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We present a new method for the recovery of a bivariate function H(x, y) that describes a 
"nice," almost everywhere differentiable height profile, from shading information. The given 
shading data is assumed to be a result of diffuse, Lambertian reflection of light from the 
surface. This implies that, if the scene is uniformly illuminated from above, the shading yields 
information on the cosine of the angle between the vertical and the surface normal at each 
point. Given the shading information in the plane, the shape from shading problem is to 
determine all height profiles consistent with the data, and some boundary conditions, such as 
points of known height and surface orientation, or height profiles along continuous curves in 
the image plane. The new shape-from-shading method that we discuss is based on a recursive 
way of determining equal-height or level contours of the surface starting at a given level curve. 
© 1988 Academic Press, Inc. 

1. INTRODUCTION 

Shape-from-shading problems have a long and interesting history. The first 
researchers to address the problem of determining shape from shading information 
were apparently those concerned with the photometric analysis of the lunar topogra- 
phy (see [5] and the references therein). Several approaches to the analysis of 
three-dimensional scenes via their images or shading maps were investigated by 
researchers interested in computer vision. Many stressed the importance of a huge 
prior-information data-base in scene analysis, and adopted AI-type approaches [11, 
17, 20]. Others dealt with the recovery of depth from stereo images [10], from 
multiple images taken under different illumination conditions [18], or from se- 
quences of images resulting from camera motion [13]. It is clear that the shading 
information plays, along with stereo vision and motion clues, an important role in 
the depth perception process. The theoretical question of how much depth informa- 
tion can be obtained from a single view of a scene from shading alone, thus arises 
quite naturally. Algorithms for determining the shape, or depth-profile from a single 
image produced by various shading rules were considered by B. K. P. Horn and his 
coworkers in the 1970's [5, 6, 18]. More recent work on shape determination from a 
single image concentrated on the importance of singular points, surface models and 
occluding boundaries, in providing initialization for an algorithm proposed by Horn 
that recovers height on a data-directed curve in the (x, y)  plane called a characteris- 
tic strip [5]. Some iterative, relaxation-type techniques were also invented, relying on 
surface smoothness constraints [1, 7, 8, 16]. 

In this paper we discuss the basic shape-from-shading problem, stressing the 
importance of considering the behavior of equal-height contours. We show that when 
one such contour is available we can devise a simple algorithm that reconstructs all 
the equal-height curves of the surface of interest in a welt-defined region and also 
deaf ly  displays the inherent ambiguities of the given problem. This algorithm is 
easily derived and, in contrast to the classical characteristic-strip expansion method, 
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does not use the derivatives of the shading data. This is a result of a natural why of 
exploiting lateral constraints in the parallel propagation of the recovery algorithm. 
We show how the algorithm works on some basic examples and discuss the 
ambiguities and possible ways to exploit topological constraints on the behavior of 
nice surfaces to help the shape recovery process in ambiguous situations. 

2. THE SHAPE-FROM-SHADING PROBLEM AND SOME BASIC CONCEPTS 

Suppose we are given a continuous function of two variables (x, y), H(x, y), 
describing a surface in three dimensions, 

z = H(x, y). (2.1) 

The shaded image of H(x, y) is defined as a light intensity map, A(x, y), so that 
the value A(x, y) depends on the surface properties, its orientation at (x, y), and 
the illumination. The shape from shading problem that we address is to recover the 
function H(x, y) over a region B, from the image A(x, y) over that region and 
some possible further information, e.g., the values of H(x, y) over some continuous 
curve in D. 

The function A(x, y) is defined via a shading rule. It is customary to define the 
shading rule via a so-called reflectivity function, that characterizes the surface 
properties and provides an explicit connection between A(x, y) and the surface 
orientation. A thorough discussion of surface reflectivity properties and various 
types of reflectivity functions can be found in [6]. In the case of a surface with 
so-called Lambertian diffuse reflection properties and uniform illumination A(x, y) 
is simply the cosine of the angle a(x, y), between the surface normal at (x, y) and 
the direction from which the fight falls on the scene. For simplicity we shall always 
assume that the illumination is uniform and falls on the surface vertically from 
above, i.e., from z -- + oo. 

Define the directional derivatives of the height profile H(x, y) along the x and y 
directions as 

0 
p(x, y) = Uxn(X, y) 

0 
q(z, y) = v - r e x ,  y). oy 

(2.2) 

The surface normal at (x, y) is clearly perpendicular to the plane determined by the 
vectors [1,0, p] and [0, 1, q], therefore it is along the direction of their vector 
product I - p ,  - q, 1]. The normal vector at (x, y)  is thus 

N(x, y) = ~/1+ p2 + q2 [ - P ' - q ' l ]  (2.3) 
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and the cosine of the angle between N(x, y) and the vertical direction [0 0 1] is 

cos a (x ,  y)  = (2.4) 
~1 + p2 + q2 

In the Lambertian case with light falling perpendicularly from above we therefore 
have the shading rule 

A(x, y) = ~/1+ pZ + q2 = RL(p'q)" (2.5) 

Note  that the reflectivity function R is defined on the (p,  q) plane--called the 
"gradient space." A general (not necessarily Lambertian) shading rule is defined via 

A(x, y) = R(p(x ,  y), q(x, y)), (2.6) 

where R(- , -  ) is a given function. Equation (2.6) is a nonlinear partial differential 
equation that has to be satisfied by the surface H(x, y). Therefore solving the 
shape-from-shading problem amounts to solving a nonlinear partial differential 
equation, and a set of boundary conditions are necessary. 

3. FROM SHADING INFORMATION TO SHAPE 

Given the image A(x, y) it is, in general, impossible to unambiguously recover 
the height profile H(x, y). As an immediate example of ambiguity simply consider 
the function -H(x ,  y), which, under a Lambertian shading rule, maps into the 
same image as H(x, y). Some luther information on the function H(x, y) is 
therefore needed. This is usually given as some smoothness constraint on the surface 
defined by z = H(x, y) (for example, C 1 or C k continuity) and exact or approxi- 
mate values of H(x, y) at either a discrete set of points {(xi, Yi)}, together with the 
corresponding surface orientations {(Pi, qi)), or on a continuous curve on the 
(x, y)-plane (boundary conditions). The given boundary conditions and smoothness 
assumptions are not always enough to remove ambiguities, and it is in fact very 
difficult to determine, in general situations, sufficient conditions for a unique 
solution surface [2]. 

3.1 The Characteristic-Strip Expansion Method 
Assume that z = H(x, y) is a smooth surface, i.e., the partials p(x, y) and 

q(x, y) defined in (2.2), and also second derivatives exist everywhere. Consider now 
that at some point (x o, Yo) in the plane we know that height H(xo, Yo) together 
with the surface orientation { p(Xo, Yo), q(Xo, Yo)}. Horn observed that in this case 
one can determine the height profile and the surface orientation along a well-defined 
curve in the (x, y)-plane called a characteristic. This name is imported from the 
theory of partial differential equations. Horn's method is in fact a particular case of 
a general procedure for solving Cauchy-type boundary value problems associated to 
nonlinear partial differential equations (see, e.g., [9, 14]). The characteristic curve is 
entirely determined by propagating a coupled set of differential equations, driven by 
the shading data A(x, y) = R(p(x, y), q(x, y)), from the starting point (Xo, Yo), 
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with initial conditions (H(x o, Yo), P(Xo, Yo), q(Xo, Yo)}. Suppose we take a step in 
the (x, y)-plane away from (x o, Yo) so that 

(x, y ) =  (x o, Yo) + (Ax, ay) .  (3.1) 

Then we have for the change in height 

AH(x, y) = p(Xo, yo)AX + q(Xo, yo)Ay (3.2) 

and also 

hp(x,  y) = px(Xo, yo)Ax + py(Xo, yo)Ay 

Aq(x, y) = qx(Xo, yo)Ax + qy(Xo, yo)Ay. 
(3.3) 

Note that py --- qx by the smoothness constraint. If, by using the shading informa- 
tion A(x, y), we find a direction (Ax, Ay) so that, at the new point, both H(x, y) 
and (p,  q) c a n b e  determined, then we have a way of computing the height profile 
on a data-determined curve in the plane. This idea is exactly what underlies the 
characteristic strip expansion method. Using the chain rule for differentiation we 
obtain from (2.6) that 

A x = -ff-~xA(X, y) = Rp(p,q)px + Rq(p,q)qx 

[o ] 
Ay = -~yA(X, y) = Rp(p, q)py + Rq(p, q)qy. 

(3.4) 

Now simply note that if 

( Ax, A y) = ( Rpms, Rqms) (3.5) 

for some small As, we shall have 

A n =  ( p .  Rp + qRq)As 

Ap = A~, • As 

Aq = Ay • As. 

(3.6) 

This is indeed quite remarkable since (3.6) enables us to propagate for both height 
and orientation along the curve recursively determined via (3.5). The data-directed 
curve defined by (3.5) is called a "characteristic strip" and, as we shall see 
later, in the case of a rotationally symmetric reflectance map, i.e., when R(p, q) = 
f (p2 + q2), the characteristics are lines of steepest ascent on the surface H(x, y). 

The result presented above is the basis of Horn's classical shape-from-shading 
method. He proposed to look at the brightness map A(x, y) and start the height 
recovery around singular points--where A(x, y) attains the maximum value of 1, 
i.e., where p = q = 0 (under the Lambertian shading rule). From these points, one 
would propagate the characteristics outwards and in parallel, and one can also use 
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certain neighborhood rules in propagation--such as not allowing crossover of 
adjacent strips and interpolating new characteristic strips when neighboring strips 
separate too far. Note that when p = q -- 0 we have a start-up problem for the 
algorithm, since (3.5) will not move us out from the singular points. To solve this 
problem we need to add further assumptions about the behavior of H(x, y) about 
each such starting point (i.e., to classify singular points as a local maxima or 
minima; of course, problems arise at saddle points). Implicitly we have to assume 
the knowledge of the initial slopes (p ,  q) on a small loop around the singularities 
[5]. In later work it was stressed that occluding boundaries and other visual clues 
have a crucial importance in providing just such initial conditions for the start-up of 
characteristic strip expansions along several curves in parallel. Ikeuchi and Horn 
have also analyzed a relaxation-type iterative algorithm using second-derivative 
surface smoothness constraints, together with shading data and occluding boundary 
information to recover a height profile that minimizes a smoothness measuring cost 
function. This algorithm uses a special representation of the surface-orientation 
profile, via the so-called "stereographic projection." It works on a grid of pixels and 
iteratively assigns the orientations in the stereographic projection plane so as to 
meet the shading requirements while minimizing orientation changes over neighbor- 
ing pixels [8]. Recently, Horn and Brooks [7], provided a systematic analysis of 
variational approaches to the shape-from-shading problem, leading to iterative 
solutions on pixel grids. Their analysis yields improved algorithms, generalizing the 
methods previously proposed by Strat, Brooks, and Smith [1, 7, 15]. In the sequel we 
return to the classical continuous problem and discuss a new shape-from-shading 
algorithm that uses the conceptual framework of the characteristic strip expansion 
method but stresses the importance of recursively determining the equal-height 
contours of the profile H(x, y). 

3.2 Shape-from-Shading via Equal-Height Contours 

It is clear that Horn's characteristic strip expansion method enables one to use 
various types of prior information--provided it can readily be translated into height 
and orientation data at a set of points. As a result many ideas for using this method 
under various circumstances were advanced, see, e.g., [2, 5, 19]. Others attempted to 
exploit different ways of formulating surface continuity and smoothness constraints 
in order to arrive at practical shape-from-shading algorithms that work on pixel-grids 
directly [1, 7, 8, 15, 16]. It seems, however, that none of the above-quoted works 
emphasized the potential of using as data and then trying to determine the 
equal-height contours of the profile z = H(x, y). An equal-height contour or a level 
curve is a continuous curve in the (x, y)-plane on which the function H(x, y) is 
constant. If {x(0),  y(O)}O ~ 0 is the parametric representation of the curve we 
have 

d 
--~H(x(O), y(O)) = 0. (3.7) 

One might argue that such a contour contains a lot of information and is scarcely 
available to us. This is true; however, many of the previously proposed algorithms 
for recovering shape-from-shading require very similar types of prior information 
(like the surface orientations, or the height profile on some curve in the image plane, 
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or occluding boundaries). Also in some practical situations one is quite naturally 
able to determine equal height contours, or portions of it. As an example, the shores 
of a lake in a landscape readily provide a closed equal-height contour; as is the case 
when an island raises from the sea (any shoreline is an equal height curve). 
Furthermore, in robot vision systems one might be able to provide illumination 
which actively delineates one or more equal height contours. 

In the sequel the assumption will be that we are given an equal height contour 
which is almost everywhere differentiable. By definition, along such a curve we have 
zero height gradient, which yields 

dH = pdx + qdy = O. (3.8) 

Therefore along the given contour {x(0), y(0)} we have determined a relation 
between the two directional derivatives of the surface p and q. For almost all 0 's we 
have, rewriting (3.8), 

d d 
p(x(O),  y(O))--d~X(O ) = -q (x (O) ,  y(O))-d~y(O ). (3.9) 

Together with the shading information at that point A(x(O), y(0)), this relation 
determines p and q, up to an inherent sign ambiguity. Indeed the Lambertian 
shading rule 

A(x,  y) = R(p ,  q) = (3.10) 
~1 + p2 + q2 

yields p2 + q2 = (1 - A2)l/2/A, which together with px' + qy' = 0, provides 

y '  (1 - A2) 1/2 
p = +  

(x,2 + y,2) 1/2 A 

x'  (1 - A2) 1/2 

q = -Y- ( x'2 + y,2)1/2 A at [x (0) ,  y ( 0 ) ] .  

(3.11) 

We get two pairs of solutions, corresponding to a certain (p, q) vector and its 
negative counterpart. This is expected, since at each point on the equal height curve 
the same grey level would be produced by the shading rule if the tangent plane had 
the direction of maximum ascent given either by ~ or by q~ + ~r. Note also that we 
could determine the (p, q) pairs up to a similar ambiguity along any continuous path 
on which the height profile is known a priori. In case of equal heights curves, the 
direction of the data contour determines the direction of the maximal surface 
ascent/descent. Suppose we know that the height profile is a mountain raising from 
the sea. This immediately settles the direction of the steepest ascent as the vector 
pointing towards the inner region defined by the equal height contour of the 
shorelines. Using this information we may determine an equal height contour 
situated a bit above the sea level and so on, we can recursively climb and 
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reconstruct the height profile--provided no "problems" occur. Problems arise, as 
we shall see, if the mountain is not a nice and unimodal profile, and we further 
discuss these issues after a description of the basic profile reconstruction algorithm. 

From a Level Curve to the Ones Nearby 
Assume that (x(0), y(O)]O ~ [0, 1] is a closed curve and that, as 0 goes from 0 to 

1 we trace the curve in the counterclockwise direction (see Fig. 1). 
A tangent vector at 0 is simply given by [x'(0), y'(0)]; the unit normal to it 

pointing inside the curve will be 

1 
n e =  [x'(O) 2 + y,(O)ql/2[-y'(O),x'(O)].  (3.12) 

From (3.9) it is clear that in the direction no, we have to go a certain distance do, in 
order to climb a given amount AH. If AH is small, this distance is quite accurately 
determined by the shading data alone, since, in the Lambertian example, 
A(x(O), y(O)) yields the cosine of the angle between the surface normal at 
(x(8), y(O)) and the vertical direction. As the direction of the maximal ascent is 
known to be (3.12), we have (see Fig. 1) from geometrical considerations only, that 

A 
do = AH V/]- _ A z (3.13) 

Note that the same result would be obtained by writing (3.8), and substituting (3.11) 

I 
I 
I 
I 
I 
I 

FIG. 1. Description of the level-contour climbing process on a simple unimodal height profile. 
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into it. Then 

A H =- p dx + qdy = 
~/1 - A 2 1 

A  x,(O)2 + y,(O)2 
[-y'(O) + 

and using the requirement that [dx, dy] = don o, obtain 

~/1 - A 2 

AH - A do 

which again yields (3.13). This second derivation is also more general than the first, 
geometric argument, and would also work in the case of height data provided along 
any differentiable curve in the image plane (not necessarily an equal-height curve). 
We shall briefly return to this point later. 

Therefore, given a closed equal-height contour assumed to be at a reference level 
Ho, a closed contour situated at the level H o + AH is determined via 

Ix(O, AH), y(O, AH)]  = [x (0 ) ,  y(0)] + dono 
1 

= [x(O),  y (0 ) ]  + 
~x'(O) 2 + / ( 0 )  2 (3.14) 

AH • A o 
× x'(o)l. 

Our derivation leads to a system of first-order nonlinear partial differential equa- 
tions for the functions x(O, h) and y(O, h) representing "doubly parametrized" 
equal-height curves in the (x, y)  plane. Indeed, if Ix(O, h), y(O, h)] is defined as a 
contour corresponding to H = h, (3.14) is equivalent to the set of partial differential 
equations 

0 [ x ( O , h ) ] =  A(x (O ,h ) , y (O ,h ) )  

- ~ [ y ( O , h )  [ l _ A Z ( x ( O , h ) , y ( O , h ) ) ]  1/2 

x 

[I 12I ° 12] lj2 - ~ x ( O , h )  + -~y (O ,h )  

0 
- - ~ y ( O , h )  

0 
 x(o, h) 

(3.15) 

with initial conditions [x(O, 0), y(0,0)] = [x(0), y(0)]. 
Note  that (3.15) is a nonlinear initial value problem that has to be integrated to 

obtain the equal-height curves of the profile that yield the shading A(x, y). It is 
implicit in our derivations that the surface is smooth enough to provide almost 
everywhere differentiable equal-height contours at all heights h. It is also assumed 
that those contours are "well-behaved" as, for example, in the case of a unimodal 
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"Summit" 

f/ 'Summits" 

(a) 

(b) 

"Summit" 

"lmmit* (c) 

FIG. 2. The simplest possible types of level profiles. 

H(x, y) over the region of interest (say the interior of the first equal-height 
contour), when they are nicely nested "generalized" rings (see Fig. 1). 

It is clear that the recursions (3.14) and their differential counterparts (3.15) are 
valid generally, provided we are given information on which side of the original 
equal height curve the surface increases. The data [x(O, y(0)] can be any curve that 
is differentiable and if it is not a closed contour we will get, using (3.14), the 
reconstruction of a well-defined slice of the surface z = H(x, y). If we do start with 
a closed contour and at some level we obtain a self-intersecting (i.e., not "well 
behaved") equal-height curve, this means that we encountered a saddle area which 
separates peaks, or peaks and dips, in H(x, y). In this case the contour should 
be separated into nonintersecting parts and the algorithm may be continued with 
the separated closed parts as initial equal-height curves. An equal-height curve may 
also approach a saddle point from one side only, and there it will become necessary 
to continue a partial reconstruction (see Fig. 2 for types of level contour profiles 
that may be encountered). 

A thorough discussion of what can happen to the equal-height contour profile of a 
smooth surface, based on topological constraints can be found in two classical 
papers by Cayley [3] and Maxwell [12]. In a modem interpretation, see [4]; Maxwell 
proves the so-called mountaineers' theorem, stating that if a surface has isolated 
simple singularities, i.e., "summits" (local maxima), "immits" (local minima), or 
saddle points, then within an equal-height contour we must have that 

-#of summits + # o f  immits - # o f  saddle points -- 1. (3.16) 
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This shows that the profiles shown in Fig. 2 are indeed the simplest cases, modulo a 
height inversion, since they correspond to one and two local extrema, respectively. 

The practical implementation of the algorithm will, of course, be based on (3.14), 
the [x(0), y(0)] curve being given (perhaps in a suitably chain-coded way) on a 
finite grid of 0 values. Then we can use several methods to estimate the derivatives 
x'(O) and y'(O) that appear in the recursion formula. Also we can leave open the 
choice of the steps in height (AH) taken so as to enable the use of various adaptive 
schemes (that are particularly useful if the approach to a saddle area is detected). 
We also note that in practice, A(x, y) is known only on a grid of pixels, thus we 
have to somehow interpolate for the values needed in (3.14) which are points 
situated on equal-height curves. 

It becomes clear by looking at the system of Eqs. (3.15) that trouble arises when 
we approach singular point where A(x, y) = 1, indicating p = q = 0. A singular 
point can be either a local extremum or a saddle point of some sort. At an isolated 
singular point we can define an "unsafe" neighborhood and when an equal-height 
curve enters such a neighborhood, we disregard that portion of it but continue to 
propagate the algorithm from the remaining contour. Some portions of the (x, y) 
plane will, of course, remain uncovered using this method. The "singular" 
areas/curves in the plane for which A(x, y) = 1 provide boundaries of possible 
flips in the directions of maximal ascent and a practical shape-from-shading process 
should keep track of these and, based on natural constraints on the behavior of 
equal-height contours, choose the direction assignments which yield consistent final 
reconstructions. If a priori we know that the surface is unimodal then no such 
problems arise, the solution being unique up to height reversal (see also Bruss [2]). 
Note also that we can live with nondifferentiability at a finite set of points along 
each equal-height contour and reconstruct the profile by matching the slices corre- 
sponding to differentiable portions. 

Level Curves and Characteristic Strips 

The differential equations governing the evolution of equal height contours are 
related to the evolution of characteristic strips. The characteristic-strip expansion 
method, in the case when R(p, q) = R(p 2 + q2) (e.g., for Lambertian surfaces) 
determines a path of maximal ascent/descent on the height profile H(x, y). This is 
so since we have 

[dx ,  dy] = [Rp ,  a q ] d s  = - 
1 

(1 + p2 + q2)3/2[p'qlds; (3.17) 

therefore the vector [dx, dy] points to the direction of maximal ascent. We also have 
that 

dh = [ p R p  + q R q ] d s =  - 
p2 + q2 

(1 + p2 + q2)3/2 ds. (3.18) 



ON SHAPE FROM SHADING 149 

In terms of the differential climb dh we can express the direction of the characteris- 
tic strip expansion as 

1 
[dx, dy] - [p,  q]dh. (3.19) pZ q2 + 

This yields 

d p ~ + q 2  
d - h [ ; l  p 2 + q 2  [ ~ ] -  1 a 

where [a,/3] is the unit vector in the direction of the maximal ascent. But we have 

A = 1 / ( 1  + p2 + q2, thus p2 + q2 = (1 - A2)/A 2 and therefore we have 

d a 

1-,/i77 (3.21) 

where the vector [a,/3], may be determined, if a 0-parameterized equal height curve 
is available, as 

1 o E  oh, ] 
~/x,(O,h) 2 + y , (o ,h )  2 OO x(O,h)  " 

Therefore, if we ask for the evolution of level contours, parameterized as 
Ix(O, h), y(O, h)] we again obtain (3.15), 

0 [x(O,h)}= a 
OhLy(O,h) v/1 - A z ~x , (O,h)2+y, (O,h)  2 O0 x(O,h)  " 

This shows that the curves defined by [x(Oo, h), y(O o, h) for a given fixed 0 o are 
identical to the characteristic strips. However, note that in the characteristic strip 
expansion method the parameterization by s is not simply related to the height h. 
Although Horn noted that scale changes are possible to give various natural 
interpretations to the s-parameter like arc length, etc.; the possibility of using the 
height h as a parameter equivalent to s was never mentioned. More importantly, 
the reconstruction of the characteristic strips uses the  derivatives of the data field 
A(x,  y) instead of the local direction of the level curves. The use of level contour 
directions is in fact a very direct exploitation of lateral information if such 
information is available. In [5] Horn proposes another way to use lateral informa- 
tion as obtained via parallel propagation of many characteristic strips emanating 
from the neighborhood of a singular point, assumed to be a local maximum or 
minimum. He defines "rings of equal arc length" s about the singular point and 
uses those rings to interpolate for new characteristic strips when those propagated 
so far separate too much. The level curve approach is a more natural implementa- 
tion of this idea. What we are doing is applying a special control on the "speed of 
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expansion" of the characteristic strips to ensure that their "wavefront" is an equal 
height curve, and use this wavefront to determine the directions of the local 
maximal ascent/descent on the surface. This replaces the need to differentiate the 
picture intensity information A(x, y) with natural "laterality" constraints. Dif- 
ferentiating a noisy intensity map would clearly lead to very bad effects in the 
propagation of characteristic strips; therefore the above-described procedure has the 
potential to significantly improve the numerical properties of the surface reconstruc- 
tion process. 

3.3 Remarks on Extensions of the Shape-from-Shading Algorithm 

Recovering General Parametrized Curves on the Surface 

The approach outlined above is clearly not limited to level contour initial 
conditions and level curve propagation. If we parameterize a general curve on the 
surface by (x(O, s), y(O, s), z(O, s)} where s = 0 corresponds to the given data 
curve we could also propagate the set of equations 

0 Rq , (3.22) 
Os 

pRp + qRq 

together with the nonlinear solutions for (p, q) of the equations 

0 d d 
--~ z ( O, s) = p -d-~ x + q -d~ y 

1 (3.23) 

A(O,s) = R ( p , q )  = ~1 + p2 + q2 

This, of course, is much more tedious and does not have as natural an interpretation 
as using level contours. 

Shape-from-Shading under Perspective Viewing 

If we assume that the image Ae(u, v) is the shaded image, when viewing a 
Lambertian surface under the perspective transformation, the image plane coordi- 
nates (u, v) of a point (x, y, z(x, y)) are related to the true spatial coordinates 
(x, y)  as follows: 

u = x / z ( x ,  y) and v = y / z ( x ,  y).  (3.24) 

In the above equations it was, of course, assumed that the function z(x, y) 
measures depth from the viewing plane and the focal distance is unity. Given a 
parametrized curve in the image plane, (u(O), v(O)), that is known to be an 
equal-height contour, we have by (3.24) that the corresponding contour in the 
(x, y)-coordinates is a scaled version of the image-plane curve. The scaling factor is 
1/z. 

The direction of the maximal ascent/descent is also immediately obtained in both 
image and true coordinates, being perpendicular to the tangent to the equal-height 
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curve. The slope information is, as before, contained in the image intensity 
A(u(O), v(O)), and from it we can determine an equal-height curve nearby. The 
reconstruction algorithm will proceed to recursively determine equal-height con- 
tours, exactly as before. Assuming a known initial height, the scaling factors for 
each level curve is also recursively determined. This process replaces the strip- 
expansion algorithm of Horn [5] that requires the propagation of five differential 
equations in the case of perspective projection. 

4. CONCLUDING REMARKS 

A new shape-from-shading algorithm was discussed. The numerical properties of 
our shape-from-shading procedure are currently under investigation. Some results 
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FIG. 3. Algorithm testing on the three types of basic level profiles: A. the level profiles; B. the 
level-climbing algorithrn (with adaptive A H); C. comparison of level-climbing with characteristic strip 
expansion. 
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FIG. 3.--Continued. 

are shown in Fig. 3. Figure 3B shows the behavior of the equal-height contour 
propagation algorithm on three typical examples: a gaussian profile, a sum of two 
displaced gaussians, and a surface resulting from subtracting a noncentral gaussian 
from a centrally located one (Fig. 3A). Figure 3C compares the characteristic strips 
propagated with identical data to the equal-height curves resulting from our 
algorithm. As we can see the behavior of both algorithms is good, the third profile 
leading to a significant uncovered region, as expected, due to the lateral encounter 
of an equal-height contour with a saddle point. From the preliminary results 
obtained by running these algorithms on this set of examples, with precise image 
irradiance information, we can conclude that their behavior is very good on 
unimodal or simple shapes having few saddle points located between local maxima 
or minima. However, more sophisticated backtracking or more side-information is 
needed when many singular points exist in the regions of interest. In this context, a 
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FIG. 3,--  Continued. 

topological investigation of surfaces providing the relationships that exist between 
local maxima, minima, saddle points, and the regions surrounding them is most 
helpful. The results of Maxwell and Cayley on passages between "hills and dales," 
[3, 12] could indeed provide the basis for an intelligent algorithm incorporating 
topological reasoning with partial differential equations based shape-from-shading 
processes as discussed in this paper. 
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