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Abstract-A simple on-line algorithm for partitioning of a digital 
curve into digital straight-lime segments of maximal length is given. 
The algorithm requires O ( N )  time and 0 ( 1 )  space and is therefore 
optimal. Efficient representations of the digital segments are obtained 
as byproducts. The algorithm also solves a number-theoretical pmblem 
concerning nonhomogenens spectra of numbers. 

Index Term-Chain code, digital straight lines, on-line algorithms, 
number theory. 

I. INTRODUCTION 
When a straight edge is digitized on a square grid, we obtain a 

sequence of grid points defining a digital straight-line segment. The 
characterization of such sequences and their application has drawn 
considerable attention (see [1]-[14] for a partial list of publications 
and [15] for a recent bibliography of this subject). 

Digital straight lines were used for length and slope estimation 
from digitized images [6], for achieving sub-pixel accuracy [7] and 
sub-pixel registration [8], and for coding of line drawings [9]. An 
initial preprocessing stage of partitioning an arbitrary digitized edge 
into subsequences that are digital straight lines of maximum length 
is required in these applications. 

To partition a digital curve into subsequences that are digital 
straight segments, one must have an efficient test for digital straight- 
ness, i.e., a method to decide whether a given sequence of n grid 
points is a digital straight segment. Several tests for straightness were 
proposed. The first rigorous test was the chord property, which was 
derived by Rosenfeld [l]. Some others were the convex hull method 
proposed by Kim and Rosenfeld [2], the hierarchical decomposition 
of straight lines suggested by Wu [3], and linear programming 
suggested by Werman et a1 [lo]. The latter three algorithms require 
O ( N )  time and are optimal. Checking whether a given sequence of 
grid points is a digital straight segment is equivalent to the problem 
of finding a line that passes through a given set of vertical segments 
for which an O(n)  optimal dynamic algorithm was proposed by 
O'Rourke [26]. 

It is interesting to note that an equivalent problem was formulated 
as a number-theoretical subject via the notion of spectra of numbers. 
A sequence is called a nonhomogeneous spectrum if there 
exist two numbers a and p s.t. a, = Lai+,L?J, where 1x1 is the largest 
integer not exceeding x. When p = 0, we speak about homogeneous 
spectrum. The characterization and construction of homogeneous 
spectra was investigated by Bernoulli and Markoff [16], Stolarsky 
[17], Fraenkel et al. [MI, and Graham et al. [19]. Boshemitzan and 
Fraenkel [20] characterized nonhomogeneous spectra and suggested 
an O ( N )  algorithm for checking whether a given sequence is a 
nonhomogeneous spectrum. It is easy to recognize that the question 
whether a given sequence is a (nonhomogeneous) spectrum and the 
question whether a given sequence of grid points is a digital straight 
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line are identical. (See more about the relation between digital lines 
and some classic problems in mathematics in the discussion of [13].) 

Partitioning a digital curve into straight segments may be re- 
cursively performed as follows. Starting from an endpoint of the 
digitized curve, a subsequence of grid points is tested for straightness. 
Then, the next grid point is added to it, and the new subsequence 
is again tested for straightness. The process is repeated until a 
subsequence of length L + 1 fails the test. Then, the subsequence 
of L points is a digital straight segment, and at the next point on 
the digitized curve, tests for the next segment are restarted. If, in 
the described algorithm, one of the methods for testing straightness 
is applied, then detecting a straight segment of length L requires 
E;=',' O(k) = O(Lz) computations, and the complete decomposition 
of a curve of length N into straight segments takes O ( N 2 )  time. 

Recently, a new algorithm capable of decomposing a digital 
curve into digital straight segments in O ( N )  time was proposed 
by Smeulders and Dorst [21]. This algorithm, which gives a major 
improvement over most methods, is rather complicated to understand 
because it is based on the exploitation of the hierarchical structure 
of digitized lines [3], [5], [13]. This correspondence proposes an 
alternative algorithm for curve decomposition, which has similar 
performance, and is much simpler to understand and to implement. 
In the following section, we describe the principle underlying the 
algorithm and follow that with a formal representation of the basic 
two-pass algorithm. Then, we show how this algorithm may easily 
be modified into a one-pass version. In the following section, we 
show that two alternative, efficient representations of the detected line 
segments can be found as byproducts of the algorithm, and we discuss 
how these representation may be recursively updated. We conclude 
with a short discussion that compares our new algorithm with the 
previous ones and show its relation to the theoretical question of 
spectra. 

11. PRINCIPLES 
Consider a straight line y = m o r  + b,(O 5 m,, bo 2 1 ) digitized 

on an N x N unity grid into the digitized line segment 

Instead of describing the digital line by a list of its grid points, one 
can specify the left-most grid point (xcl = 0) followed by a Freeman 
chain code that describes the transitions between adjacent digital line 
points. A typical property of digital lines is that only two types of 
chain code elements (links) appear in this chain code and that one 
of them always appears in groups (runs), and the second always 
appears isolated. These links are called the majority link and the 
minority link, respectively. When the generating line is in the first 
quadrant, as specified above, the chain code elements ct are equal to 
the differences ct = Y , + ~  - y,, which take only 0 and 1 values, and 
a typical digital line chain code is 01101110110. 

Define the preimage of the digital line segment Lo as the set of all 
lines y = mx + b having the same digitized form Lo. A sufficient 
and necessary condition for a line y = mx + b to be in the preimage 
of Lo is clearly 

Let (m,b) denote the plane of parameters of straight lines. Let 
D ( L , )  be the domain of parameters in this plane, which includes 
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I t Consider a set of N grid points 

{ (X* ,y z )~& = i i = 0 , l )  ...) N )  

which correspond to the nonempty domain in the (m,  b )  plane 

D N  = nzo{(m,b)l  - mxt + y 1  I b < mz, + Y, + 1) 

and hence constitute a digital straight-line segment of length N .  
Suppose an additional grid point ( X N  + 1 = N + l , y ~  + 1)  

is given. The domain DN may or may not be crossed by the new 
separating lines related to the new grid point (and thus may or may 
not be split). However, if it is crossed by the line, then the following 
interesting properties hold. 

Property 3a: Only one of the two lines related to the new grid 
point crosses the domain D N .  

Property 3b: The separating line passes through one (and only 
One) Of the points A ,  B ,  C,  D. 

Property 3c: A new vertex, which is created on one of the sides, 

alop = -s 

p/q = h k 

1 A%;c 

Fig. 1. Five kinds of domains that are possible in the parameter plane. 

the parameter of lines in the preimage of Lo. Each point in this 
domain satisfies 

}o 5 i 5 N .  b 2 -mi + Lmoi + bo] 
b < -mi + Lmoi + b o ]  + 1 

Thus, the domain D ( L , )  is the intersection of 2 N  + 2 half planes 
or N + 1 stripes of height 1. 

The (m,b) plane (0  5 m. b 2 1) is partitioned into such domains, 
and each contains the parameters of a different preimage. The 
following interesting and important properties of these domains were 
derived by Dorst and Smeulders [4] and by McIlroy [ll].  

Property 1: Each of the domains is a convexpolygon with at most 
four vertices. If  the domain has four vertices, then two of them have 
a common m coordinate, which is between the m coordinates of the 
other two vertices. 

Each of the lines that partition the parameter plane into domains 
has an integer slope x o .  For a given length N of the digital line, the 
partition of the parameter planes into domains satisfies the following 
interesting property. 

Property 2: The vertices that lie on each of the separating lines 
have m coordinates that form a Farey series of order max(xo, N - 

The Farey series of order n, which is denoted by F,,, is defined as 
the ordered series of the fractions between 0 and 1 whose denominator 
is not bigger than n; see [22]. Thus, for example 

x o  ). 

1 1 1 1 2 1 3 2 3 4 5  
FF6 = { 0, 5, 4 9  3559 2’ 5’ 3 9  B? 5’ 6). 

It was also shown that the domains may take only one of five possible 
characteristic shapes, which are illustrated in Fig. 1. Note that in 
the four-sided domain, two vertices B and D have a common m 
coordinate. We use the following uniform notation for all domains. 
The upper left vertex is called A, the lower right vertex is called 
C, and the intermediate vertices are called B and D. In the case of 
three-sided domains, a “generalized” vertex B ( D )  is added with the 
same m coordinate as D ( B ) .  In some of the cases when the region 
has a side that is parallel to the b axis, two vertices may coincide 
(see Fig. 1). 

say, AB, with slope X A B ,  has an m coordinate that has the following 
properties. It is a rational number with denominator N + 1 - X A B  and 
is also the member of the Farey series of order N + 1 - X A B ,  which 
succeeds the m coordinate of A and precedes the m coordinate of B. 

Checking whether the set {(xt,yt)li = 1, ... N + 1) is a digital 
line is equivalent to checking whether the set 

is nonempty. From Property 1, and as argued in the next section, this 
intersection may be done in constant time and hence serves as the 
basis of an O( N )  dynamic, on-line test for straightness that underlies 
the algorithm presented in the next section. 

111. A N  o( 11;) ALGORITHM FOR DECOMPOSING A DIGITAL CURVE 
INTO MAXIMAL LENGTH DIGITAL STRAIGHT-LINE SEGMENTS 

We start by presenting a two-pass basic algorithm for decomposing 
a digital curve into digital straight segments. This algorithm follows 
directly from the principles described in the previous section, and we 
feel it is easier to understand. Then, at the end of this section, we 
show how to transform it into a one-pass, on-line algorithm. In the 
next section, we shall show an interesting variation, which depends 
on the special properties of the parameters’ domains, to the principal 
step of the the algorithm. 

The domains in the parameter plane, which are described in the 
previous section, are included in { ( m ,  b)10 5 m, b 5 1). Hence, 
the usual chain code [3] of the corresponding digital line segments 
includes only the “ 0  and “1” links. The use of the (m ,  b )  domains 
for finding straight line segments in the general digital curve must be 
preceded by a “normalization” stage in which all links are transformed 
into “ 0  or “1” links. Thus, the algorithm starts by identifying the 
general direction of the curve (phase l), the two types of links that 
are part of the first segment are found and denoted majority (“0) and 
minority (“1”) links. Then, the longest digital straight segment from 
the beginning of the curve is found and deleted from the curve (phase 
2). The process is repeated until the entire curve is decomposed into 
straight segments. 

Assume the curve is given by a starting point and an eight- 
connected chain code C1, CZ,  .... CN.  Let majority type and minority 
type be two variables, which are initially undefined, that may take 
any two consecutive links as values. 
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A. The Algorithm 
Phase 1: Start from the first link C1 and proceed along the curve. 

Stop at the first link (the kth one in the order of checking) that satisfies 
one of the following conditions: 

1) If the series of the first k links contains two adjacent links of 
the same type (e.g., Cje1 = C, = 3), then denote this type 
the majority type, and continue in phase 2. 

2) If the series of the first k links contains two types of links that 
are not adjacent (e.g., C, = 3 and C, = 5) or if the curve 
terminates at the kth link, denote one of the types of the first 
k - 1 links (the majority link), and continue in phase 2. 

Phase 2: 
a) (Initialization) 

1. Let P,(PZ,P,) = (0 ,O) .  
2. Let D = Do = {(m, ,b)10 5 m,b  5 1). 

Repeat steps b)-f) for i = 1,2. 
b) (Changing the original chain code into a new one, which 

comprises only “1-s and “0-s) 

- If the ith link C, is of the majority type, replace it with 
c, = 0. 
If the minority type is not yet defined, and the link C, 
is different from the majority type but is adjacent to it, 
define its type as the minority type. 
If the ith link is of the minority type, replace it with 
c, = 1. 
If the ith link is neither of the majority type nor of the 
minority type, then it does not belong to the current 
digital segment. Let L = i - 1, and continue to step g. 

c) (Finding the next point on the normalized grid) PEP%( 1, C, ). 
d) (Finding the new parameter domain) D = Do n { ( m .  , b)l  - 

m P, + Pv 5 b < -m . P, + Py + 1). 
e) (Is the new domain nonempty?) If D = 0, then let D = 

Do, L = L - 1, and continue in step g. If D # 0, then let 

- 

- 

- 

_ -  

Do = D. 
f) If C, is the last link (the curve terminates), let L = i .  
g) The first L links comprise a digital line segment characterized 

by the domain D. Delete these links from the digital curve, 
and continue in phase 1. 

A digital straight line may include at most two types of links that 
must be adjacent. This feature is implicitly used in the algorithm. 
Another important feature of digital lines is that the domain of the 
preimage in the parameter plane must be in a convex polygon with no 
more than four sides. This implies that the intersection between Do 
and the infinite strip done in step d) of phase 2 may be implemented 
by any reasonable intersection algorithm in a constant time (see, for 
example, the polygon intersection algorithm on pp. 263-269 of [23]). 
Since for a segment of length L the steps a)-f) are performed at 
most L + 1 times each, and each step is performed in constant time, 
it follows clearly that the full curve of length N is partitioned into 
digital straight segments in O( N) time. 

Note that each of the lines separating the regions in the ( m ,  b )  
plane may be described as b = -mxo + yo, where io and yo are 
integers smaller than N .  It follows that intersecting the polygonal 
regions as well as representing them may be done using only integer 
arithmetics, thus preventing any rounding errors. In the next section, 
we derive a variation to the region updating step, which eliminates 
the need to use any intersection algorithm. 

A speedup of the algorithm may be obtained by observing that 
only grid points in the beginning and end of the majority link runs 

limit the parameter domain. Hence, the intersection of domains may 
be performed only for these points. 

Consider the following modification of the algorithm presented 
above. The first phase is totally ignored. Each step in phase 2 is done 
twice. It is done once under the assumption that the first link in the 
subsequence is the majority link, and the other type of link is the 
minority Link (if, of course, it is adjacent to the first type). Then, the 
step is repeated for the opposite assumption: that the first link is the 
minority link. (Of course, the number of variables is doubled since 
one must hold all variables for both assumptions.) For most cases, 
after a small number of points, one of the links appears in a run 
of two links or more, and one of the assumptions is confirmed, and 
thus, the algorithm may proceed with only the correct option. The 
on-line algorithm created this way considers only one point at a time 
and does a constant number of operations for it. Furthermore, it does 
not need to store the input and output sequences and, hence, requires 
only O( 1) space for storing the varying parameter space region. 

Iv. FINDING TWO REPRESENTATIONS OF THE DIGITAL LINE SEGMENTS 

Sometimes, it is required that a description of the digital segment 
that is more concise and informative than a list of the L links be 
found. 

One such description was introduced by Dorst and Smeulders 
in [4]. They proved that any digital segment can be characterized 
uniquely by a quadruple of integers (n, q, p ,  s), where n is the length 
of the segment, and q is the period of the sequence of the n links. 
If a subsequence of length q is repeated periodically, an infinite 
digital line is created in which the given digital segment is included. 
The preimage of this infinite line includes only lines whose slope is 
p / q .  The parameter s, which may take integer nonnegative values 
smaller than q,  differentiates between digital lines with similar first 
three parameters and has a meaning of phase. This description may 
be easily found for each digital segment found by the partition of 
the curve. Dorst and Smeulders have shown that the vertices of the 
domain of parameters of the preimage have at most three distinct 
values of m coordinates (i.e., if the domain has four vertices, two of 
them have identical m coordinates) and that p / q  is the intermediate m 
coordinate (see Fig. 1). Hence, by choosing the (unique) intermediate 
value out of the m coordinates of the domain vertices, p / q  are 
immediately obtained. n is simply the length of the segment, and 
s may be found by the following argument. The line with slope p / q  
and minimal b, which is still digitized into the digital line segment, 
cross a grid point at it = s (see [4]) and is mapped into the point B 
in the parameter plane (see Fig. 1). The line with the maximal slope 
that is still digitized into the digital line segment also crosses the 
same point and is mapped into the point C in the parameter plane. 
The point sz = s itself is mapped into the line BC, which has the 
slope s, and thus, if the region is known, then so is the parameter s. 

Another parameterization was suggested by Lindenbaum and Ko- 
plowitz [12]. They suggest the use of a different quadruple of integers 
(n ,  k, h,  P,) defined indirectly from the digital line. n is the length 
of the digital line, h / k  is the maximal m coordinate in the parameter 
domain, and io has, again, the meaning of phase. Although this 
description lacks the intuitive appeal of the Dorst and Smeulders 
one, it has one advantage. The domain of quadruple integers that are 
parameters of straight lines is given explicitly and simply. Thus, it 
is more economic for storage and encoding. The parameters h, k are 
found from h / k ,  which is the m coordinate of the rightmost vertex, n 
is simply the length of the digital segment, and x ,  (which is identical 
to the parameter s in the Dorst and Smeulders parameterization) may 
be found in the same way (see Fig. 1). 

It is interesting to note that using the special characteristics of the 
parameters domains, we can substitute the region intersection step 
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by a simpler one. Recall that when the domain is changed, the new 
separating line must cross one of its vertices. Let the two lines related 
to the new curve point ( z N + I , ~ N + I )  be 

Lc;' = { ( m ,  b)lb = -mxN+l  + Y N + l }  

Lc," = { ( m ,  b)lb = - m x N + 1 +  Y N + I  + 1) 

and let the region between them be 

RN+' = { ( m ,  b)l - m x N + 1  + Y N + i  5 bit - m x N + i  + Y N + 1 +  1). 

L 

The domain DN is represented, for convenience, by all vertices and 
all sides. (We could, of course, use one of the efficient representations 
discussed above, but that would lead to increased complication and 

Fig. 2. Example of the partition of a domain when a new point is added. 

to higher time complexity.) 
Each vertex is represented by two (rational) coordinates, where 

each is stored as two integers ( A  = ( m A , b A ) ) ,  and each side 
is represented by two (integer) parameters of the line ( A B  = 
( z A B , ~ A B ) ) .  Let z:(z)  be the member of Fn that succeeds x. Let 
.z,(z) be the member of F,, that precedes x .  

The region intersection step can be substituted by the following 
rule, which follows directly from Property 3. 

Updating Rule: 
1) If B n LfOw $I 0, 

then ( A  and A B  are changed.) 
m A  = f +  N + ~ - ~ ~ J J ( ~ A ) ,  b.4 = - m A X A D  -k Y A D ,  S A B  = 
XN+1 = N + 1, Y A B  = Y N + I .  

2) If D n Lfow # 0, 
then (A ,  B ,  D and AB,  AD are changed.) 
m A  = m D ,  b A  = bo, me = m D  = :G+l--rgC(mc), b s  = 
- m B X B c  + Ysc, b o  = - m D x C D  + Y C D ,  T A B  = N + 1, 
Y A B  = Y N + l ,  X A D  = X C D ,  Y A D  = Y C D .  

3) If B n L h t g h  # 0, 
then ( B ,  C, D and BC,  C D  are changed.) 
mc = m B ,  b c  = b B ,  m B  = m D  = z L + ~ - ~ ~ ~ ( ~ A ) ,  b s  = 
- m B x A B  + Y A B ,  b D  = - m D Z A D  + Y A D ,  Z C D  = N + 1, 
Y C D  = Y N + 1  + 1, 286 = X A B ,  YBC = Y A B .  

4) If D n L h i g h  # 0, 
then (C and C D  are changed.) 
mc = z i  +l- -rgC(mc) ,  b c  = - m c x B c  + Y B ~ ,  S C D  = 
ZN+1 = N + 1, Y C D  = Y N + 1  + 1. 

5) If B E RN+' and D E R N + ' ,  

then (no change: D N + ~  = D N ) .  

6) Else D N + ~  = 0. 
All operations in the above updating of the domain are justified 

directly by Property 3. Consider, for example, the domain described 
in Fig. 2. If the line LlOw passes through the point D, then the region 
is changed into the triangular region D N + ~  = A'B'C'. (This is the 
second case in the IF sentence.) The new vertex A is identical to 
the old vertex D .  The new vertex C is identical to the old vertex C. 
The new vertex B must be the member of Fmax~~+l-zBC,rgC). If 
max(N + 1 - X B C ,  X B C )  = X B C ,  then the point B' would be vertex 
of some domain when only N points are considered. Since this is not 
the case, it follows that maz( N + 1 - X B C ,  X B C )  = N + 1 - X B C .  

Finding successive members in some Farey series would require 
O(1og N) computation since it is needed to solve an integer equation 
that comes out of a known property of any Farey series in which two 
successive members : and 2 ( t < 2 ) satisfy the relation 

be - ad = 1 

[22], [24]. In our case, the situation is more fortunate. Since we know 
that only members with a denominator equal to the new order of the 
series are added to existing members, it follows that the successive 
number of the Farey series may be found in constant time. 

Since E = m e ,  = mc, and s = I, = XBC, it follows that the 
above prGcedure is a straightforward method for recursively updating 
each of the digital line representations. 

If the digital straight segment is long, then encoding it using one 
of these representations can be very efficient since encoding four 
parameters requires O(1og N )  bits, in comparison with O ( N )  bits 
required for direct storage of the chain code. This observation is 
the basis of the curve-encoding method proposed in [9]. There, a 
digital curve is partitioned into a sequence of digital straight segments 
using a tree state diagram. Altematively, one could use the proposed 
recursive partition algorithm and save the space required to store the 
diagram. 

V. DISCUSSION 

We have presented a simple and efficient algorithm for partitioning 
a digital curve into digital straight segments. This algorithm has an 
on-line nature and requires a constant number of operations for adding 
each new point. The total number of operations required for parti- 
tioning a digital curve of length N is O( N), and the maximal space 
required is O( 1). The algorithm facilitates the classical applications 
of digital lines, such as estimating the length of digitized curves [25], 
subpixel reconstruction [7] and registration [8], and boundary coding 

The algorithm for finding a line that passes through a given set 
of line segments, which was proposed by O'Rourke [26], is very 
similar and could be used here. It is also a dynamic algorithm with 
O( N)  time complexity. However, since it does not rely on digital line 
properties, the number of operations done for each additional point 
may be as large as O ( N ) ,  and the space it requires is also O ( N ) .  

The algorithm proposed by Smeulders and Dorst [21] takes a 
linguistic approach and checks the linearity of the digital curve 
segment by dynamically decomposing it into a hierarchy of "runs." 
This method is relatively complicated to understand and to prove, 
relies on four kinds of runs that are kept for each level in the 
hierarchy, and are updated with the inclusion of each additional point. 
The linearity condition is then checked for all levels. Fortunately, 
adding a point to a digital line usually affects only the lower levels 
of the hierarchy, and thus, only these levels are updated and checked 
for linearity. It follows that on the average, the algorithm proposed 
in [21] needs only O ( N )  simple computations. 

Our geometric approach yields an alternative algorithm that is 
easier to understand and to implement. Each point on the digital 
line implies two constraints on the parameters of the underlying line 
in the form of two simple linear inequalities. It is straightforward to 
demand that if a string of points is really a digital line, then all these 
constraints must agree, and their intersection region in the parameter 
space is nonempty. It is the special chracteristics of this intersection 
region, which we exploit, that make its computation particularly easy 
and efficient. The range intersection operation is substituted into an 

[91. 
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update of a small constant number of integer variables and thus allows 
a very simple implementation of the digital linearity criterion. 

All three algorithms take O ( N )  steps to decompose a digital 
curve into digital straight segments. The proposed algorithm uses 
only a constant O(1) storage and is the only one that has on-line 
characteristics and requires O( 1) steps for each additional point. In 
these respects, it is advantageous compared _with the O’Rourke and 
Smeulders and Dorst algorithms, which use O ( N )  and O(1ogN) 
storage, respectively, and may require up to O ( N )  and O(1ogN) 
steps for some points and cannot be used as on-line algorithms. 
The Smeulders and Dorst algorithm requires only additions and state 
changes to compute the representation and for checking the linearity 
condition, and thus, it is possible that it will turn out to be faster 
on some machines than the proposed algorithm, which sometimes 
requires integer multiplications. 
As shown previously, the problem of finding whether there is a 

line y = mx + b that is digitized into a given digital line is identical 
to the problem of finding whether there are two numbers m and b 
satisfying [mi + bJ = y,, where { y z } z 1  is the given y coordinate 
of the digital curve. Substituting m for cy, b for 0, and yI for a,, it is 
clear that this problem is identical to the problem of finding whether 
a given sequence is a nonhomogeneous spectrum. Hence, 
we also have a new algorithm for determining nonhomogeneous 
spectra, which is simple, dynamic, efficient, and requires very little 
space. A simple modification (of limiting the parameters pairs to the 
b = 0 axis) changes the proposed algorithm into an algorithm for 
determining homogeneous spectra. 
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Segmenting Handwritten Signatures at 
Their Perceptually Important Points 

Jean-Jules Brault and Rkjean Plamondon 

Abstmct-This correspondence describes a new algorithm for seg- 
menting continuous handwritten signatures sampled by a digithr. The 
segmentation points are found by means of a two-step procedure. The 
principal step is to construct a function that weights the perceptual 
importance of every signature point aceording to its specific neighboring 
points. The second step points out the various local maxima of this 
function that correspond where the signature should be segmented. The 
method is well illustrated and tested on a number of signatures that 
q u i r e  different kinds of segmentation decisions. 

Index Tem-Corner  detection, handwritten curve partitioning, hand- 
written signature, perceptual importance of an angle, segmentation. 

I. INTRODUCTION 
The goal of an automatic signature verification (ASV) system 

is to confirm or invalidate the presumed identity of a signer from 
information obtained during execution of its signature. The techniques 
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