [x, y lt] }. (5.19) 

Therefore, both KI'2[x, y I z] and K 1'2 [x, Y I~] are sign functions, one a "circularly" 
shifted and scaled version of the other. If there are many sign changes for a given 
P(t), this invariant could certainly be useful for shape recognition. However, it is by 
no means a good choice in general. To obtain a nontrivial invariant curvature, we can 
climb higher on the ladder of m, n 's  in Km'n[x, y It]. To do so, first note that 

,, d d_d_ [x(m)y(n ) _ y(m)x(n)] ~-~ K ~ ' '  (x, y l z) 
dz 

= x(m+l)y(n) + x(m)y (n+l) _ y(m+l)x(n) _ y(m)x(n+l) 

= Km+l'n(x, ylZ) + Km'n+l(x, ylz) .  (5.20) 

Thus, we have 

d K1,2 = K2,2 + K1,3 ' 
d't" 

d K2,3 = K3,3 + K2,4 ' 
d't" 

d K1,3 = K2,3 + K1,4 ' 
d'c 

K1, 4 = K2, 4 + K 1,5 
d't" 

(5.21) 

From these results, noting that K i'i = 0, we realize that K 2'3 is the first function that 
can serve as a candidate for producing an invariant curvature. F rom (5.18), we have 

K2'3[x, Y I~] = K2'3[x, Y[ "r] ~(e)[(det A)-2/3]. (5.22) 

Therefore, we have a function po(z) that maps after an affine transformation into 
/50 (~) = [(det A)-  2/3 ]Po (z - % / I det A 11/3 ). From a function P0( ')  obeying 
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~o(~) = y2Zo(y~  - ~), 

we would like to produce a truly invariant s ign~urefunct ion p( . )  obeying 

~ o ( ~ )  = p ( r ~  - ~ )  

and this can be done by noting that 

d 
~o(~) = y2Po(y~  - r / ) .  y = r 3 p o ( y ~  - 71) 

d~" 

and therefore we have 

~(~) =~ =d d~~  
[~,0 (T)] 3/2 y3 [Po (Ye - r/)] 3/2 

= p ( r ~  - 77). 

What we have shown is that the function 

d~ K2'3 [x, y l v] 

p('c) = [K2, 3 [x, Y[ v113/2 (5.23) 

is a convenient choice for an affine invariant signature function. Note that, from the 
relationships between various Km'n[x, Y l v]'s, see (5.21), we have dK2'3/d'r = K 2'4 and 
indeed, from (5.18), 

K 2'4 [x, y I~'] = K 2'4 [x, Y l "r(~)] �9 (det A -1 ) (5.24) 

and 
K2'3[ -~, Y IT] = KZ'3 [x, Yl v(~)] �9 (det A - l )  2/3 (5.25) 

Therefore, we have for the ratio 

K2'412, y l ~  ] K2'4[x,y[v(~)] 
[K 2'3 [2, y I ~113/2 [K 2'3 Ix, y I v(~)l 3/2 

(5.26) 

and this ratio is easily recognized to be the function p('r), found by our earlier trick. 
The above theory shows that, for affine geometric transformations, we can produce 
an invariant generalized curvature versus scaled arc length representation, the arc 
length being uniformly saled by (det A). This scaling is only slightly annoying since 
we could determine two corresponding points on Im{P(t)} and Im{P(~)} say, by the 
e.quality of their corresponding signatures ~(~) = p ( y ~  - rl), and the derivatives 
~(~) = y/~(Tz~" - 71) versus /5('c) will provide the scaling factor y for us. There are 
also several other ways to alleviate this minor problem; however, we shall defer a 
more comprehensive discussion. Note also that for affine transformations having 
det(A) = 1 no such problems arise as all. If some global scaling may be obtained to 
achieve this, the scaling of arc length would be avoided altogether. 
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In order to achieve affine invariance in the description of a curve given in the 
parametrization P(t), we needed to use the 4th derivatives of x(t) and y(t). Note, 
however, that we could have insisted on using for reparametrization a function that 
obeys (3.11) rather than (5.10), in order to get a nonscaled reparametrization. Then 
we could always rely on 3~3  (t) of the previous section for reparametrization. For 
this, we need the 5th derivatives of x(t), y(t). After reparametrization via ~ (t), we 
could go back to the relations (5.1) that, for this case, provide 

='.'r-.,l =.rx<,. I ae, ~') LY(~',)/= A a-TLy(v,) /ka~, j_ = A / - - - - i - L y ( v  * . 
(5.27) 

From this, we readily obtain that 

K "'n [2, y I~. ] = (det A)K "'n [x, y l f;, ] (5.28) 

for all (n, m). Thus, any ratio between two independent K n'm forms will be a good 
candidate for the true generalized curvature versus (non-scaled) arc length representation. 
In the next section, we analyze a particular case of this theory, in order to develop 
similarity invariant descriptors for planar curves. 

6. Similarity invariant descritions of planar curves 

The similarity transformation mapping R 2 into R 2 is an affine transformation 
with the A matrix having the following form 

[ cos co sin co ] ,  
A = a [_ sin co cos co.] (6.1) 

i.e. a scaled rotation matrix. Thus, with the additional translation parameters, a 
similarity transformation is determined by four parameters. In this case, we have all 
the results from affine transformations still valid; however, there is more structure 
to the problem and this can be exploited. For example, we can write that for an 
arbitrary reparametrization 7(0 of [2(t), y(t)], we have 

LF=,,,,,,1 r=<,,l(5) 
d~ L#(~(t))j dt [y(t)J 

(6.2) 

and from this we readily have 

I 12 12 I ~ -  + -~-y(~') = a  2 x(t) + -~  y(t) k dT ) " (6.3) 

But we also have from (5.6) that 
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Therefore, we can reparametrize the curve representations P(t), P(?) using 

d~ = --~ x(t) + --~ y(t) dt, (6.5a) 

- -  

respectively, and this will achieve 

d~ = l ald~: or ~('r) = l a l z  + Zo. (6.6) 

With this reparametrization, we have 

1 
KI'2[2,YI~'] = K1'2[x, ylv] ial (6.7) 

(which is, of course, the well-known formula for the transformation of curvature 
under scaling, #(g) = k(%/ot)/a). We also have that for any m, n ~ N, 

providing 

Lp(n) 

d n : F .,l I # ( ~ ) l  = A - -  
d~?" Ly(~)J d :  my(~)J' 

'(m)l = A[x(n) x (m' l [ ( l '  )n 0 
y(m) ] y(n) y(m) J t, (lla) m 

(6.8) 

(6.9) 

and, by taking determinants, 

Thus, for example, 

Kn'm[s = a 2 l"-'-'~Kn'm[x, yl'r]. (6.10) ggn+ m 

1 K1,3[s ] = ~--  Kl'a[x, ylT:l, (6.11) 

showing that we can get an invariant generalized curvature function by defining 

Kl , a [2 ,y l~  ] d-~Kl'2[x, YlV] 
j3(~) = [K1,212,yl~.]]2 = [K1,2[x, ytv]] 2 = p ( ~ / a -  ~'o/a). (6.12) 

This invariant provides a generalized curvature versus a scaled arc length representation. 
It requires the computation of the 3rd order derivatives of x(t), y(t). 
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We could also produce a representation with non-scaled arc lengths, in the 
following way: from (6.3) and (6.4), one gets 

KI'212, Y I?] Kl"Z[x, yltl  dt 

[-~-t 2] 2+ [-~t ~]2 [d~X]2+ [dy]2 dt(t)' 
(6.13) 

Therefore, the reparametrizations 

d~, 

ensure that 

K1'Z[x' yltl  I 
d 2 d 2 dr, d~. -- 

K 1'2 [2,y I?] 
d? (6.14) 

d~, = d z ,  or z, = 7 , + z  o. (6.15) 

With this reparametrization, we obtain 

Km,n[2, y l ~, ] = a2 Km'n[x, y[ v. ] (6.16) 

for all (m, n) pairs, and therefore any ratio between different Kn'm's will provide an 
invariant signature function. In particular, we have 

dt ~3 
K12[x'Yl'C*] = Kl'2[x'y]t]'l" ~,dz, J 

d 2 

[K 1'2 [x, Yl t]] 3 

d 2 (~_Ty) 

[Kl,2[x,y]tl] 2 
(6.17) 

Here, we can again choose K 1'2 and K 1'3 to produce the invariant signature. Thus, 
we can produce a truly invariant generalized curvature versus non-scaled arc length 
representation using up to 3rd derivatives of x(t), y(t). 

7. lnvariant descriptors under rigid motions 

Only for the sake of completeness, we here briefly summarize the well-known 
facts about the true curvature versus arc length representation. We have in this case 
A = Rot(co) and therefore 
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and hence the arc length reparametrization achieves ~ = ~ = s + so = "r + z0, as is 
well known. With this reparametrization for all (m, n) pairs, we have 

K m'n [2, ~1~] = g m'n [x, yl s]s =s(~). (7.2) 

Therefore, with the use of 2nd derivatives of x(t), y( t)  we already get the classical, 
invariant, intrinsic k(s) representation. 

8. Conclusions, discussion and brief history 

We have presented a systematic way to generalize the classical curvature 
versus arc length representation that is invariant under Euclidean motions to general 
geometric viewing transformations like general projectivities, including perspective 
projections, similarity and affine transformations. These results enable us to reduce 
the problem of model-based planar object recognition under partial occlusion to a 
"substring" matching on the locally invariant signature (or generalized curvature) 
functions. Table 1 summarizes the results on invariant descriptions. 

Table 1 

List of invariant descriptions. 

Transformation Reparametrization p-curvature Derivative 
general 

I~1 = # parameters d 'c=  F1 {P(t)}dt F2{P(~') } n 

�9 Projective 

I~l =8 

�9 Affine 

I~1 =6 

(scaled parameter z) 

�9 Similarity 

I~1 =4 

�9 Rigid motions 

I~1 =3 

dz = 3~3( t )  dt ~ 8 ( Z )  7 

dz, = ~ dt K2'3/K 1'2 5 

d K2,3/[K2,3 ]3/2 4 d't" = ~ K  1'2 [x, Yl t] dt d--[ 

I K1.2 I 
d~, = dt KI'3/K 1'2 3 

( d  \2 /d \2 
x) + [-'df Y) 

d ~ = ~ ( d x ) 2 + ( d y )  2 dt 

x) 

d•gl,2/[K1,2 ]2 3 

K 1'2 2 



248 A.M. Bruckstein, A.N. Netravali, On differential invariants 

The results we used in deriving invariant curve descriptions are from the 
theory of projective differential geometry, developed at the beginning of the century 
by Wilczynski [1] and Halphen [3], see Lane [2]. We presented all the results using 
only elementary methods. The theory of aft'me transformations is treated in Guggenheimer 
[4] for the case of [detA = 1]; see also Su Buchin [5]. Here again, the results were 
rederived with elementary tools. In the field of computer vision, several researchers 
have started using differential invariants for planar object recognition. In a series of 
papers with derivations that rely on tensor theory, Cyganski, Orr and their co-workers 
[6-8] proposed the use of affine invariant curvatures for object recognition. Their 
papers do not deal with occluded object recognition, and employ global information 
for various normalizations. It was not clear in their work, mainly due to very complex 
tensor derivations and global-information based normalizations, that generalized 
curvatures could be used to solve the recognition problem under partial occlusion l) 
Similar issues were addressed by Abter and his co-workers [9,10] in derivations of 
affine invariant Fourier descriptors. 

In a nice 1988 report, I. Weiss [12] brought the theory of projective differential 
invariants of curves and surfaces to the attention of the computer vision community. 
He proposed, for the first time in the context of vision applications, their use in 
invariant shape recognition. Weiss did not, however, address the problem of deriving 
reparametrizations and generalized curvature versus generalized arc length representations 
aimed at reducing the number of derivatives employed and mapping the problem of 
planar object recognition under partial occlusion to a partial function matching process. 
To the best of our knowledge, this paper is the first to focus on invariant signature 
representations in depth and present complete and elementary solutions for all the 
viewing transformations. Note, however, that the solutions presented here are based 
on the idealization that the shapes we are dealing with have smooth boundaries so 
that the necessary derivatives can be estimated properly. In a recent paper addressing 
the problem of similarity invariant recognition of partially occluded planar shapes 
that was the starting point of this investigation [11], several methods for local, but 
also semi-local invariant descriptions based on information in a finite (not infinitesimal) 
neighborhood of each boundary point were discussed. We believe that, as an extension 
of the theory presented herein, one could obtain such non-differential, semi-local 
invariant signatures for all the transformations discussed above. This work, and a 
thorough test of the practical applicability of the above theory, will be the subject 
of future research. 

This paper presents work done in the summer of 1990, see [14], and part of 
it appeared in the Proceedings of the Visual Form Conference held in Capri, May 1991. 

1)However, in a paper that appeared after our report [14] was published, Vaz and Cyganski [13] 
published a derivation of the result (5.6) similar to the one presented in section 5. This derivation 
exhibits the local nature of the reparametrization. Curvature invariants were employed in [13] in a 
Hough-type method aimed at the recovery of the affine transformation parameters. 
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Since this paper was written, several related papers and ideas appeared. We continued 
our work in generalizing the "tricks" used in [11 ] in the context of similarity invariant 
shape recognition to all the viewing transformations. These methods are based on 
exploiting the boundary curve behavior over small, not infinitesimal, neighborhoods 
of the boundary points to produce invariant signatures. This work, already reported 
in [15], shows a way to use global invariants of the viewing transformations to both 
define the local neighborhoods at each boundary point and to compute an invariant 
signature based on the boundary behavior. This is a method different from the one 
proposed by Van Gool and his co-workers [16], and by Brill and his co-workers [17], 
that exploits global correspondences (point-matches) to reduce the number of derivatives 
necessary in order to produce invariant signatures. Weiss also continued to work on 
the problem and pioneered a method of local canonical frames, based on fitting 
osculating curves of various types, with the same aim of reducing the number of 
derivatives necessary for recognition under partial occlusions, see [18]. The subject 
of invariance became a hot topic in computer vision research. We can therefore 
expect many interesting and useful results in this field in the near future. 
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