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ON THE RECONSTRUCTION OF LAYERED MEDIA FROM
REFLECTION DATA*

ALFRED BRUCKSTEIN’, THOMAS KAILATH:I:, ISRAEL KOLTRACHT,
AND PETER LANCASTER

Abstract. The problem of reconstructing an elastic layered medium from a discrete reflection response is
considered. Using matrix methods, a family of models is defined that is parametrized by the surface reflection
coefficient. The relationship between a general response and that with a perfect reflector at the surface is established
and is used to provide a new proof of a recently established representation for the reflection coefficients. A
(known) thresholding strategy for the prediction of reflection coefficients is presented and is shown to be a
"maximum a posteriori" estimation process. Numerical examples are given.
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Introduction. In this paper we consider the problem of reconstructing a layered
medium from noisy reflection response data. It is assumed that the medium is made up
of a sequence of horizontal homogeneous layers (the Goupillaud model), and that the
measurement noise is bounded in magnitude by e. We also admit some a priori knowledge
of the reflection coefficient sequence; namely, that most of the reflection coefficients are
zero and if different from zero, that they are uniformly distributed between [-1, ].

Both the standard reconstruction procedures, known as dynamic deconvolution
(Claerbout 3 ], Aki and Richards ], Robinson and Treitel 13 and the layer peeling
procedure (Bruckstein, Koltracht, and Kailath 2 ), are unstable in the presence ofnoise.
A thresholding strategy for stabilizing this procedure has recently been introduced in
Bruckstein, Koltracht, and Kailath 2 and Koltracht and Lancaster 8 (see also Ferber
[5 ]). This strategy consists of careful estimation of error magnification in the recursive
reconstruction procedure and of the use of recursive estimates for setting to zero small
computed reflection coefficients. The estimation oferrors is based on a new representation
of reflection coefficients for a general surface condition first obtained in Koltracht and
Lancaster 8 ].

Section contains a new derivation of this formula that is both simpler than the
original one and also has more physical intuition behind it. It contains some relevant
results of error analysis from Koltracht and Lancaster 9 as well.

In 2 the thresholding strategy is described and we show that it can be viewed as
an approximate maximum a posteriori estimation process for the reflection coefficients.
The strategy is also compared with the minimum entropy deconvolution method proposed
by Wiggins [17 for geophysical reflection seismology.

The stabilizing effects of the thresholding strategy in the presence of noise are illus-
trated in the numerical experiments of 3, with synthetic as well as field data.
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LAYERED MEDIA FROM REFLECTION DATA 25

A similar idea ofsetting to zero small reflection coefficients appeared simultaneously
in Ferber [5 (both this paper and the paper of Bruckstein, Koltracht, and Kailath 2
were submitted in 1984). The error estimates in Ferber [5 ], however, are less accurate
and apply to the perfect surface reflector only.

1. Representations of reflection coefficients. The one-dimensional inverse scattering
problem amounts to the reconstruction of an acoustic medium from its response to a
known input pressure wave. Discretizing the medium into a large number ofthin layers,
we can assume that each layer has a constant impedance, and that changes ofimpedance
occur only at layer interfaces. Such interfaces are characterized by their reflection coef-
ficients. To define a reflection coefficient, consider a vertically incident unit impulse on
the interface from above (and measured in terms of units that represent the square root
of energy). The part of the impulse that is reflected upward gives the value of the cor-
responding reflection coefficient c; hence c =< 1. The transmitted part can be calculated
from the energy conservation law as /1- c2. If a unit impulse is incident on the
same interface from below, the reflected amplitude is equal to c (see Robinson 14, p.
48 ], for example).

Let the controlled input signal, which is sent downward, be measured just above
the surface at uniform intervals of time r, giving the input sequence { do, d, dN }.
Starting with time r, after each r units oftime, some reflected upcoming signal (possibly
zero) will reach the surface from below. Denote this upcoming sequence of signals just
below the surface by { 0, v, v2, VN ). Each vj represents a superposition ofa primary
reflection from the jth interface with multiple reflections from previous layers. (Note
that the width of each layer is determined by the half travel time r/2 of the pressure
wave; thus, the physical width depends on the velocity of propagation in the medium of
this particular layer.)

Assuming that the surface reflection coefficient Co is known, the sequence of down-
going signals just below the surface can then be seen to be {t0d0, tod CoVe,’",

todN- CORN}.
Let uj to dj. CoVe, j 1,..., N, and define the following nested sequence

of matrices:

(1) Rk L(uk)L T(Uk) L(vk)L T(Vk)
for k=0, 1,...,N where T denotes transpose, Uk=[1, U,’’’,Uk] T, Vk=
[0, Vl, Vk] , and for any vector a [ao, ak] r ofany length k + 1, L(a) denotes
a lower triangular Toeplitz matrix whose first column is a. Thus,

ao 0...0

L(a)= ax ao"’0

k ak_l"" ao

Conservation of energy arguments (Kailath, Bruckstein, and Morgan [6 ]; see also Lev-
Ari and Kailath [12]) show that RN is a positive-definite matrix.

THEOREM 1. Let {do, d,..., du} be the controlled input sequence and let
{ O, Vl, VN} be the upcoming sequence measuredjust below the surface ofa layered
medium defined by the sequence ofreflection coefficients { Co, Cl, CN }. Thenfor k
0,...,N-

k

(2) c,+ 1-- E /)j+ l"Yk(j)
j=O
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26 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

where ’k [3’k(0), 7(k)] T is the solution ofthe equation

Rk’Yk=[O, ,0,1] T

andR are defined via with u t0d Coy.

The representation formula (2) was established in Koltracht and Lancaster 8 ].
The new derivation of Theorem is based on reduction of the general case when d
{ do, d, du} and Co [-1, 1] to the special case when dj. 0, j 1, N, and
Co (or perfect reflection ofupcoming waves at the surface). In reflection seismology
this case is called "marine" and the representation of the reflection coefficients given by
(2) of Theorem is well known in this particular situation (see Kunetz [10], Robin-
son [14]).

Let us first show how the transformations from d to v and from u to v in the Gou-
pillaud model can be interpreted as discrete, causal, linear systems (see Robinson 14],
for example). We also show how, using a limiting process, the "marine case" can be
included in a family ofsystems parametrized by Co, the reflection coefficient at the surface.

Assuming that c0l < 1, it is not difficult to see that v (in the first layer) is related
to the input vector d by v toBd, where B is a strictly lower triangular Toeplitz matrix:

0 0 0
bl 0

!00bz bx 0
o

N b

bl cl, b2 c2t2 c2co, and for j 2, N, bj is a polynomial in Co, c, cj.
This relation implies that the transformation d v is a discrete causal linear system.

For c01 < we have

(3) u t0d c0v,

and it follows that

Bu=(I-coB)v,

or Au v where

(4) A=(I-coB)-B.

As A is also lower triangular and Toeplitz it is seen that, as claimed above, the transfor-
mation u -- v is also a discrete causal linear system. Furthermore, the system (i.e., A
and B) both depend continuously on Co.

Next we show how to include the cases when c01 in our discussion. Observe
that either case Co + means that no finite signal above ground can produce a signal
below ground. However, it we consider the limiting process Co -- 1, and simultaneously
let do -- in such a way that to do -- (while { dj }= remains bounded), then it
follows from the equation v toBd that

de__f lim v B_eo
co-- -1

where B_I denotes B evaluated at Co -1 and eo is the first unit vector, i.e., er

[1, 0, 0]. Furthermore, it follows from (3) that, in this case,

fi=eo+,
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LAYERED MEDIA FROM REFLECTION DATA 27

as physical reasoning also requires. Equation (3) also applies in the sense that A-11
where

A-1 =(I+B-I)-B_i.
Thus, the equation v toBd still makes sense in the limit as Co -- and represents

the physical situation when Co and the disturbing signal eo is applied just below the
surface. A similar argument applies when Co -- 1. Thus, the matrix A: u -- v defines a
causal linear systemfor any Co [-1, 1] andA depends continuously on Co. The limiting
case when Co -1, fi eo + is known as the marine case and the vector is called the
marine response.

As the transformation B from input d to output v is a time-invariant causal linear
system (i.e., a filter) and depends only on Co, c, CN, we may write, absorbing to
into B,

v B( co, cl CN)d.
In this notation the marine response of the model is

B(-1, c CN)eO.

As u tod Coy, the marine response is also characterized by the property that when
v we have u eo + . We use this to prove the following reduction theorem.

THEOREM 2. For any Co 6 [-1, 1], let

0

U-- V--

represent the downgoing and upcoming signals in thefirst layer, (respectively), and write
U L(u), V L(v). Then the marine response ofthe model is given by

(5) =(U- V)-v.

Proof. The model associated with surface reflection coefficient Co is a filter. Let a
be its impulse response and A L(a) (so that a Aeo). The marine response of the
model is the vector for which A( + eo) , i.e.,

= (I-A)-lAeo.
We have Au v, or A Ueo UAeo Ve0 so that a U-1Ve0 and it follows that A
U-1V. Substitute in the equation for and use the fact that lower triangular Toeplitz
matrices commute to obtain

(I- U- V)- U- Veo

(U- V)- Veo (U- V)-I. [--]

Now let us complete the proof of Theorem 1. This depends on the reduction to the
"marine case" as described in Theorem 2. We use a subscript k (as in u, v) to denote
vectors of length k + 1.

For the "marine case" it is well known (see Kunetz 10 ], Robinson 14 that, if
clef

(6) Tk L(k+ eo)L(evg + eo)r- L(Cg)L(g) r

(a positive-definite Toeplitz matrix) and w is defined by Tkw e, then the subsurface
reflection coefficients are given by the (Levinson-Durbin) formula

(7) Cg+l =wg, k=0, 1, ,N.

D
ow

nl
oa

de
d 

01
/0

8/
18

 to
 1

32
.6

8.
36

.1
65

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



28 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

From (5)we have for the general case

L(Vk) L(uk-- Vk)L(k).

But also

L(uk) L(uk-- v) + L(v)

L(u-v)+L(uk-v)L()

L(Uk-V)(L(,)+ I)

L(uk-vg)L(C’k+eo).

Consequently, using and (3) we obtain

L(Uk-- Vk) TkL(Uk-- Vk)T= Rk.

As L(Uk Vk) is nonsingular and Tk is positive definite, it follows that Rk is positive
definite. Furthermore, as L(Uk- Vk)ek ek, TkWk ek implies

L(Uk-- Vk) TkL(Uk-- Vk)T(L(Uk_ Vk)T)-lWk ek,

or Rk(L(Uk--Vk)r)-lwk=ek. Thus, if 3’k is defined by Rk"/k=ek, then Wk
L(Uk Vk)rTk and (7) and (5) give

Ck+ (L(Uk-- Vk)-IVk)rL(Uk-- Vk)7k

as required.

2. The effects of noisy data. In practice the measured response ofa layered medium
is contaminated with noise arising from measurement errors, spatial effects, and the
discretization of the continuous medium. Thus we can write v + e where is the
vector of measured noisy response. In what follows we assume that the errors ej are
uniformly distributed

e being a known estimate. Under this assumption it is possible to show (Koltracht and
Lancaster [9]) that the matrix RN defined in will be perturbed by a certain matrix
F {fj}/u,j=0

RN kN+ F,

where, with a high probability (of 99.8 percent), elements of F satisfy the inequality

(8) If0l < Ve(I c01 + 2( --02)1/2), i,j=O, ,N.

(Note that when Co _+1, the fight-hand side of (8) is simply equal torte.) Similar
estimates can be obtained for measurement noise with other statistical properties. Given
the representation (2) of the reflection coefficients and the estimate (8) of the size of the
perturbation matrix, we can estimate the error in the reflection coefficients as follows
(Koltracht and Lancaster [9]).

THEOREM 3. Let be the recorded response of a layered medium with a known
surface reflection coefficient Co. Let e denote the noise level, so that
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LAYERED MEDIA FROM REFLECTION DATA 29

and let k, k 1, ..., N denote the reflection coefficients corresponding to the recorded
response and the known input vector d. Then for sufficiently small e, with a probability
of 0.998, andfor k O, ..., N-
(9)

J
+(I Col + 2( -c) ’/2 I(J)l

where Ck, k 1, N, are the true reflection coefficients, andfor k 0, N- 1,
"k and are defined by t’k e and lkk fl f;k + 1] T.

Efficient algorithms for computing the bounds of Theorem 3 can be found in Kol-
tracht and Lancaster 8 (see also Lev-Ari and Kailath 11 ). Note that in the case of a
Toeplitz matrix/U the fight-hand side of (9) simplifies to

(10) ck+,--k+ < Ve ,(j) I+ ,(J)l/’+ (k+ 1)

where can be computed via the usual Levinson algorithm (see Koltracht and Lancaster
8 for more details). We remark that the estimate (10) is more accurate than the one

suggested in Ferber [5] for the marine case only.

3. Inverse scattering with thresholding" An approximate "maximum a posteriori"
estimation process. The discretizafion ofthe pressure wave and the elastic medium, and
the presence of noise, imply that most ofthe observed reflecting interfaces are an artificial
byproduct of the chosen discretization interval, and do not correspond to real reflectors.
Moreover, because of these facts the reflection coefficients are computed approximately
with the precision of the bound of (9) at best. This means in particular, that the zero
reflection coefficients, which correspond to artificial layers, can become nonzero values
within this bound. It is, of course, our objective to reconstruct the real layered structure
ofthe medium, and the first priority is therefore to distinguish the real reflecting interfaces
from the artificial ones.

In order to use our prior information, which says that most of the reflection coef-
ficients are zero, the following thresholding strategy is useful (see Ferber 5 ], Bruckstein,
Koltracht, and Kailath 2 ], Koltracht and Lancaster 8 ).

(i) Start with the known data Co, {dl, du}, { 1, N} and k 0.
(ii) Compute k, k, and k+1 as defined in Theorem 3, and also compute

Bk f -],(j) +(I Col + 2( --cg) 1/2 Ik(j)[)
j j=0

(iii) If Y+ < eBb, then set + 0.
(iv) Increase k by one (until k N- ).

Indeed, if 1/ 11 < eBb, then the true reflection coefficient c/ can be any number in
the interval (k+l eBk, /1 + eBb) and zero also belongs to this interval. Having
assumed the prior information about the medium, we must now conclude that the true
reflection coefficient is most likely equal to zero.

In probabilistic terms, it may be assumed that the reflection coefficient sequence is
composed ofindependent identically distributed values having a probability distribution
function given by

pc(C)=po6(C)+( -p0)/2, c6(-1, 1),
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30 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

i.e., that we have a high probability (P0) ofhaving a zero reflection coefficient and a small
probability of it being chosen uniformly in the interval (-1, ). If this is our a priori
information on the reflection coefficients, and the measurement of depth k yields an
estimate d+1 that obeys the inequality

c+-+ l <B,

then it is not difficult to see that the thresholding procedure yields a maximum a
posteriori (MAP) estimate of c+ 1. This follows if we assume that the conditional
probability of obtaining /l as an estimate (that is, p(/ [ c+ 1)) is uniform over
(+1 eBb, +1 + eBb). Indeed the MAP estimate is defined as the c+l value that
maximizes the function

p(+ 1 c+ )p(c+ )P(Ck+ 1)=f+P(k+ Ck+ 1)P(Ck+ 1)

and if P(+l] c+ l) is not zero at C+l 0 (meaning that 0 e (+ eBb, + +
eB) ), then obviously p( c + + will have its maximum at c + 0. For a discussion
of MAP estimator design see, e.g., Sfinath and Rajasekaran [15].)

It is also interesting to compare the thresholding strategy with the minimum entropy
deconvolution (MED) method introduced by Wiggins [17] in reflection seismology (see
also Walden [16 ]). In this approach the discrete convolutional model of the recorded
seismogram is assumed:

= wc_+ n,
/=0

or, in vector form

:w,c+n,
where the sequence { n } represents the noise in the system. (We remark that, in contrast
to the scattering model developed in this paper, the deconvolution model does not admit
multiple reflections.) Thus the sequence { w ) represents the impulse response ofa discrete
filter transforming the sequence of reflection coefficients into the output sequence { }.

Now consider the formation of an approximate inverse filter with impulse response
J }. Namely, the convolution f w is to be close to the first unit coordinate vector e0

in an appropriate sense. Once f is determined we naturally take f - as the corre-
sponding estimate of the reflection coefficient sequence.

In the MED process, the sequence {J } is determined by maximization ofthe varimax
norm of"

The varimax norm is proportional to the kurtosis of a zero mean process, which is a
statistic that characterizes the peakedness ofthe corresponding probability density function
(Donoho [4]). Thus maximizing the varimax norrn results in suppressing most of the
reflection coefficients in favor of a few large ones. This, of course, is exactly the idea
behind our thresholding strategy.D
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LAYERED MEDIA FROM REFLECTION DATA 31

It is now widely accepted that the MED processes do not perform to expectations
(see Wiggins 18 ], for example ). One ofthe main reasons is that the optimization criteria
reduce to a highly nonlinear system ofequations whose solution is approximated iteratively
by local linearizations. The convergence of those iterations is problematic, in particular,
because of the nonuniqueness of the local maxima.

The method of inverse scattering with thresholding does not seem to have this
disadvantage. The reflectivity information recovered by this algorithm is reliable and, as
the numerical experiments of Bruckstein, Koltracht, and Kailath [2], Koltracht and
Lancaster 8 ], and the following section demonstrate, the thresholding strategy efficiently
suppresses noise magnification in inverse scattering algorithms.

4. Numerical examples. The effects of the thresholding strategy are illustrated first
on a synthetic reflectivity profile shown in Fig. 1. In all of the figures the vertical scale

FIG. 1. Synthetic reflectivity profile.D
ow

nl
oa

de
d 

01
/0

8/
18

 to
 1

32
.6

8.
36

.1
65

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



32 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

denotes depth measured in the number of horizontal layers. A recursive algorithm de-
scribed in Koltracht and Lancaster [7 is used to generate the "marine" response rl,

r2, "", rN of a medium corresponding to this profile. As soon as a new entry rk in the
response sequence is obtained, some noise value ek, chosen randomly from the interval
[-e, e], is added to rk. Since k rk + ek is used for the computation of rk+ 1, rN,
in the formula

Fk + Ck + -lt- . j" + "Yk(j) "Yk(k),
j=0

it follows that the perturbation ek affects all following entries of the response sequence
(a phenomenon to be expected in real-life situations). Reconstruction of the reflectivity
profile with and without thresholding, as well as the corresponding "marine" responses,
are shown in the following diagrams. In Fig. 2(a), the marine response corresponding
to a noise level e 0.02 is presented. Figures 2(b) and 2(c) show the reconstruction
without and with thresholding, respectively. We see that the thresholding algorithm gives
a perfect reconstruction, whereas the algorithm without thresholding hardly reconstructs
the second reflector at the depth of 700 and breaks down soon after that.

(a)

FIG. 2 (a). "Marine" response perturbed by noise oflevel 0.02.
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LAYERED MEDIA FROM REFLECTION DATA 33
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34 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

In Fig. 3(a) the marine response corresponding to the noise level e 0.03 is presented;
Figures 3 (b) and 3 (c) show the reconstruction without and with thresholding, respectively.
Again, the algorithm without thresholding breaks down before producing any reliable
information, whereas the threshold algorithm recovers four out of six reflection coeffi-
cients.

In Fig. 4 we observe the effect of changing the noise barrier e in the threshold
reconstruction. This observation is important because in real-life situations, we cannot
expect to have exact knowledge of e, but rather some estimate of it. The marine response
corresponding to e 0.03 (the same as in Fig. 3) is used. In Figs. 4(a) and 4(b) threshold
reconstructions with e 0.025 and e 0.005, respectively, are presented. In Fig. 4(a)
the fifth true reflector is recovered. The reconstruction does not change for gradually
decreasing values of e, until for e 0.005 a small ghost reflector appears just above the
depth of 700. This is apparently a result of some noise going through at shallow depths.
It appears to be encouraging that the reconstruction with imprecise noise levels reveals
more information than the reconstruction with exactly known e. Indeed, in practical
situations (see Koltracht and Lancaster [8]) we must experiment with the noise barrier
e, which can only be roughly estimated in advance.

o

(a)
FIG. 3(a). "Marine" response perturbed by noise oflevel 0.03.
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The effect of thresholding strategy is illustrated also on a set of field data. This data
comes from a geophysical survey in northern Canada. (We thank K. Coffin, Department
of Geology and Geophysics, University of Calgary, Calgary, British Columbia, Canada,
for making this data available to us.) The data consists of about 100 traces (of 2,000
samples each) of unfiltered CDP-stack data along a horizontal survey line, as shown in
Fig. 6(a). The reconstruction without thresholding breaks down at depth of about 130,
as shown in Fig. 5. The reconstruction using threshold algorithms with appropriately
chosen e is shown in Fig. 6(b). It appears that the section indeed has some multiple
reflections, which are eliminated with the threshold reconstruction.

(a)

FIG. 4(a). Reconstruction for response ofFig. 3 with threshold barrier 0.025.D
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o

0

(b)

FIG. 4(b). Reconstruction for response ofFig. 3 with threshold barrier 0.005.

5. Concluding remarks. An inverse scattering method that is stable in the presence
of noise has been described. The method is based on a thresholding strategy that predicts
in a statistically reliable way when small reflection coefficients are to be set to zero.
Statistical interpretation ofthe strategy in terms ofmaximum a posteriori estimation has
been presented. The procedure has been developed for an extended Goupillaud model
of a layered medium in which the reflection coefficient characterizing the surface is a
parameter. The theoretical basis for the method has been described and developed and
favorable performance has been demonstrated using both synthetic and field data.D

ow
nl

oa
de

d 
01

/0
8/

18
 to

 1
32

.6
8.

36
.1

65
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



38 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

].990

0 40 80 120 160 200D
ow

nl
oa

de
d 

01
/0

8/
18

 to
 1

32
.6

8.
36

.1
65

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LAYERED MEDIA FROM REFLECTION DATA 39

(b)

FIG. 6(b). Inversion ofthe seismic section with the threshold algorithm.
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