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Abstract---Given a shape, we wish to describe it as the union and/or difference of primitive, possibly 
parameterized, shapes that constitute an alphabet. We would like this description to be ordered such 
that "most" of the description is conveyed within the first few terms of the description. In other words, 
we want as small an error as possible for any possible truncation of a description. We present a new 
criterion for evaluating such sequential descriptions. 

For the specific case of right-angled, or rectilinear, polygons in a plane, and using only a rectangle as 
the primitive shape, we present an algorithm for finding optimal sequential descriptions. Though the 
running time of this algorithm is exponential in the worst case, we show how running time can be traded 
off against optimality, and how "reasonable" solutions can be found quickly. 

Planar shape Rectilinear shape Rectangular cover 
Branch-and-bound Approximate match 

Greedy algorithm 

I. INTRODUCTION 

When we look at a planar shape and want to describe 
it, say over the phone, we usually rely on a knowledge 
base shared with the listener and come up with very 
succinct descriptions. We could say something like: 
this is a T-shaped object with a long and thin vertical 
line and a short and thick horizontal line. Such a 
description, although qualitative, is often enough for 
practical purposes. Computers are involved in many 
shape analysis and description tasks, however, they 
have not yet reached a level of intelligence that 
would enable them to provide such simple and short 
but sufficient qualitative descriptions. 

To mimic the qualitative description process 
described above we should define a knowledge base 
that will be used as an "alphabet" of shapes and 
simple operations of combining shapes and 
describing their spatial layout and relationships. This 
idea has been used in computer-aided design, where 
shapes are often built as combinations of instances 
of a basic repertoire of primitives. The instancing 
provides their position and the combination opera- 
tions can be either union or set-difference applied 
to instanced primitives. We could model the shape 
description discussed above as a similar process, 
however, it is clear that what we have to do first is 
solve an inverse problem: given the complete shape 
decompose it into simpler primitives. Then we may 
give the resulting description to a partner. It is this 
inverse problem that we study in this paper. To this 
end, we have first to come up with ways to evaluate 
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the multitude of possible descriptions, and then to 
choose the one that best suits our purpose. 

An obvious application of our work is the 
description of an image over a slow network. This 
sort of problem is faced, for example, if a remote 
user on a 1200 or 2400 baud line wishes to browse 
an image database. It is discussed in reference [1] 
that, at least in the context of documents, what the 
user wants is a quick idea of the image layout, with 
further refinement being produced on demand. Simi- 
larly, many of us have often found ourselves in a 
situation where we wanted a quick printout of a 
paper that we were writing, simply to check that the 
margins were correct, and that no text or display 
overflowed columns. If the page image were repre- 
sented in the sequential description form we suggest 
here, after a fraction of the description has been 
conveyed to the printer, we could truncate the com- 
munication, and obtain the results that we were 
interested in. 

In a different context, consider the updating of the 
screen after a change, or in response to a redraw 
command. Depending on the speed of the link to 
the monitor, this activity could take up to several 
seconds. In most cases this update is either in scan 
order, say from top to bottom, or on an "object" 
basis, one object at a time. In neither case does the 
user have a reasonable idea of what the updated 
screen will look like until most of the update is 
complete. Using our sequential description method 
the most significant aspects of the screen could be 
drawn first, permitting the user to make an estimate 
of the final form of the screen well in advance of the 
redraw completion. 

In reference (2), it has been suggested that a gross 
description of a page in terms of rectangles can be 
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used effectively to determine columns, headings, and 
such other page layout features. Once more, one can 
consider this a truncated sequential description. 

On a more speculative note, scattered noise in 
imges, such as "salt and pepper" noise, is likely 
to be eliminated if we obtain a good sequential 
description of the image and then truncate it at 
some empirically determined threshold. Clearly, the 
possibility remains of excluding important image fea- 
tures and of retaining some noise, just as in every 
other automated noise removal technique. Further 
work is required to compare "sequential description 
truncation" techniques with other more standard 
techniques such as low-pass filtering. 

Finally, shapes with the same prefix in their 
sequential description are expected to be similar, 
with the similarity increasing as the length of the 
prefix considered grows. However, "similarity" is 
not easily defined, so we defer further discussion of 
this matter to reference (3). For a lucidly written 
article describing the conceptual problems involved, 
see reference (4). 

There is considerable previous work on describing 
a shape in terms of component primitives. (5-~°) All 
the works mentioned above consider the problem of 
finding succinct descriptions of shapes in terms of 
primitives. However, none of them considers the 
important issue of sequentiality, i.e. of obtaining 
good descriptions very quickly. 

This paper is organized as follows: the next section 
presents the formalization of the above discussion 
and defines the problem in precise terms. A criterion 
is proposed to evaluate the quality of a sequential 
description. In Section 3, we turn to a specific case 
of the problem, considering rectilinear polygons in 
a plane described in terms of a union and difference 
of primitive rectangles. We discuss methods to find 
good sequential shape descriptions in this case, and 
compare them with descriptions devised by a human 
being. 

2. F INDING G O O D  S E Q U E N T I A L  DESCRIPTIONS 

The problem we are addressing is the following. 
Given a set of shapes and an alphabet of primitive 
shapes, we want to find descriptions of the shape 
in terms of combinations of instances of primitive 
shapes. 

The description will be a string of letters in the 
"alphabet" of primitive shapes (rectangles). Each 
character in this string represents a primitive shape 
(rectangle) parameterized by its location and dimen- 
sions. The characters in the string will also be 
assumed to carry information on how the par- 
ameterized rectangle has to combine with the partial 
description already available. For instance, it may 
be added to the description through a point-wise 
union, or it may be subtracted from it. More complex 
operations could also be invented: the basic shape 
instance might be reproduced n times where n is 

r-J r-J 

: . . . . . . . . . . . . . .  J 
ill 17 

(a) (b) (c) 

Fig. 1. (a) A shape; (b) its best description in one unit; (c) 
its best description in two units. 

another parameter, with some specified spacing and 
angles between reproductions. Clearly any given 
shape in some class of shapes of interest will have 
multiple sequential descriptions, with the alphabet 
of our choice. Thus the Star of David could be 
described as the union of two triangles; it could also 
be described as a hexagon minus a set of six triangles, 
where a single parameterized unit can describe the 
six triangles. 

A sequential description is defined as a nested 
sequence of approximations to a given shape. In such 
a sequence of approximations each description could 
be obtained, for example, by adding or subtracting 
an instance of a primitive shape to the previous 
description. In a sequential description our aim is to 
provide as much information as possible as early 
as possible. Therefore, we would like our shape 
description process to give a lot of information in the 
first stages of the process and successively refine the 
knowledge on the shape as more and more is said. 
We would also like the first stages of our description 
to capture the important features of the given shape. 

Note that one parameterized instance of the basic 
shape as defined above is not one bit of information, 
but rather several bits. The exact number of bits per 
unit depends on the precise alphabet chosen, the 
number of parameters used, and so forth. Formally 
"speaking, all the preceding arguments should apply 
to bits rather than characters of the alphabet. 
However, we shall permit truncation only at charac- 
ter boundaries. If truncation occurs elsewhere, we 
shall assume that the last several bits are discarded 
from the truncated word, and the last complete letter 
of the alphabet is retained. In our treatment we shall 
continue to deal with characters rather than bits, 
with the understanding that if each unit is a constant 
number of bits, all results obtained will be identical. 
(If the number of bits in a unit can vary in the 
alphabet selected, then some obvious modifications 
are required to the arguments here.) 

Clearly, if a sequential description, for every trunc- 
ation of it, has error no greater than any other 
description with the same length, then an absolute 
"best" sequential description has been found. Unfor- 
tunately, such an absolute best sequential description 
may not exist in general. For example, in Fig. 1, the 
best description with one unit is not a prefix of the 
best description with two units, evaluated against the 
symmetric area error criterion described below. 
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When a person is given such a well-defined sequen- 
tial description task, he or she will attempt to mini- 
mize the error at each step, following the steepest 
descent, but will also take into consideration a pen- 
alty for being wrong at many places for a considerable 
amount of time (measured in iterations of the 
sequential description). We therefore propose the 
following criterion for selecting good sequential 
descriptions. 

The cumulative error criterion 

The cumulative error of a sequential 
description is a (possibly weighted) sum over 
the total description length of the error in the 
sequence of partial descriptions. 

For each exact sequential description of the finite 
length of a given shape, the cumulative error is well 
defined since the error increment becomes zero after 
a finite number of steps. We define as the "best" 
sequential description the one with least cumulative 
error. 

The choice of weights for the weighted sum dep- 
ends on the application. The simplest choice is a 
uniform weight of one. Such a weighting gives equal 
importance to error at all stages of the sequential 
description. On the other hand, in some applications 
one may know that there is a minimum three unit 
allowance for the shape description, so that the 
weights should be set to zero for errors after zero, 
one and two units of description. Similarly, if excess- 
ively long descriptions are to be penalized, the 
weights can be increased as the length of description 
increases. As an extreme case, one could have a 
weight of zero for all lengths of description except 
a single predetermined length. The criterion then 
reduces to finding the best sequential description of 
that specified length. In general, the criterion could 
utilize any arbitrary function of the error at each 
stage, not necessarily the weighted sum. 

The measure of error at any stage depends on the 
relative importance of various types of differences 
between the shape and its description. We could 
measure the quality of a description by the area of 
the symmetric difference between the shape and its 
description. This implies equally weighting the error 
due to not covering a particular area that belongs to 
the given planar shape and the error of covering, 
with the approximate description, some portion of 
the background. We could add to such a quality 
criterion other factors that are known to be important 
in providing shape-related information, like penalty 
terms for not preserving topological properties: con- 
nectivity, Euler numbers, etc. We could also give 
different weights to different regions within the shape 
to be described, and in the background area, and 
measure weighted symmetric differences between 
the shape and its description. These factors are very 
important in shape description, and are easy to des- 
cribe but very difficult to work with. 
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Fig. 2. A serrated shape boundary has greater error when 
(a) represented by a serration with phase error than when 

(b) represented by a straight line approximation. 

Whatever error measure is chosen, there is an 
inherent problem with trying to produce a single 
quantified number representing the "distance" 
between two shapes in an attribute space of very 
high dimensionality. For example, consider serration 
at an edge. The area differential due to serration is 
not big, so it is not likely to be accounted for by one 
of the first few description units conveyed, given a 
symmetric area error measure. Even worse, serration 
specified with the wrong phase actually has a larger 
area error (see Fig. 2), even though to the human 
eye the description may appear closer to the shape 
than a description with no serration. This occurs 
even if serration at an edge is represented as a single 
attribute parameter and described in one primitive 
unit. Such considerations are a function of whether 
such low area features are important as object 
descriptors for human perception. 

For the rest of this paper, we shall concentrate on 
a symmetric (Hamming distance) area difference as 
the error measure, and use the unweighted sum of 
errors as the cumulative error criterion. We shall 
permit only two operations with the primitives: the 
next unit of description may add a primitive to the 
existing approximate description, via a point-wise set 
union, or it may subtract a primitive from an existing 
description, via a point-wise set difference. 

Let the primitive shapes be drawn from the set R. 
Then each unit of the sequential description com- 
prises a pair (Ri E R, oi ~-{+,  -}),  where the "+"  
represents set union and " - "  represents set differ- 
ence.* The description after n units is: 

S ,  = ( ( ( RoOlR l )o2R2) " " o ,R , ) ,  

where R0 is the initial empty description. Let S be 
the shape being approximated. The area error after 
n units is: A ,  = IS XOR X, I. There exists some N such 
that Sk = S (and A~ = 0) for all integer k -> N. We 

* For convenience we have assumed a large set of coor- 
dinate-specific shapes. In practice, this set R may never 
be enumerated, but instead may be derived by applying 
transforms, such as rotation, translation, and scaling (with 
appropriate parameters), to a small enumerated set of base 
shapes. The specific base shape selected, and the set of 
transforms applied are one way of describing a shape of 
interest in the set R. 
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wish to minimize the cumulative error of the sequen- 
tial description, which is: 

N - I  

E ai = • ISxoRSil. 
i=1 i=1 

3. OBTAINING OPTIMAL DESCRIPTIONS 

In this section we restrict the shapes to be 
described to rectilinear polygons, that is, simple poly- 
gons, not necessarily convex, with edges being either 
horizontal or vertical line segments. We restrict the 
description to be in terms of rectangles only, with 
four coordinates used to identify each rectangle. 

In the literature, rectangles are the only shapes 
with which reasonable covers have been found for 
given shapes. In addition, rectangles are intuitively 
a reasonable way to describe rectilinear polygons. 
Therefore, we believe it is pragmatic to restrict the 
alphabet to consist only of rectangles. Ultimately, in 
graphics, every shape is reduced to a set of pixels 
that are each on or off. These pixels are on a rect- 
angular grid. Therefore,  every shape ultimately is 
represented as a rectilinear polygon. The restriction 
to simple polygons is not really required for the rest 
of this section. However,  we add this restriction since 
it is easier to study the correspondence with human 
intuition for simple polygons. 

In view of the NP-completeness of the problem of 
deciding whether a rectilinear polygon is coverable 
with K or fewer rectangles,t11) and of similar com- 
plexity results for a wealth of covering problems 
(see reference (7) and the references therein), it is 
expected that our problem requires combinatorial 
techniques for its solution. We present one such 
technique below, and also show how "good" guesses 
at the optimum can often be obtained very rapidly. 

We shall attempt to determine a description in 
terms of rectangles constrained to be composed of 
object-induced rectangles henceforth denoted grid 
primitives. Each edge can be extended infinitely in 
either direction, to obtain a grid of lines in a plane. 
Each rectangle in this grid, called a grid primitive, is 
either entirely in the object, or entirely out of it. A 
simple description would be to enumerate each grid 
primitive in the object, on a grid primitive per unit 
of description. Clearly, one can do better. Any pair 
of adjacent grid primitives must also form a 
rectangle, and so can be included in a single unit of 
description. The idea, loosely speaking, is to find 
large clusters of grid primitives that can be described 
in one unit. 

Each grid primitive must entirely be in or entirely 
be out of the target object. A sequential description 
that at some stage includes a part of a grid primitive 
must at some later stage either include the rest of it, 
or subtract it out. In either case, one can always 
obtain a description that is at least as good, in which 
the grid primitive is either entirely included or 
entirely excluded at all times. Owing to the linearity 

of the area criterion, either completely including or 
completely excluding the grid primitive is going to 
produce an error no larger than including part of it. 
Since a partially included grid primitive must at some 
later stage either be included completely or excluded 
completely, the descriptions converge after this 
point. Therefore, given a sequential description of a 
rectilinear polygon using arbitrary rectangles, one is 
guaranteed to be able to find a sequential description 
that is at least as good using only grid primitives. As 
such, we shall confine our attention to grid primitives 
in what follows. 

Let us call a grid primitive black if it is in the 
object, and white if it is not. Also, a grid primitive 
is in if it is included in the current description of the 
object, and out if it is not. Thus, to start with, all 
grid primitives are either out-black or out-white. At 
the end, when an exact description of the object is 
obtained, all grid primitives are either in-black or 
out-white. The total area of the grid primitives that 
are out-black and those that are in-white gives the 
error in the current description. If a description is 
built up purely additively, then there are no grid 
primitives that are in-white. 

We can now define the notion of domination: 

rectangle X is said to dominate rectangle Y 
for addition iff X contains every out-black grid 
primitive in Y, Y contains every out-white grid 
primitive in X, and X - Y  is either empty or has 
at least one out-black grid primitive; 
rectangle X is said to dominate rectangle Y for 
subtraction iff X contains every in-white grid 
primitive in Y, Y contains every in-black grid 
primitive in X, and X - Y  is either empty or has 
at least one in-white grid primitive. 

If rectangle X dominates rectangle Y for addition, 
we are guaranteed that the error at the current step 
is less if rectangle X is added rather than Y, and that 
the error will continue to be no greater for all future 
steps. To see that this is the case, recall that addition 
of a rectangle can cause out-black grid primitives to 
become in-black and out-white grid primitives to 
become in-white. Thus X causes every out-black 
grid primitive to become in-black that Y does, and 
possibly some more, while not creating any more in- 
white grid primitives than Y. Since the error is the 
total number of out-black and in-white primitives, 
the error after adding X is less than or equal to the 
error after adding Y to the description. If the errors 
are equal, then the descriptions after the additon are 
identical, and will continue to remain identical over 
any future sequence of additions and subtractions. 
If the errors are unequal, consider a grid primitive 
that is out-black after adding Y but in-black after 
adding X. (There must be at least one such, if the 
error with X is less than the error with Y.) A future 
addition of a rectangle may render this grid primitive 
in-black irrespective of whether X or Y was added. 
Similarly, a future subtraction of a rectangle may 
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render this grid primitive out-black irrespective of 
whether X or Y was added. These future additions 
and subtractions are in no way constrained by the 
current status of this (or any other) grid primitive. 
As such, the error after adding Y can at best equal 
the error after adding X. A similar argument can be 
constructed when X dominates for subtraction. 

At each step, one need not consider every possible 
rectangle for the next unit of description, but rather 
only those that are not dominated for addition or for 
subtraction. In practical terms, determining whether 
a rectangle is dominated is simple: first try extending 
it by one grid unit in each direction, one side at a 
time. If in at least one extension none of the grid 
primitives included are out-white, and at least one is 
out-black, then the rectangle in question is dom- 
inated for addition. Similarly if in an extension none 
of the grid primitives included are in-black, and at 
least one is in-white, then the rectangle is dominated 
for subtraction. Next try shrinking the rectangle by 
one unit in each direction, one side at a time. If in at 
least one such shrinkage, none of the grid primitives 
excluded are out-black, then the rectangle in ques- 
tion is dominated for addition. If in at least one 
shrinkage none of the grid primitives excluded are 
in-white, then the rectangle is dominated for sub- 
traction. A rectangle cannot be dominated for 
addition (respectively, subtraction) unless dom- 
inance can be shown in one of the two steps above. 
The proof of correctness of this constructive pro- 
cedure is simple and not presented here. The impor- 
tant point is that it is possible, within time 
proportional to the perimeter of the rectangle, to 
determine whether a rectangle can be dominated by 
another rectangle. There is no need to consider every 
possible other rectangle as a candidate for this 
purpose. 

If there are a total of 2n edges in the object to be 
described, there are at most n horizontal grid lines, 
and at most n vertical grid lines.* (There are exactly 
n provided that no two edges are collinear.) The grid 
primitives outside the outermost grid lines are not of 
interest. Therefore, there are a total of at most 
(n - 1) 2 grid primitives of interest. 

Each rectangle is completely described by its 
lower-left corner grid primitive and its upper-fight 
corner grid primitive. (The two can be equal, in 
the case when the rectangle comprises a single grid 
primitive.) Evaluating a discrete integral, we find the 
total number of rectangles possible is n2(n - 1)2/4. 
Thus there are O(n 4) rectangles that can be used for 
the first approximation to the given shape, O(n 4) 
that can be used for the second approximation, and 
so forth. With the use of the concept of domination, 
the number of rectangle choices to be considered can 
be reduced, sometimes dramatically so. However, 

* Since al ternate edges mus t  be horizontal  and vertical, 
a right-angled polygon in a plane mus t  have an even number  
of  edges. 
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Fig. 3. (a) An annular shape; (b) its best description; (c) 
its best monotonically error reducing description. 

the worst case situation still forces us to consider 
O(n 4) rectangles (see Appendix A). 

Since we can enumerate the different rectangles 
that can be used at each step, we can use the branch- 
and-bound technique to solve the combinatorial 
problem. Pseudo-code for the branch-and-bound 
algorithm is given in Appendix B. The idea is to 
consider at each stage every (non-dominated) rec- 
tangle that could be used as the next element of a 
sequential description. The "tree" of alternatives is 
traversed depth-first fashion, and all choices made 
are remembered on a stack. Once the error has been 
driven down to zero following one particular branch, 
we backtrack and consider what would have hap- 
pened if a different choice had been made. (This 
is the branching step.) When the cumulative error 
becomes greater than a bound that has already been 
achieved, stop exploring that path further. (This is 
the bounding step.) 

It is tempting to believe that we need consider 
using only such rectangles as will decrease the error 
at each step: in other words that the area error 
is monotonically decreasing in the best sequential 
description. While this is certainly true in most cases, 
Fig. 3 presents a counter-example, in which the best 
sequential description actually has the error increase 
first and then decrease. Intuitively as well, human 
beings when tested preferred this best description. 

In evaluating the different choices of rectangles at 
each step, our algorithm orders the choices such 
that the rectangles considered first are the ones that 
immediately decrease the error by the greatest 
amount. By thus considering the most likely can- 
didates first, we make it likely that the true optimum 
will be found earlier than if the alternatives were 
evaluated in a purely random order. We also increase 
the efficacy of the bounding step, since many of the 
worst alternatives may not have to be considered at 
all. 

Moreover, since the branch-and-bound is being 
performed in a "best-fit" fashion, it can be halted at 
any point after one candidate description has been 
found to obtain a reasonable, though not necessarily 
the best, answer. One can thus impose an upper 
bound on the amount of computer effort one is 
willing to spend, and walk away with a reasonable 
answer at any point. In fact, it is even possible 
to devise functions that estimate the likelihood of 
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Fig. 4. Some simple shapes and their optimal descriptions. 
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Fig. 7. (a) A final example rectilinear polygon shape, (b) 
the first few steps of its greedy description; (c) and (d) 

intermediate stages in its optimal description. 

rectilinear sides to the shape being described. In 
comparison, a full branch-and-bound could require 
time that is exponential in n. 

L.__~--~ ~__ j--J 

I 

L1  

LJ  [-_--~_ . . . . . . . . . . .  

I'r  r l 
. -5 -8 

, ~ 2 2 2  

(a) Co) (c) 

Fig. 5. (a) An example rectilinear polygon shape; (b) an 
intermediate stage in its description; (c) final (optimal) 

description. 
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Fig. 6. (a) Another example rectilinear polygon shape; (b) 
an intermediate stage in its description; (c) final (optimal) 

description. 

further improvements in the objective function, 
based upon improvements made in the recent past, 
and to use such functions to decide upon a stopping 
point. Note, though, that any such technique would 
still remain a heuristic, with no guarantees provided 
on the goodness of the solution obtained. 

In particular, one could explore only the least 
error rectangle at each stage, ignoring all the others, 
to obtain a greedy algorithm. Even though this algor- 
ithm could be implemented as just a special case 
of the algorithm above, one can obtain a simpler 
implementation by throwing away all the book-keep- 
ing required to maintain the stacks. Pseudo-code is 
given in Appendix B. 

Clearly, no more than n 2 rectangles can be 
required for a sequential description of a shape that 
can be placed on a grid with n horizontal and n 
vertical grid lines. As discussed above O(n 4) choices 
may have to be considered for each rectangle in the 
description. Thus the total time required for the 
greedy algorithm is O(n6), where there are O(n) 

Examples 

We now present several examples of the best 
description obtained by running on a computer the 
family of algorithms described above, to be com- 
pared with the descriptions preferred by people. 

In Fig. 4, the optimal descriptions are presented 
for two familiar shapes (T and F). Observe how the 
optimal description changes as the relative sizes of 
the parts are changed. In both cases, there is some 
threshold where the switch-over occurs from 
description (a) to description (b). Where a math- 
ematical criterion would place a sharp dividing line, 
humans may have a fuzzy transition. Just how "fat" 
must the limbs of a "T" get before you think of it as 
a rectangle with two little pieces knocked off rather 
than as a "T" shape? 

Figures 5-7 present some examples of more com- 
plex shapes and their optimal descriptions. Each 
description rectangle is numbered according to its 
position in the sequential description, and has a 
minus sign attached if it is subtracted. In the 
examples depicted in Figs 5 and 6, the optimal 
description is also the greedy description. We found 
this to be the case in a large fraction of the examples 
that we tried. However, there are, as one should 
expect, many examples where the optimal 
description differs significantly from the greedy 
description. Such an example is presented in Fig. 7. 

4. CONCLUSIONS 

In this paper we have studied the problem of 
sequential description of shape, and proposed a cri- 
terion that we believe is appropriate for measuring 
the goodness of such sequential descriptions. Then 
we went on to consider a specific case of this problem, 
where we used addition and subtraction of rectangle 
primitives to describe ortholinear shapes. We pre- 
sented an exact technique that could take 
exponential time, and a greedy technique that 
quickly discovers solutions close to the optimal. The 
descriptions obtained from the machine using these 
techniques were similar to descriptions generated by 
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a human being with no knowledge of  the compute r  
results. 

Acknowledgements--We would like to thank Mark Jones, 
Don Mitchell, Peter Selfridge, Guy Story, and especially, 
Bruce Ballard, for illuminating discussions on some of the 
ideas presented here. 

REFERENCES 

1. G. Nagy, Towards a structured-document-image utility, 
Proc. IAPR Wkshop Syntactic Structural Pattern Rec- 
ognition, Murray Hill, NJ, pp. 293-309, June (1990). 

2. H. S. Baird, S. E. Jones and S. J. Fortune, Image 
segmentation by shape-directed covers, AT&T Tech- 
nical Memorandum, March (1990). 

3. H. V. Jagadish, A retrieval technique for similar 
shapes, Proc. ACM-SIGMOD Int. Conf. Management 
of Data, May (1991). 

4. D. Mumford, The problem of robust shape descriptors, 
Center for Intelligent Control Systems Report CICS- 
P-40, Harward University, Cambridge, MA, December 
(1987). 

5. A. Rosenfeld (ed.), Multiresolution Image Processing 
and Analysis. Springer, Berlin (1984). 

6. S.-K, Chang, Y. Cheng, S. S. Iyengar and R. L. 
Kashyap, A new method of image compression using 
irreducible covers of maximal rectangles, IEEE Trans. 
Software Engng 14(5), 651-658 (1988). 

7. D. S. Franzblau, Performance guarantees on a sweep- 
line heuristic for covering rectilinear polygons with 
rectangles, SlAM J. Disc. Math. 2(3), 307-321 (1989). 

8. T. Pavlidis, Structural Pattern Recognition. Springer, 
Berlin (1977). 

9. I. Pitas and A. N. Venetsanopoulos, Shape decompo- 
sition by mathematical morphology, Int. Conf. 
Comput. Vision, London, U.K. (1987). 

10. S. L. Tanimoto, Hierarchical picture indexing and- 
description, Proc. 1EEE Wkshop on Pictorial Data 
Description and Management, Asilomar, CA, pp. 103- 
105, August (1980). 

11. M. R. Garey and D. S. Johnson, Computers andlntrac- 
tability: A Guide to the Theory of NP-Completeness. 
W. H. Freeman, San Francisco (1979). 

APPENDIX A 

In this appendix we show by counter-example that the 
idea of dominance does not significantly reduce the number 
of rectangles to be considered in the worst case. * Consider 
a shape similar to the one shown in Fig. A1, but on a large 
grid. The shape comprises roughly n diagonal bands in a 
grid of size n by n. 

Fig. A1. A rectilinear shape with diagonal stripes. 

Let us count the number of rectangles of different sizes 
we can create, that are not dominated at the first step of 
the sequential description. We need consider only rectangle 
additions. Consider a rectangle of height h, and width w. 
Provided that h and w are both at least 4, every position of 
such a rectangle will be valid, not dominated by any other 
rectangle, since an extension on any side would by necessity 
include at least one grid square not in the shape. But there 
are only O(n) different rectangle sizes with at least h or w 
less than 4. For each rectangle size, there are no more than 
n 2 positions in which the rectangle can be placed on the grid. 
So there are at most O(n 3) rectangles that are invalidated by 
the domination criterion, out of the O(n 4) total possible 
number of rectangles. As such, the number of valid rec- 
tangles remains O(n4), and the use of domination does not 
prune too many rectangles in this example. 

* We are grateful to Bob Holt for working with us to find 
this counter-example. 

APPENDIX B 

Branch-and-bound algorithm 

Best Error = 2; 
Description Stack is Empty; 
Cumulative Error Stack has the single entry 0; 

/*The top value in this stack is the current value of cumulative error*/ 
Best Sequence is null; 
Current node = root of the search tree; 
expandLnode ( ); 
/*Best Sequence has the required best sequential description, with a cumulative error of Best Error*/ 

expand_node ( ) 
{ 

Enumerate all non-dominated rectangle covers approximating the object, given the partial cover already described; 
Order these according to error, from least to greatest; 
If least error rectangle has an error of zero 

{ 
Copy Stack to Best Sequence; 
Append this least error rectangle to Best Sequence; 
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Best Error = Cumulative Error;/*read from top of stack*/ 
return; 

} 
For each rectangle in order 

{ 
if (Cumulative Error + Current Error > =  Best Error) break; 
push on cumulative Error Stack, Cumulative Error + Current Error; 
Push on Description Stack the current rectangle; 
expand_node ( ); 

} 
pop Description Stack; 
pop Cumulative Error Stack; 

Greedy algorithm 
Best Sequence is null 
expana_node ( ); 

expand_node ( ) 
{ 

Enumerate all non-dominated rectangle covers approximating the object, 
given the partial cover already described; 
Append least error rectangle to best sequence; 
If least error rectangle has an error of zero, return; 
Else expand_node ( ); 

} 
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