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Among all trajectories in the plane that have a given location and direction of endpoints, the 
one that minimizes the integral of the squared curvature is defined as the minimal energy 
trajectory. Plane trajectories minimizing a length-normalized and thus scale-invariant energy 
measure are discussed along with algorithms for obtaining them. It is shown that a scale- 
invariant measure is more natural for the design of interpolation and shape completion curves, 
and with this measure, circular arcs are optimal in a large number of situations. A simple 
numerical procedure is proposed for computing piecewise linear approximations of optimal 
trajectories as a solution of discrete two-point boundary value problems. Such trajectories are 
useful in computer graphics, geometric design, and motion planning of robots. o 1990 Academic 

Press. Inc 

I. INTRODUCTION 

In a paper titled “The Curve of Least Energy,” Horn [Ho83], addressed the 
problem of determining a smooth planar trajectory that starts at Pi = (0,O) in 
the vertical direction, arrives at P, = (LO) vertically and minimizes the integral of 
the squared curvature. The rather counterintuitive conclusion of his paper was that 
the optimal trajectory is not a semicircle. Using first an approximation procedure 
and then the calculus of variations, Horn derived a differential equation of the 
optimal trajectory along with its properties. Later Kallay [Ka86], gave a somewhat 
simplified derivation of this result and solved the problem when the length of the 
trajectory is also constrained. In this note, we show that the counterintuitive result 
of Horn is due to a cost function that does not penalize the length of the trajectory. 
Since the total length is not constrained, one naturally obtains solutions that 
trade-in length for smaller variations in trajectory direction. Note also that the 
length-constrained case cannot yield a semicircular solution for the above-men- 
tioned problem, unless the length constraint happens to be n/2. 

Smooth interpolation curves are useful in graphics and for designing or approxi- 
mating object contours, see, e.g., [FP79; Mo85]. Before the “computer-age,” thin 
elastic strips called splines were widely used as drafting tools. If such a flexible strip 
is made to pass through two points with given directions, it will assume a shape that 
minimizes the integrated squared curvature (= energy). If the spline has clamped 
endpoints then it minimizes the same energy measure under a fixed-length con- 
straint. Thus, with true splines we encounter either the situation defined by Horn or 
the one addressed by Kallay. This paper introduces a modified energy measure that 
is length-normalized (length X energy). As a result it has the desirable feature of 
being scale-invariant, but the optimal interpolation does not correspond to the 
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“real-life” situations described above. A physical interpretation of the interpolation 
corresponding to this measure is the following: Assume that we are given a fixed 
length (t = 1) spline with one end clamped at (O,O), the other end free to move on 
a half-line. If the direction of the spline is constrained at both ends, a certain 
equilibrium position is assumed by the movable endpoint. The resulting curve is 
optimal, since it minimizes the normalized integrated square curvature but its 
second endpoint may not be at the required location on the half-line. However. by 
scaling the curve, we can freely position the second endpoint without affecting the 
value of our modified energy-criterion. 

Minimal energy curves have been used in geometric design [Me64; FP79] and 
have been proposed as models for subjective contour completion, to explain visual 
perception experiments [U176; Ru79, YWB74]. Ullman, [U176], discussed contour 
completion models with curves that are made of circular arcs joined smoothly and 
minimizing the integrated square curvature energy measure, while Rutkowski [Ru79], 
used cubic parametric trajectories to satisfy the endpoint as well as some midpoint 
conditions. We note that parametric cubits (Hermite, Bezier, B-splines) were always 
standard interpolation procedures in graphics and CAD, due to their simplicity and 
versatility [FP79; Mo85]. Interestingly, trajectories made of circular arcs (possibly 
joined by straight lines) were shown to be curvature-constrained geodesics, i.e., 
optimal in the sense of minimizing the length of smooth trajectories meeting similar 
endpoint conditions [Du57]. 

This paper is organized as follows: the next section describes the variational 
approach to constrained trajectory design problems and shows that a slightly 
different, length-normalized energy criterion leads to simpler interpolation design 
providing trajectories with expected behavior (in producing circular arcs for sym- 
metric boundary conditions) and good properties. Then, in Section 3, a simple, 
discretized implementation of the design procedure is introduced. This implementa- 
tion was tested under various boundary conditions producing sets of interpolation 
curves. Section 4 introduces and discusses various extensions of this trajectory 
design method, based on different types of cost functions, and compares the 
interpolation results to the results obtained in the previous sections. 

2. CHARACTERIZATION OF OPTIMAL TRAJECTORIES 

An intrinsic description of a planar trajectory is the angle, q(s), of tangent 
(measured relative to some arbitrarily chosen direction) versus arclength, s, where 
s E [0, L] and L is the total length (see Fig. 1). This representation completely 
determines the curve provided the initial location is given. If the curve is expanded 
or contracted by a factor of y, then the new representation obviously becomes 
Q*(a) = \k( o/y) where the arclength u E [0, yL]. The curvature of the trajectory at 
any point s is defined as the rate of change of the tangent angle at that point: 

k(s) = i*(s). (2.1) 

It is clear that the curvature of the y-scaled curve, at the point u = 
sy-corresponding to s in the original curve-is equal to k*(u) = (l/y)k(s). 
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FIG. 1. Description of a planar trajectory. 

Length-Constrained Minimal Energy Interpolation 

Suppose we want to design a length-L trajectory starting at point Pi = (0,O) and 
ending at Pf = (l,O), with endpoint directions \ki and \kf, respectively, as shown in 
Fig. 2. This implies the following constraints on q(s): 

‘k(0) = ‘k, and \k(L) = ‘kr 

fcos\k(s) ds = AX= 1 

/ 
‘sin*(s) ds = AY = 0. 

0 

(24 

The last two conditions are consequences of the relations dx(s) = cos ‘P(s) u!r and 
dy(s) = sin*(s) dr. Among the many trajectories satisfying (2.2) we seek the one 
that minimizes the integral of the squared curvature 

c{ J’(s)} = p(s) ds = lgL( y): a!Y. (2.3) 

Minimization of the cost function (2.3) under the constraints (2.2) is an isoperimet- 
ric-type problem of the calculus of variations. It is a straightforward exercise to 

pN+l ’ 

(W 

FIG. 2. (a) Minimal energy trajectories with movable endpoint P,. (b) Discrete version of the minimal 
energy trajectory. 
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obtain the Euler equations yielding necessary conditions for extremal solutions. 
These equations are (see [E162]): 

Fq = ;F$,, whereF[!I’,~,r~=[~~*+h,cost+h,sin+. (2.4) 

The Euler equation above yields the following nonlinear two-point boundary value 
problem (TPBVP) for determining the optimal 9(s) “candidates” 

d= 
22*(s) = -A, sin*(s) + X,cos\k(s) 

(2.5) 
\k(o) = Jri and \k(L) = ‘k,. 

The parameters A,, A, are Lagrange multipliers that have to be adjusted to meet the 
integral constraints in (2.2). Therefore a candidate optimal trajectory isdetermined 
by searching over a two-parameter space, at each point solving a TPBVP. This is 
quite a complicated and time consuming process. Kallay’s characterization for the 
minimal energy trajectory differs from the above-derived one. He obtained the 
following necessary conditions for optimality, 

R(\k) = (A,cos* + A, sin* + X3)-1’2, (2.6) 

where R(\k) is the radius of curvature given by l/k. Substituting for R(q) into 
(2.6) yields the first-order differential equation 

g*(s) = (A lcos*(s) + A, sin*(s) f X3)1’2, (2.7) 

It is quite straightforward to show that if q(s) obeys (2.6) then it also satisfies the 
second-order differential equation of (2.5). Note that there is a third Lagrange 
multiplier in (2.6) needed to satisfy the length constraint and this makes search 
process more difficult. 

Optimal Trajectories for a Scale-Invariant Energy Measure 

The energy measure defined by (2.3) is not scale-invariant. Indeed if we scale the 
image of the curve by a factor y, the energy will be scaled by l/y. As an example, a 
circle of radius R has energy 27r/R, and increasing the radius decreases its energy. 
This is an undesirable behavior if we would lie to have an intrinsic measure of 
shape smoothness, since a small circle should be considered as smooth as a large 
one. The scale-dependence of the energy measure (2.3) follows from the fact that 
total curve length is not penalized by this cost function. We therefore replace (2.3) 
by the following energy-measure 

c*{\k(s)) = qys) ds = L/,‘(~)‘d.% (2.8) 

Now we are seeking interpolation trajectories with variable length-as in the 
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original problem of Horn, [Ho83]-that minimize the cost function (2.8), rather 
than the energy given by (2.3). As before we assume given endpoints and end-direc- 
tions. In this case, however, we can do the following trick. Since the energy measure 
is scale invariant we solve the problem for a fixed length, L, but with the endpoint 
P, only constrained to lie on the positive x-axis. This procedure does not require the 
AX = 1 constraint of (2.2), yielding a simpler variational problem. Once the optimal 
trajectory is found for L = 1, it induces a certain AX. The interpolation curve for 
any desired AX is then imply a scaled version of the length-l trajectory, which has 
the same costs as measured by (2.8). 

The optimal trajectory is the one that minimizes (2.8) subject to only 

J Lsin*(s) ds = AY = 0. 
0 

(2.9) 

We should also require the induced AX = 10” sin*(s) ds to be positive (see Fig. 2). 
For this problem, the optimal solution satisfies the TPBVP 

d2 
2$!(s) = Xcos\k(s) 

\k(O) = ‘ki and \k(L) = ‘k,. 
(2.10) 

Here, again, the second-order differential equation is equivalent to a first-order 
equation 

$(s) = (Xcos\k(s) + Tjy2 (2.11) 

having one more parameter, 7. This equation shows that the function q(s) may be 
expressed, as in the case of Horn’s minimal energy curve [Ho83], via elliptic 
integrals, but this is of little practical use. Note, however, that the optimal solution 
for the case of qi = a/2 and 9, = -n/2 is now a semicircle. Indeed, using the 
Schwartz inequality, we readily obtain that the cost function C*{ q(s)} satisfies the 
inequality 

c*{\k(s)} = ps. jj fy)‘ds 2 [\k(L) - *(o>]“, (2.12) 

equality being achieved when k(s) = constant. It is readily seen that a semicircular 
trajectory has exactly this property and in addition satisfies the AY = 0. Therefore, 
in this case, and in fact in all cases where the endpoint conditions are symmetric, 
i.e., 9(O) = -q(L), the optimal trajectories are circular arcs. This result follows 
directly from the properties of the modified cost function. The surprising result of 
Horn’s paper follows from the fact that the “energy part” of the cost function may 
be lowered at the expense of adding length to the trajectory. In our case the best 
cost values are always achieved by circular arcs, and when circular arcs can also 
meet the required constraints, they automatically become optimal trajectories. 

The TPBVP (2.10), therefore, yields smooth interpolation trajectories that are 
optimal in the sense of minimizing a length-normalized scale-invariant energy 
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1 O-segments a 

L. 

b 

FIG. 3. (a) Optimal trajectories with Jia = 0 and 10 segments; (b) ‘II, = (‘I’r), N, k range/step. 9, 
range; (c) Ay = a(‘@,, X): where ‘Ir, = o, 10 segments, h E [0.26,0.24], AX = 0.026, ‘I?, E [-r/4, n/4]. 

function and have the desirable feature of yielding circular interpolants for symmet- 
ric situations. Furthermore, the optimal trajectories are more easily obtained since, 
with one less constraint, the search for solutions has to be done over a one-parame- 
ter family of TPBVP solutions.’ The next section describes a practical way of 
obtaining approximations of the optimal trajectories. 

3. PIECEWISE-LINEAR OPTIMAL TRAJECTORIES 

Suppose we wish to design a trajectory composed of N + 1 straight links each of 
length I, starting at point PO and ending at PN+r, with first and last link-directions 
specified as \k, and \k,. A natural smoothness measure for such a trajectory could 
be the discretized version of (2.3), which is 

c, = t + - \kiJ2, (3.1) 
r=l 

‘One of the reviewers has pointed out that Weiss [WlSS] had already proposed scale invariant cost 
functions and improved upon them by introducing a spring model [w287]. Although his model does have 
advantages, it leads to a more complex optimization problem and associated numerical procedures. 
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where the sequence of direction angles \k,, i = 0, 1,2, . . 
constraints: 

flsinqi=PY=O 
i=O 

~Icos‘I:=PX. 

i=O 

289 

7 N has to satisfy the 

(3.2) 

We can solve this problem using Lagrange multipliers, and this leads to a discretized 
version of the original minimal energy trajectory problem. However, as in the 
previous section, we define an alternative measure of smoothness, that is scale- 
invariant and thus independent of the length 1. This measure is 

c; = f (\ki - ,k,-l)2. (3.3) 
i=l 

It only penalizes absolute turns, without considering the discrete curvature they 

100,segments 
_I 

a 

b 

FIG. 4. Optimal trajectories with $y, = 0 and 100 segments; X E [-0.0021, O.OOZl], Ah = 0.00021, 
\k, E [-O.l,O.l]. 
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induce. It is immediately recognized that this measure is a discretized version of the 
continuous cost defined by (2.8). Assuming I = 1, we wish to minimize (3.3) subject 
to prespecified \k, and SI,, and the condition AY = 0. The partial derivatives of the 
function 

Fz = f (9, - \ki_,)’ + X f I sin*; (3.4) 
i=l i=O 

with respect to the ‘I$ for i = 1,2,. . . ,.N - 1, yield the following h-parameterized 
nonlinear recursion that has to be satisfied by an optimal sequence of angles Jr, 

qi+, = 2%; -I- ;cos*i - \k,_, fori= 1,2,...,N- 1 
(3.5) 

with given boundary conditions \k, and ‘kN. 

The two-point boundary value problem (3.5) can be solved by a “shooting method.” 
For a given A it uses various guesses of +i, until the recursion of Eq. (3.5) leads to 

1 O-segments 

b c 

FIG. 5. Optimal trajectories with I&, = -r/4 and 10 segments; h E t-0.036, 0.181, Ah = 0.03 
$ E [-n/4 - r/8, n/4]. 



MINIMAL ENERGY TRAJECTORIES 291 

100,segments 

b 

FIG. 6. Optimal trajectories with & = -a/4 and 100 segments; X E [ - 0.003,0.0015], Ah = 0.0003, 
*, E [-a/4 - 0.05, -s/4 + 0.11. 

the required q,v. Instead of shooting for particular qN’s we determined classes of 
follows: for a given N and \k,, we plotted (densely optimal interpolation curves as 

sampling an interval about Jr,) the functions 

and AY = isin‘I: = 6(\ki; h), (3.6) 
0 

parametrized by several values of h. The points where 6(qik,; A) was close to zero to 
within a preset precision, provided candidates for optimal interpolation sequences, 
if the resulting *N = $~(*i; h) belonged to the interval I-r, a]. For N = 9, i.e., 
interpolation with 10 line segments, and N = 99, i.e., interpolation with 100 
segments, we determined in this way, sets of interpolation trajectories, with several 
starting directions to many end-directions, spanning [ - T, m]. After determining the 
interpolation trajectories, we normalized the final x-axis displacement AX to 1, 
by scaling the interpolation trajectory. The results of start-directions \k, = 
0, -r/4, -n/2 are shown in Figs. 3, 4, (\k, = 0); 5, 6 (\k, = - lr/4); 7, 8 (q. = 
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\ / ‘x \. ,’ 

1 O-segments a 

b C 

FIG. 7. Optimal trajectories with +,, = ?r/2 and 10 segments; X E [-0.45, 0.091, AX = 0.045. 
$ E [-n/2, 01. 

- 7r/2), together with the corresponding $(\k,; X) and a(+,, X) plots. As a general 
trend, for lo-segment interpolation the range of the first direction ‘PI, of the optimal 
trajectories was rather larger (about n/2 radians around \k,) and the A-range was 
roughly [ - l.O,l.O]. For lOO-segment interpolation the range of \k, decreased, as 
expected, to about 0.2 radians, and the X-range for which optimal trajectories were 
found belonged to the interval [ - 0.01, 0.011. 

4. EXTENSIONS AND CONCLUDING REMARKS 

The variational approach to designing interpolation trajectories can be extended 
in several ways. We can, for example, replace the cost function (2.8) by a weighted 
energy function of the form 

c;{ *k(s)} = Lpv(s)k2(s) ds = Lpiqs)( q)‘h. (4.1) 

The interpolation curve that optimizes this cost function corresponds to a spline 
having a coefficient of elasticity that varies as a function of arclength. In the context 
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1002egments a 

b C 

FIG. 8. Optimal trajectories with &, = -n/2 and 100 segments; h E [ -0.0036,0.&309], Ah = O.OOK3, 
‘I; E [-r/2, -97/z + 0.14]. 

of a discretized problem we can also consider weighted cost functions of the form 

C& = 5 w,(‘k, - qiJ2 (4.2) 
i=l 

that readily lead to the modified TPBVP 

wi 
i 1 

A W. 
*i+l= l-t- 

wi+1 
TPi + -co‘s !Pi - 

2wi+l 
---f-qi-ly 
wi+l 

i= 1,2 ,...,N- 1, 

with given boundary conditions \k, and ‘kN. (4.3) 

We tested this type of interpolation procedure for N + 1 = 100 with a weight 
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lOOSsegments a 

1003egments 

b 

FIG. 9. Optimal weighted designs for two different weights (I+’ = 10,100) and 100 segments 

function that is given by 

for i E [N + 1/3,2(N f 1)/3] 
for all other i 

(4.4) 

with w = 10,100 and w = O.l,O.Ol, and the results are shown in Figs. 9 and 10. As 
expected the trajectories tend to become straight over the regions of low “elasticity” 
or high (relative) w. 

Different types of curvature penalty functions might also be introduced, for 
example, a cost function of the form 

where 

p(k) = (zj’- (4.6) 

is parameterized by K and m. Here, as m increases, p(k) approaches a barrier 
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1 OO-segments a 

w = 0.01 

1 OO-segments 

b 

FIG. 10. Optimal weighted designs for two different weights ( W = 0.01,O.l) and 100 segments. 

function that severely penalizes (length-normalized) curvatures with absolute value 
exceeding the parameter K. Optimal curves minimking (4.5) have curvatures strictly 
bounded by K, for large m. The discrete counterpart of (4.5) is 

czD = ; p(‘k, - *i-l). (4.7) 
i=l 

Minimizing this cost function subject to the constraint 

f sin+, = AY = 0 
i=o 

provides the following nonlinear recursion 

(4.8) 

‘t,+l = ‘ki + (\I: - *;-l)2m-1 + gcos*i 

i 

1/(2m - 1) 

) i= 1,2 ,..., N- 1, 

(4.3) 
with given boundary conditions \k, and ‘k,. 
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This problem can also be solved by a shooting method, or by determining classes of 
optimal trajectories having identical initial directions. 

We have presented an interpolation method that has a physical basis, is simple to 
implement and yields optimal trajectories with expected behavior in the sense of 
generating circular arcs in symmetric situations. Some further extensions might also 
be considered. For example, we could search the optimal trajectories among a 
family of polynomial (or cubic, as in [Ru79]) interpolation trajectories, having as 
free parameters, say the magnitude of the tangents at the endpoints. This leads to 
rather cumbersome algebra, since the curvature is a complicated function of the 
parameters in the representation. The problem is, however, manageable with a 
computer and will be the subject of some further investigations in the future. 
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