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Correspondence 

On Optimal  Image  Digitization 

A. M. BRUCKSTEIN 

Abstract-Nielsen et al. recently addressed the problem of determin- 
ing the optimal discretization grid and quantization depth when a given 
bivariate function f (x ,  y) has to be described with a predetermined 
number of bits. This was done under the assumption that the function 
value range and mean “fluctuation rates” in the x and y direction are 
given, and that ideal point sampling with zero-order-hold interpolation 
is used in reconstructing the image. This correspondence outlines an 
alternative approach, based on the assumption thatf(x, y )  is the sam- 
ple function of a 2-D stationary stochastic process with a known co- 
variance function. We use standard integral sampling and obtain closed 
form solutions under the assumption thatf(x, y )  is (the sample of) a 
homogeneous and separable Markov process. 

I. INTRODUCTION: THE IMAGE DIGITIZATION PROBLEM 
In  order  to  enable  the  processing  of  images by  a computer,  we 

have  to  represent  them  as  a  matrix  of  quantized  values.  The  process 
of transforming  a  bivariate  function f( x, y )  2 0 defined on, say 
Q [0, 11 X [ 0, 11,  into  a  matrix  of  pixels  with  gray  levels  repre- 
sented  by  a  certain  number  of  bits  is  the  digitization  process.  This 
is usually  done by some  kind  of spatial sampling off (x, y )  which 
provides  an M X N matrix  of  positive  real  values  and  their  subse- 
quent quantization to 2b levels,  a  process  that  enables  an  approxi- 
mate  description  of  the  continuous 2-D function  with M X N X b 
= B bits.  Suppose  we  are  given  a  certain  sampling  and  quantization 
scheme  with  spatial  resolution  parameters M ,  N and  quantization 
depth b and  an  interpolation  process  which  defines  the  approxi- 
mation ?(x, y )  of  the  original,  continuous  function  that  is  re- 
covered  from  a  digitized  image  representation.  Then  the optimal 
digitization  problem is  to  determine M, N ,  b so that ?(x, y )  is 
closest  (in  a  well-defined  sense) t o f (x ,  y ) ,  subject  to  the  constraint 
M X N X b = B .  In  order  to.solve  the  above  problem,  we  therefore 
need  to  define  a  distance  measure  between  two  continuous  func- 
tions f (x ,  y )  and ?(x, y ) .  An obvious  choice  is,  of  course,  the 
mean-square  error: 

E* S J (f(% Y )  -?(x, Y ) f  dX & (1) 
62 

Although  this  problem  seems to be  a  very  fundamental  one  in  im- 
age  processing,  it  was  addressed  in  full  detail  only  in  a  very  recent 
paper by Nielsen et al. [ 13. The  reason  for  this  might  be  that  the 
image  processing  hardware  usually  dictates  the  range  of  values  of 
M ,  N ,  and b,  and  therefore,  the  bit  allocation  implied by the  digi- 
tization  process  is  often  unimplementable on  existing  devices.  Fur- 
thermore,  the  digitization  process  as  defined  above  is not expected 
to  have  good  image  coding  or  compression  performance  (in  terms 
of  the  image  quality  achievable  for  a  certain  number of bits  per 
pixel)  when  compared  to  other  image  coding  methods. We note, 
however,  that  the  digitization  process  is  not  supposed  to  replace  an 
image  coding  method,  the  aim  of  optimal  digitization  being  to  gen- 
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emte  the  best  image  matrix  that  will  subsequently  become  the  input 
to  various  processing  and  coding  algorithms.  Also,  the  limits  im- 
posed  on  the  image  representation by the  display  hardware  should 
not  limit  the  range  of  possibilities in terms of how  the  image  is 
represented by a  set of numbers  in  the  computer. 

In [ 11, the  optimal  digitization  problem  was  solved  under  the 
assumption  of  ideal  point  sampling,  i.e.,  the M X N matrix  of  sam- 
ples  was { f ( x i ,  y j )  ) where xi = 2i + 1 / 2 M  and yi = 2j + 1 / 2 N  
(the  function  values  at  midpoints  of  sampling  cells)  and  given  mean 
fluctuation  rates off(x, y )  in  the x and y directions,  and  the  value 
range off (x, y ). Under  some  further  reasonable  assumptions,  ex- 
plicit  formulas  for M, N ,  and b were  obtained  showing  how  the 
resource  allocation  between  spatial  resolution ( M ,  N )  and  quanti- 
zation  depth ( b )  is  influenced by the  mean  directional  fluctuation 
rates o f f (x ,  y ) .  

In  this  correspondence,  we  address  the  optimal  image  digitiza- 
tion  problem  in  conjunction  with  a  different  sampling  scheme  and 
under  the  assumption  thatf(x, y )  is  the  realization  of  a  wide-sense 
stationary 2-D process  with  a  given  covariance  function R(  T,, T,,). 

11. OPTIMAL DIGITIZATION OF A 2-D STATIONARY PROCESS 
We  shall  consider  that { f, (x, y )  ) is  a  zero-mean, 2-D wide- 

sense  stationary  process  with  given  covariance R(T,, T ~ ) .  (The  zero- 
mean  assumption  is  being  made  without loss of generality;  simply 
assume  that  the  ensemble  mean  of  the  positive  valued  images  was 
already  subtracted  from  the  realizations  of  the  process.)  The  sam- 
pling  scheme  proposed  is  the  standard  integral  sampling. It divides 
the  region Q = [ 0,  11 X [ 0, 1 ] into M X N equal  area  cells  and 
the  (real)  value  assigned to each  cell  (or  pixel)  is  the  mean  value 
off,(x,  y)  over  the  cell.  Indeed, if over  a  region A we  wish  to 
replace  the  values  of f w ( x ,  y )  by  a number VA, then  the  spatial 
average of the  squared  error  induced  (by  this  zero-order-hold  in- 
terpolation  process)  is  minimized  for 

where 11 A )I is  the  area  of  the  region A .  Therefore,  the  image  sam- 
pling  procedure  replacesf, (x, y )  by the M X N matrix { f,( i ,  j )  1 
of  spatial  averages  offw (x, y )  over  the  equal  area,  rectangular  sam- 
pling  cells.  With no further  quantization  on  the  entries of  this  ma- 
trix,  the  resulting  zero-order-hold  interpolation  estimate  of f, 
(x, y )  will  then  be  the  best  one  possible,  in  the  sense  of  minimizing 
the  mean-square  error  criterion (1)-given the  division  of D into M 
X N equal  pixels. 

Let us now  consider  the  following  problem.  Suppose  that  we 
replace,  over  a  region A, the  function fw(x, y )  by V, defined  by 
(2): what  will  then  be  the  ensemble  average  of  the  induced  mean- 
square  error? A standard  calculation  yields  the  answer  to  this  ques- 
tion.  Define 

and  then,  using  the  definition  of VA to  simplify (3), we  obtain  that 

Using,  the  definition  of R(7,, T ~ )  
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in  the  above  expression  for  the  expected  mean-square  error,  we 
obtain  that 

E E ~  = R(0 ,  0 )  - EV;. (6) 

We  also  have,  as  immediate  consequences  of  its  definition (2), the 
following  statistics of the  random  variable V,: 

EVA zz Efw(x, y )  1 0 

Therefore, (6) finally  yields 

(8 )  
If  the  region A is a  rectangle,  i.e., x E [ -A,/2,  A,/2] and y E 
[ -A,/2,  A,/2], we  then  have  further 

1 AY Ax 

EV2 A - - AxAy - j - A ,  !-Ar (’ - !$) (‘  - y )  
* R(T,, 7,) dr, dr, (9)  

by  repeatedly  invoking  the  result  that [ 2,  p. 3251 

= j 2 T  R ( T ) (  1 - g) dr .  
2T - 2 ~  

Now (8) becomes 

Assume  now  that  the  value V, is  quantized  to L discrete  levels  in 
order  to  be represented by logz L bits.  The  spatial  mean-square  er- 
ror  induced  by  a  zero-order-hold  interpola_tion,  when  the  quantized 
representation  value Vg will be used  as f w ( x ,  y )  over A ,  is  given 
by 

( 12) 
This  can  be  written  as 

+ (V ,  - vg)” (13) 

and  the  definition of V, ensures  that  the  cross  term  above  vanishes, 
yielding 

E ( E ~ ) ’  =’E€: + E(VA - V z ) .  
2 

(14) 
The  mean-square  error  induced by quantizing  a  random  variable 
with  variance u2 is  roughly  proportional  to  the  ratio  between u2 
and  the  square  of  the  number  of  quantization  levels;  see,  e.g., [3]. 
Thus,  we  can  write  that 

and  this  yields  the  following  expression  for  the  error  due  to  the 
zero-order-hold  interpolation  with  a  quantized  representation  (on  a 
rectangle): 

The  above  expression  depends  on A,, A,, and L and  these  variables 
are  constrained  in  the  digitization  process.  Indeed,  suppose  that  we 
are  given  the  sample  function of  a stationary  process,  and  we  wish 
to digitize it by using  a  total  number of B bits  that  should  be  allo- 
cated  between  spatial  resolution  and  quantization  depth.  Then,  di- 
viding  the  area 0 into M X N similar  rectangular  cells  (pixels) 
{ A ( i ,  j ) 3 over  which  the  sample  function  is  replaced by quantized 
V,( i , j ) (  = f,(i, j ) ) ’ s  induces  a  total  average  squared  error of 

= - (€4(i , j , )z  1 
MN i 

The  mean-squared  error  over  the  individual  pixels  has  the  same 
expectation  for  each  pixel;  therefore,  the  expected  mean-square  er- 
ror  in  the  digitization  process is given  exactly by (16) above.  This 
expression  depends  on  the  spatial  resolution  variables A, and A, 
and  on  the  quantization  depth L, and  these  variables  are  constrained 
in the  digitization  process  since 

1 1 
M N 

A, = -, A, = - and log, L = b (18) 

and  the  product M X N X b has, by assumption,  to  equal  a  given 
constant B ,  the  total  number  of  bits  allocated  to  represent  the  im- 
age.  Therefore,  the  optimal  digitization  parameters  are  obtained by 
solving  the  following  minimization  problem: 

minimize E ( t g > ’  subject to - log, L = B. (19) 
1 

AxA, 
This  minimization  problem  can  be  solved  numerically  for  general 
R (r,, ry) ;  however,  in  an  important  special  case,  explicit  solutions 
are  obtained.  This  occurs  when f w ( x ,  y )  is  a  separable  Markov 
process. 

111. AN (ALMOST) EXPLICIT SOLUTION FOR MARKOV PROCESSES 

Suppose  that  the  process f w ( x ,  y ) .  is a  separable,  first-order, 2- 
D Markov  process, i .e. ,  that  it  has  a  covariance of the  form R(  T,, 

7,) = R, ( 7,) Ry ( r y )  with  (see [4]) 

R,(T,) = e-uxlTxl and R),(T,) = e-‘i17j1. (20) 

Then E ( c g  ), becomes 

For first-order  Markovian  statistics,  we  have  from 

that 

E (  v, - V f ) 2  = Ke - with, 2.72 > Kg > I (15) EV; 
L2 
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If we  assume  that A, and A, are  small  enough so that  also a,AX, 
ayAy are  small,  we  have  that 

and  we  wish  to  minimize  (24)  subject  to (1  /A,A,) log, L = B. A 
standard  Lagrange  multiplier  method  provides  that  the  product ( 1 
- $a,A,)(  1 - $ a y A Y ) ( l  - ( K Q / L 2 ) )  is  maximized (i.e., E ( E ~ ) ’  
is minimized)  for 

axAx = ayAy = P(constaht).  (25) 

The  optimal  L  is  then  found by observing  that  the  constraint 

1  BP2 
AxAy ffxffy 
- log, L = B  implies log, L = -, (26) 

and  therefore, Pop[ maximizes 

From ( a  / a P )  $ ( P )  = 0, we  conclude  that Popt satisfies  the  equa- 
tion 

The  right-hand  side  (RHS)  of  this  equation  is  a  quadratic  function 
positive  in  the  interval P E [0, 31, and  achieves  its  maximum  at P 
= $, the  maximal  value  being a. The left-hand  side  (LHS)  is  an 
exponential  function  increasing f roma slightly  negative,  since ( KQ 
> 1 ), value  at P = 0 to + 03. Therefore,  (28)  has  a  unique  solution 
that  may  be  determined  numerically.  In  order  to  obtain  an  upper 
bound for Popt, let us ask  what  is P for  which  the  LHS  reaches a. 
Surely,  then, Popt < p .  Now  the  equation 

yields 

Note  that P ( B )  is  very  small  indeed  for  large B’s since 

- In B 
B 

- + O  as B + m .  

Therefore,  we  have 

and  the  initial  assumption  that A,CY, and Aya, are  small  is  satisfied. 
We  also  note  that  (for  large  values  of B)  the  LHS of  (28)  is  a  very 
steeply  increasing  function  of P ;  therefore,  the difference_  between 
Popt and E‘( B)  is  small  and  decreases  with  increasing B. P (  B )  thus 
becomes,  for  largt  B, a  very  good  approximation  for Pop,. We  have 
then 

(33) 
which  shows  that  the  ratio  between  the x and y resolutions  is  di- 
rectly  controlled by the  spatial  correlation  distances 1 /ax and 1 /CY,, 
not an  unexpected  result.  It  is  also  interesting  to  note  the  similarity 
between  our  results  (33)  and  those  of  Nielsen et al. [l,  eq.  (9), 
(lo)] with  correlation  distances  taking  the  place  of  mean  directional 
fluctuation  rates. 

IV. CONCLUDING REMARKS 

We  presented  an  approach  to  optimal  image  digitization,  based 
on  standard  integral  sampling  and  assuming  that  the  image  is  the 
realization  of  a  2-D  homogeneous  process  with  known  autocorre- 
lation. We note  that  since  standard  integral  sampling  is  but  one 
method of representing  an  image  via  an  orthogonal  basis  of  func- 
tions,  one  could  consider  other  optimal  digitization  problems  as 
well. We could  assume,  for  example,  that  the  image i s  represented 
by using  the  first  (in  terms  of  energy or variance  ordering) M X N 
eigenfunctions  of  the  covariance  (Karhunen-Lobve  expansion),  and 
that  the  corresponding  coefficients  are  digitized  to  a  certain  number 
of bits.  This  leads  to  a  different,  very  interesting  optimizatioa  prob- 
lem  allocating  B  bits  among MN uncorrelated  random  variables  (the 
coefficients  of  the KL expansion)  according  to  their  variances so 
as  to  minimize  the  mean-square  reconstruction  error. If the  product 
M N  is  given a priori, the  problem  leads  to  a  classical  bit-allocation 
process  (see  [3]-[5]);  however,  we  do  not  have  such  prior  con- 
straints  here. We  have  to  determine  both  the  product MN and  the 
corresponding  allocation  of  resources  (bits  or  integer  quantization 
levels)  to  minimize  the  expected  mean-square  error  in  reconstruct- 
ing  the  image. 

Other  image  representation,  sampling,  and  reconstruction  meth- 
ods  could be considered  as  well.  In  [l],  Nielsen et al. considered 
point  sampling  with  zero-order-hold  reconstruction,  and  found  the 
parameters  of  the  optimal  digitization  under  the  assumption  that  the 
value  range  and  mean  directional  fluctuations  of  the 2-D  function 
are  given.  We  could  also  consider  point-sampling  in  conjunction 
with  the  ideal  low-pass  filter  reconstruction,  with  parameters  ad- 
justed to correspond  to  the  sampling  grid. If the  process  is  band- 
limited  and if we  increase  the  number  of  bits  to  be  allocated  to 
infinity,  it  would  be  nice  to  show  that  the  spatial  sampling  grid 
approaches  the  Nyquist  grid,  more  and  more  bits  being  allocated, 
not  to  spatial  resolution,  but  rather  to  increase  the  quantization 
depth. 

The  digitization  process  described  in  this  correspondence  as- 
sumed  that  a  total  number  of  B  bits  has  to be  allocated  between  the 
spatial  resolution  and  the  quantization  depth so as  to  minimize  the 
total mean-square  reconstruction  error.  However,  in  some  appli- 
cations,  we  might  be ready to  allocate  a  variable  number of bits 
per  image  in  order  to  bound  the  error  to  some  predetermined  value 
E .  In fact, we can  formulate  a  general  optimal  digitization  problem 
as  follows.  We  define  two  cost  functionals C, ( . ) and ,Cb ( * ), both 
monotonically  increasing  in  their  arguments so that  the  total  cost 
induced by a  certain  digitization  and  reconstruction  process  is 

‘CTOTAL, of course,  depends  on A,,  A,, and L ,  and  in  it, mCe is  the 
penalty  function  weighting  the  expected  mean-square  error  due  to 
a  digitization A, = 1 / M ,  A, = 1 / N ,  log2  L = b,  and Gb is  the 
cost of bit  usage.  The  optimal  digitization  can  be  defined  as  the  one 
that  minimizes CTOTAL. It is  clear  that by using  various  forms  for 
6, and Gb, we  can  put  both  the  previous  bit  allocation  problem  and 
the  predetermined  error  bound  probiem  into  this  framework  (see, 
e.g., [51). 
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