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time-varying 2D projection. Hence as an intermediate
The use of color images for motion estimation is investigated stage in the 3D motion estimation process we need to

in this work. Beyond the straightforward approach of using find the 2D projection of a motion field onto the image
the color components as separate images of the same scene, a plane. This 2D field of velocities is called image flow.
new method, based on exploiting color invariance under motion, Then we could attempt to recover the 3D motion field
is discussed. Two different sets of color-related, locally comput- from its 2D projection. To do this, however, seems
able motion ‘‘invariants’’ are analyzed and tested in this paper,

impossible without additional information about theand the results of motion estimation based on them are com-
motion field. Instead, we can extract the so-calledpared to the direct use of the RGB brightness functions.  1997
optical flow, which is a 2D field of velocities associatedAcademic Press

with the variation of brightness patterns of the image
[7, 17].

1. INTRODUCTION
The following two examples are often given to help

understand the difference between an image flow and
an optical flow. A uniformly painted ball is rotating

Optical or image flow estimation is considered by around its center in some way. In this case the image
many researchers to be an important low-level stage of flow in non-zero for every point of the ball’s projection
spatial motion recovery from a sequence of images. It on the image plane, while the optical flow is zero, since
is supposed to yield an estimate of the 2D projection the image brightness will not change at all. The second
of the velocity field on the image plane, which is submitted example is a stationary scene with a moving light source.
to further analysis aimed at inferring high-level, 3D Now the situation is exactly the opposite: the optical
motion descriptions. It is well known that the image flow is non-zero due to intensity changes in the image,
flow cannot be completely determined from a single whereas absence of any true motion causes zero im-
sequence of black-and-white images without introducing age flow.
additional assumptions about the nature of motions pres- To summarize, the motion recovery problem can be
ent in the image. Color images are a natural source for formulated as follows: given a sequence of images of a
additional information that should greatly facilitate the dynamic scene, recognize moving objects and find their
solution of this problem. velocities (trajectories). The solution to this problem, like

The motion of objects in a time-varying scene is many others in the field of computer vision, is usually
completely defined by the so-called motion field, which divided into two main stages:
is a 3D flow field defining object velocities at each point
in space. One of the aims of the motion recovery process • Low-level processing. During this stage a 2D field of
is to reconstruct the motion field of the scene. The velocities (the image flow or the optical flow) associating
motion field can, and usually does, change in time. If a velocity vector to each point of the image plane is deter-
we look at the scene via a camera, we can only see its mined.

• High-level motion analysis. At this stage the 3D veloc-
ity field (the true motion field) is estimated from the 2D* To whom correspondence should be addressed at MIT AI Lab, 545
field determined at the previous stage and is analyzed inTechnology Square, Room 737, Cambridge, MA 01239.

† On sabbatical at AT&T Bell Laboratories, Murray Hill, NJ 07974. order to find the motion of objects in space.
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dt the image of the point X will move to a new position
x 1 u dt. The brightness conservation assumption implies

E(x, t) 5 E(x 1 u dt, t 1 dt), (1)

where E is brightness in the image plane. Using Taylor
series expansion we can write (1) as

­E
­x

u dt 1
­E
­y

v dt 1
­E
­t

dt 1 O(dt2) 5 0, (2)

and assuming an infinitesimal time interval we obtain
the equation

FIG. 1. Light reflection by a surface.
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5 0, (3)

While the high-level stage of motion recovery assumes
which will be referred to in what follows as the majorthat it receives the image flow as its input, the low-level
optical flow constraint. It involves two unknowns at eachstage can usually produce only the optical flow defined by
point of the image plane: the optical flow components u andthe image sequence. It is immediately recognized that a
v. If we rewrite this equation using the gradient notationproblem arises due to the difference between these two

fields. A number of authors [17, 20] investigated the con-
(=E)Tu 1 Et 5 0, (4)nection between them, introducing constraints on motions

and surface properties in order to either satisfy assump-
it can be easily seen that only the velocity componenttions that make the image flow and the optical flow identi-
parallel to the brightness gradient vector can be deter-cal or propose methods to obtain the true image flow.
mined from the major optical flow constraint. This is theFor spatial motion recovery it is usually assumed that the
celebrated aperture problem. It is obvious that the opticaloptical flow and the image flow are close enough to be used
flow field cannot be found from this equation only, butinterchangeably. In some situations this approximation is
some further assumptions have to be made, or additionalquite reasonable, but one should not forget the two exam-
constraints must be found in order to complete the systemples shown above, where the optical flow and the image
of equations and determine both optical flow components.flow differ significantly.
Gradient-based methods address this problem in variousA number of approaches have been developed for opti-
ways.cal flow estimation: gradient-based methods, region-

Horn and Schunck [7] were the first to use a smoothnessmatching (or correlation) methods, energy based methods,
constraint on the optical field. They used the magnitudeetc. For each approach, several variations have been pro-
of the velocity field gradient as a measure of smoothnessposed by different authors. Since the new methods pro-
(or, more precisely, unsmoothness), determining the flowposed in this work belong to the gradient-based group, our
that minimized a weighted sum of the field unsmoothnessdiscussion will concentrate on methods from this group
measure and the errors in satisfying the major optical flowand the general philosophy underlying them.
constraint (3). Their method provided quite satisfactory
results, but failed on edges. This drawback was subse-2. GRADIENT-BASED APPROACH FOR
quently corrected by Nagel [11] via the introduction of aOPTICAL FLOW ESTIMATION
weighted optimization process, in which smoothness of
the velocity field was required only for the optical flowAs defined above, the optical flow is a velocity field

associated with brightness changes in the image. This sug- component normal to the intensity gradient in places where
its magnitude was large (edges).gests an assumption often made in methods for optical

flow estimation, the brightness conservation assumption, Haralick and Lee [5] then proposed a method using
higher-order derivatives of the image intensity. They as-which states that brightness of the image of a point on the

object is invariant under motion. sumed that not only the intensity function itself but also
its first-order derivatives remain unchanged under motion,Let x 5 (x, y) be a position of an image of some point

X of the scene at time t and u 5 (x, v) be a projection of obtaining three additional equations similar to (3). A
slightly different method also using higher-order deriva-this points velocity onto the image plane. Then after time
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tives was developed by Tretiak and Pastor [18]. In [12] 3.1. The Brightness Conservation Approach
Nagel showed that these two methods were particular cases

Let us first briefly consider the loop perception process
of a more general approach and developed a generalized

and discuss differences between color and black-and-
scheme for optical flow estimation using higher-order de-

white vision.
rivatives.

We can think about any vision system as an array of
Another approach, called ‘‘the neighborhood-sampling

light detectors of different types. Each type is characterized
approach’’ assumes a certain local behavior for the optical

by its sensitivity to light in the visible range of wavelengths.
flow, implying that the velocity components at all points

The number of detector types present in a system can vary.
of a certain small enough neighborhood can be well ap-

A system with detectors of one type is associated with
proximated by the velocity components at one (usually

black-and-white vision. According to biological research,
central) point of this neighborhood and the assumed spatial

the human vision system contains light detectors of three
behavior of the field. This approach was used by Lucas

different types, as do most color cameras.
and Kanade [9] (constant model), Campani and Verri [3]

Detectors of different types produce different images in
(linear in space and constant in time), and Otte and Nagel

response to the same input spectrum S(l) due to differ-
[15] (linear both in space and in time). The velocity compo-

ences in their sensitivity functions, denoted by Dr(l),
nents at a certain point of the chosen neighborhood were

Dg(l), and Db(l). If all detectors are exposed to the same
expanded into Taylor series relative to the central point

input spectrum S(l), the color perceived by the vision
of the neighborhood and then substituted into the major

system is determined by three non-negative numbers, de-
optical flow constraint (3). This provided additional equa-

noted by (R, G, B), obtained from the formulae [2, 6, 19]
tions on the flow components and their first-order deriva-
tives (in a linear case); the number of equations was equal
to the number of points in the chosen neighborhood. R 5 E

V
S(l)Dr(l) dl,

The last group of methods proposed in the literature is
based on using multiple constraints. Each of these methods

G 5 E
V

S(l)Dg(l) dl, (5)tries to find and extract more than one function invariant
under motion and thereby determine the optical flow com-

B 5 E
V

S(l)Db(l) dl,ponents using a number of constraints based on those in-
variants. This approach was used by Wohn et al. [21],
Mitiche et al. [10], and Ohta [13], each of them using differ-
ent invariants such as brightness averages, medians, curva- the integration being over the visible range of wavelength

V ([400 nm, 700 nm] for the human vision system).ture, and the RGB color channels.
The methods discussed in this work use the multiple The only difference between a black-and-white vision

system and a color one is that a BW system has detectorsconstraint approach for image flow estimation. Local prop-
erties based on the color of object surfaces are extracted that produce at each point in the image a single number,

which is usually called the brightness, or the intensity func-from raw RGB color images and are used to get an overde-
termined system of linear equations for the two unknown tion of the image, whereas a color system produces three

values for each image point. This implies that any colorcomponents of the optical flow. This is done under the
basic assumption that under changing illumination condi- image can be straightforwardly considered as three differ-

ent black-and-white images produced by three types oftions the color of objects is more intimately related to
surface properties than their brightness. light detectors with different sensitivity functions in re-

sponse to the same input image. Each one of the color
image components should therefore satisfy reasonable as-3. IMAGE FLOW FROM COLOR IMAGES
sumptions on the brightness function of black-and-white
images.In this section two methods using color images for image

flow estimation are introduced and discussed. The first one The brightness conservation assumption implies that the
(R, G, B) values of a certain point in the image shouldassumes brightness conservation under motion. It uses the

(R, G, B) quantities, provided by color images, in a straight- remain unchanged under motion of this point within a
small temporal neighborhood. Therefore, the images R,forward way. The second method uses quantities which

represent the intrinsic color properties of an object more G, and B can be used in a similar way to the usual BW
brightness function to constrain the velocity flow compo-precisely than the (R, G, B) values and uses them for image

flow estimation. The assumption underlying this method nents at each point of the image. If the major optical flow
constraint (3) is applied to each of the (R, G, B) quantities,is a color conservation assumption, which is clearly weaker

and more realistic than the brightness conservation as- the following overdetermined system of linear equations
is obtained:sumption.
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velocity vector and the condition number of the matrix­R
­x

u 1
­R
­y

v 1
­R
­t

5 0, ATA are computed at each point of the image and then
analyzed in order to get a final result.

A similar method was first proposed by Ohta [13]. He­G
­x

u 1
­G
­y

v 1
­G
­t

5 0, (6)
suggested using pairs of color channels in order to get two
equations for the two unknown components of the image­B

­x
u 1

­B
­y

v 1
­B
­t

5 0. flow. However, he did not test this method experimentally;
neither did he propose ways to combine the results ob-
tained from different pairs of equations.The image flow components can be found from this system

The experimental testing of the pseudo-inverse methodusing a pseudo-inverse solution. If we define
demonstrated that it is quite stable to noise and produces
rather accurate results for images of objects translating in
a plane parallel to the image plane. If rotation or motion
normal to the image plane were present, this method some-A 5 1

Rx Ry

Gx Gy

Bx By
2, b 5 1

2Rt

2Gt

2Bt
2, (7)

times provided erroneous estimates. The reason for this
failure is explained in the next section, and a new method,
capable of dealing with all kinds of motion, is proposed.

then the pseudo-inverse solution of the system (6) is equiv-
alent to the solution of the well-defined system of two 3.2. The Color Conservation Approach
linear equations

Let us consider a surface illuminated by light, which is
characterized by some power distribution I(l, r) over the(ATA)u 5 ATb, (8)
effective range of wavelength l, at any point r at the object
surface. The reflected light has its own power distribution

given by Î(l, r), not necessarily equal to that of the incident light.
A common assumption is that reflectivity of a certain point

u 5 (ATA)21ATb. (9) r depends only on the material the object is made of and
on the surface geometry at the point r. Hence

This assumes, of course, that the matrix ATA has rank 2,
i.e., it is non-singular. Î(l, r) 5 R(l, w, u, c, r)I(l, r), (12)

In addition to the estimates of the image flow compo-
nents at a certain point of the image, we would like to get where (w, u, c) are the angles of incidence, observation,
some measure of confidence in the result at this point, and phase, respectively (Fig. 1). The factor R(l, w, u, c, r)
which would tell us to what extent we could trust our defines completely the reflectivity properties of the surface
estimates. It is common to use the so-called condition num- and is called the reflectivity function of the surface.
ber of the coefficient matrix of a system (in our case ATA) It has been proven experimentally that the reflectivity
as a measure of confidence in the solution of this system. function can be separated into two factors, one only de-

The formal definition of the condition number k of a pending on the properties of the surface and the second
matrix B is [14, 8] depending on the geometry of the reflection process only:

Î(l, r) 5 r(l, r)c(w, u, c, r)I(l, r). (13)k(B) 5
D HiBi iB21i, if B is non-singular

1y, if B is singular
(10)

Here r(l, r) is the spectral factor, representing color prop-
erties of the object surface, and c(w, u, c, r) is the geometricwhere iBi is the norm of the matrix B equal to the maximal
factor. This very simple model conforms to reality witheigenvalue of the matrix BTB. The condition number of
considerable accuracy in many cases.the matrix B measures ‘‘numerical stability’’ of a system

If Eqs. (5) and (13) are combined together, we obtainof the form

Bx 5 b, (11) R 5 E
V

c(w, u, c)r(l)I(l)Dr(l) dl,

where b is a vector of free coefficients and x is a vector of G 5 E
V

c(w, u, c)r(l)I(l)Dg(l) dl, (14)
unknowns. It provides an estimate of the relative errors
induced in the result due to the presence of some errors

B 5 E
V

c(w, u, c)r(l)I(l)Db(l) dl,in data (i.e., in the vector b). To summarize, both the
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Since the geometry component c(w, u, c) of the reflectivity Now it is obvious that any method using the brightness
function does not depend on the light wavelength, it can conservation assumption produces good results, i.e., close
be moved out of the integral to obtain to the image flow, if also the reflection geometry (and

therefore the geometry component c(w, u, c)) does not
change while the object moves. If a parallel light sourceR 5 c(w, u, c) E

V
r(l)I(l)Dr(l) dl 5 c(w, u, c)Cr ,

or uniform illumination is used, then translation does not
change the geometry of the reflection process. A similarG 5 c(w, u, c) E

V
r(l)I(l)Dg(l) dl 5 c(w, u, c)Cg , (15)

observation was made by Singh [17], who showed theoreti-
cally that the optical flow is equal to the translation compo-

B 5 c(w, u, c) E
V

r(l)I(l)Db(l) dl 5 c(w, u, c)Cb . nent of the image flow for objects with lambertian surface
reflectivity. If the geometry of the reflection process does

These equations imply that each of the brightness functions change significantly with object motion (e.g., for rotation,
(R, G, B) can be separated into the geometry component motion toward the camera, etc.), the brightness function
c(w, u, c), which depends entirely on the relative position does not satisfy the conservation assumption any more.
and orientation of the object, the light source, and the The new functions Ci, however, remain invariant under
camera, and the spectral component Ci defined by any kind of motion, because they are not influenced by

the geometry of the reflection process.
The next question is how to extract the Ci quantitiesCi 5 E

V
r(l)I(l)Di(l) dl, i [ hr, g, bj. (16)

from the (R, G, B) functions provided by a color image.
Although it is impossible to extract explicitly the Ci values

Let us examine all the factors that influence the Ci quan-
from the (R, G, B) values, it is immediately seen that ratios

tities. The spectral component r(l) of the reflectivity func-
of any two linear combinations of the (R, G, B) values aretion depends neither on the geometry of the scene nor on
equal to ratio of the corresponding Ci value combinations,the illumination properties. It represents color properties
since the geometry component c(w, u, c) is the same forof the object and remains invariant under any changes of
each of the (R, G, B) functions. If the quantities Ci arethe object position and orientation. The sensitivity function
invariant under motion, then their ratios are also invariant,Di (l) of the light detector does not change under any
and therefore we can use ratios of Ci values to estimatevariations of the scene either. If the illumination spectrum
motion. The interesting fact is that a number of differentI(l) is assumed to change slowly enough, so that it can be
color representations were defined using ratios of the (R,considered constant over a small temporal neighborhood,1
G, B) quantities. They usually separate color propertiesthe Ci quantities defined by (16) satisfy the invariance
of a spectrum from its brightness, or intensity. Two suchassumption: they do not change as the object or the cam-
representations, the normalized rgb system and the HSVera move.
system, were chosen in this work for experimental testing.We can think of the Ci quantities as representing the
Their definitions and a brief discussion on their propertiesobject color under a certain illumination I(l). Since the
can be found in the Appendix.object color is invariant under motion (unless we are talk-

Each of these systems introduces two independent quan-ing about a chameleon!), the quantities representing color
tities to represent color properties of a spectrum: the rgbunder constant illumination are also invariant and can be
system uses r and g (or any other pair of the r, g and bused for motion estimation. Note that the flow estimates
quantities) and the HSV system defines Hue and Saturationobtained using the color conservation assumption should
for this purpose. In both systems, the two independentno longer be called the optical flow, because, according
quantities representing color properties of a spectrum areto the definition, the optical flow is associated with the

brightness changes in the image. However, the new esti- defined as different ratios of the (R, G, B) quantities.
mates, associated with the color changes in the image, are If the quantities used by the method are denoted F1 and
closer to the image flow since they use properties intimately F2 (where F1 5 r, F2 5 g for the rgb system, and F1 5
connected to surface properties of objects. We shall there- Hue, F2 5 Saturation for the HSV system), the color con-
fore use the term ‘‘image flow estimation’’ to denote the servation assumption implies
flow estimates obtained using the color functions Ci of
the image.

­F1

­x
u 1

­F1

­y
v 1

­F1

­t
5 0,

(17)
1 Such an assumption on the illumination behavior is quite a realistic

one if stationary light sources are used or if the outdoor scene is photo-
graphed while weather conditions do not change sharply between succes- ­F2

­x
u 1

­F2

­y
v 1

­F2

­t
5 0.

sive frames.
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If F1 and F2, or more precisely, their gradients, are linearly has been some research done on exact separation of color
brightness [2, 16, 4], but no definite method, that wouldindependent, this system is well determined and its solution

provides an estimate of the image flow. incorporate the most general reflectance model, has yet
been proposed. The normalized RGB and the HSV repre-Similarly to the method proposed in the previous section,

we would like to compute not only the velocity estimates, sentations proved to be reasonable approximations of the
color characteristics and have been used extensively inbut also a confidence measure in these estimates, which is

defined as the condition number k of the coefficients matrix computer vision to separate the color properties of the
surface from the brightness component.

4. EXPERIMENTAL RESULTS
A 5 1

­F1

­x
­F1

­y

­F2

­x
­F2

­y
2 . (18)

All the methods proposed in this chapter have been
tested using equipment at the Center for the Intelligent
Systems in the Computer Science Department, Technion.

At the final stage of the estimation process only the results Both synthetic and real image sequences were used for
with the condition numbers less than a certain threshold the testing. The results obtained by methods using color
would be taken into account. functions were compared with the results provided by using

When a new method is proposed, its drawbacks should brightness functions for motion estimation.
also be discussed. Like all gradient-based methods, the Barron et al. [1] implemented a number of existing tech-
new method proposed for image flow estimation requires niques for optical flow estimation in order to compare their
the presence of significant gradients of the functions it is performance. This work provides a lot of useful informa-
based on. If the magnitude of the brightness gradient in the tion about the practical aspects of the optical flow estima-
image is small, any gradient-based method using brightness tion problem. We based our implementation on this work.
would fail to produce reliable results. In a similar way, if All the images were first smoothed using Gaussian kernel
there is no gradient of color in the scene, our method with the different values of the s parameter for synthetic
will fail to produce good estimates. This implies that the (s 5 1.5) and real (s 5 2.5) images. The smoothing opera-
method should not be used when a scene contains objects tion was performed separately in space (x and y directions)
with uniform color. In such cases, if motion estimation is and in time (t direction). The first-order derivatives of
necessary a color gradient could be artificially created by the image functions (intensity or color functions) were
painting certain areas of the object surfaces with good estimated using the 1/12(1, 28, 0, 8, 21) kernel to compute
color gradients. Another possibility is to use brightness each derivative. The spatial derivatives were computed
information in regions of the insufficient color gradient. using a 5 3 5 neighborhood, where each line was a copy
Even though the brightness conservation assumption might of the estimation kernel defined above, and for the estima-
lead to higher errors than the color-based method, it should tion of the temporal derivative a 3 3 3 3 5 spatio-temporal
be used if the color information is not rich enough to neighborhood was used. The flow field obtained as a result
yield reliable estimates of the velocity field. Since the main of estimation was post-processed using a 5 3 5 median
concern of this paper is the possibility for using color prop- filter and the threshold operator on confidence measure
erties of the object surface for motion estimation, we used with the threshold value varying between 20 and 50.
only one set of functions in every experiment, but one can

Synthetic Images. The synthetic image sequences werereadily extend this method to use the brightness function
generated in the following way: a reflectivity function wasand its local variations in regions where the confidence in
defined for a ball, then a light source was defined by itsthe velocity estimates obtained using the color functions
longitude and tilt and the sensitivity functions of the threeis low.
light detectors were defined. Images obtained by a simula-Another interesting issue that should be further ad-
tion of the ball moving in space together with light reflec-dressed is how close the color functions used in this paper
tion and image generation processes were then artificiallyare to the truly invariant color characteristics of the object
corrupted by 3% noise and quantized.surface. As was mentioned above, we use a fairly simple

Figures 2–4 demonstrate some statistics on errors formodel for light reflectance that might fail if the surface
various displacements and different kinds of motion. Asreflectance is a mixture of both diffuse and specular compo-
expected, all three methods produced similar results fornents. In such cases a different reflectance model should
translation, but if a more complex motion was considered,be used to describe the reflectance process.
the method using the brightness conservation assumptionIdeally, we should have used a color constancy algorithm
failed to produce accurate estimates. Both the normalizedto extract the ‘‘true’’ color characteristics from the image

and to use them as invariants for motion estimation. There rgb and the HSV systems provided good results for all



352 GOLLAND AND BRUCKSTEIN

FIG. 2. Error statistics for the ball moving in the plane parallel to the image plane. Results for three different methods are reported, using
RGB, normalized rgb, ahd HSV quantities. All the methods demonstrate similar performance.

kinds of motion, but the error rate of the method using Figures 5–8 illustrate some of the experiments. Two
images from the sequence and expected image flow arethe HSV functions was slightly higher than that of the

normalized rgb. For any particular application both sets shown, and then the estimates are reported for three differ-
ent methods, using RGB, normalized rgb, and HSV func-of color functions are to be tested in order to select the

most suitable one for the particular sequences. tions. For each method the estimated flow, the difference

FIG. 3. Error statistics for the ball rotating around the axis normal to the image plane. Results for three different methods are reported, using
RGB, normalized rgb, and HSV quantities. The error rate of the method using brightness functions is much higher than those using color functions.
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FIG. 4. Error statistics for the ball moving toward the camera. Results for three different methods are reported, using RGB, normalized rgb,
and HSV quantities. The error rate of the method using brightness is much higher than those using color functions.

between the expected and the estimated fields, and the attached to a robot hand, which was moving in various
confidence measure are shown. All the flow fields are dis- ways while the image sequences were taken. Since it is
played using needle diagrams; the length of a needle at a very difficult to determine the true image flow for real
certain point in the image is proportional to the velocity images [15], usually only qualitative testing is performed
magnitude at this point and the needle direction is identical [1].
to that of the velocity vector. The confidence measure is Figures 9–11 illustrate some of the experiments carried
shown using black-and-white images, where the gray level out in order to test the proposed methods. The results
at a certain point of the image is equal to the condition are reported similarly to the experiments using synthetic
number of the coefficient matrix at this point. Hence, the images: flow fields are shown using needle diagrams, and
darker a certain region is in the confidence measure image, the confidence measure of the estimates is displayed on
the lower condition number it represents, the higher con- the gray-level images with dark areas corresponding to
fidence we have in the velocity estimates in this region. It high confidence and light areas corresponding to the con-
can be seen that in most of the image area, except edges fidence.
(almost white in the confidence measure image), the con- Note that while in the synthetic sequences a color gradi-
fidence was considerably high (dark regions in the confi- ent was generated also on the background and hence good
dence measure image). estimates were obtained for the whole image, in the real

Edges present a problem for the color-based algorithm. images the background was uniformly painted and the
At and near edges, both color functions have a very sharp confidence measure in the background region was quite
transition in the direction normal to the edge direction; poor. The estimation obtained in this region should not
therefore the gradient vectors of the color functions are be taken into account and a zero motion field was assumed
almost parallel, which results in high values for the condi- there. It is interesting to note that in this case the bright-
tion number of the coefficient matrix. This is the case where ness-based method would also fail to produce reliable re-
color does not add sufficient information to disambiguate sults. The reason for this failure is that a uniformly painted
the aperture problem; therefore only the normal flow, the plane is ‘‘impossible to track,’’ i.e., both its color and bright-
velocity component parallel to the gradient vector (normal ness functions are constant and hence cannot be used for
to the edge), can be reliably determined. motion estimation. This case is similar to the example of

a uniformly painted ball discussed in the first section ofReal Images. Real images were obtained using a color
camera. An object with some color pattern on it was the paper.
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FIG. 5. Synthetic images. The ball velocity is (1, 1) pixel/frame in the plane parallel to the image plane. In the first line (a) the first frame of
the sequence, (b) the eighth frame of the sequence, and (c) the true image flow are shown. For each method the estimated field, the error, and the
confidence measure are reported: (d) the brightness (R, G, B), (e) the normalized RGB, and (f) the HSV quantities.

5. DISCUSSION AND CONCLUSIONS The first approach proposed in this work considers a
color image as a set of three different black-and-white

It has been demonstrated in this work that color images, images. The brightness conservation assumption can be
as opposed to black-and-white ones, provide reliable infor- applied to each one of the color image components, which
mation for motion estimation. Two different approaches leads to an overdetermined system of three linear equa-
for motion estimation using color images have been dis- tions for the velocity vector components at each point of

the image. This approach provides sufficient quality forcussed and tested.
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FIG. 6. Synthetic images. The ball is rotating at the angular speed of 28/frame in the plane parallel to the image plane. In the first line (a) the
first frame of the sequence, (b) the eighth frame of the sequence, and (c) the true image flow are shown. For each method the estimated field, the
error, and the confidence measure are reported: (d) the brightness (R, G, B), (e) the normalized RGB, and (f) the HSV quantities.

velocity estimates when the object undergoes translations In order to improve quality of motion estimation, a new
approach has been proposed. It uses color functions forin a plane parallel to the image plane, but if more complex

kinds of motion are involved, this method, like any other motion estimation. These functions are extracted from the
brightness functions of the image and represent color prop-using the brightness conservation assumption, produces

estimates with significant errors. Such a behavior is to be erties of an object surface under a certain illumination.
Assuming that the illumination spectrum is locally con-expected due to the inherent assumption underlying this

method, since the brightness function is not truly invariant stant, these quantities are invariant under any kind of mo-
tion and therefore allow us to obtain much better estimatesunder many types of complex motions.
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FIG. 7. Synthetic images. The ball is moving toward the camera at the speed of 10 pixels/frame. In the first line (a) the first frame of the
sequence, (b) the eighth frame of the sequence, and (c) the true image flow are shown. For each method the estimated field, the error, and the
confidence measure are reported: (d) the brightness (R, G, B), (e) the normalized RGB, and (f) the HSV quantities.

than the brightness functions. Two different sets of the to surface properties of objects, provide much more precise
information about the object motion.color functions, invariant under motion, were used: the

normalized RGB and the HSV color representations. Ex- Both representations use certain assumptions on illumi-
nation and the reflectivity properties of the object surface.perimental results obtained by using these sets of the color

functions were compared to the estimates obtained by us- If these assumptions fail (e.g., for specular surfaces), a
more general model should be used. If a general coloring the brightness functions. These experiments confirmed

our expectations that color functions, being directly related constancy model were available, it would be used to obtain
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FIG. 8. Synthetic images. The light source is moving so that its longitude is changing with the speed of 38/frame. In the first line (a) the first
frame of the sequence, (b) the eighth frame of the sequence, and (c) the true (zero) image flow are shown. For each method the estimated field,
the error, and the confidence measure are reported: (d) the brightness (R, G, B), (e) the normalized RGB, and (f) the HSV quantities.

invariant color descriptors. The normalized RGB and the can be used also in conjunction with any other gradient-
based approach for motion estimation. In the second sec-HSV color representations, which were used in this paper,

are good enough approximations of truly invariant color tion of this paper the existing methods using gradient based
approach were discussed. Each of these assumes brightnesscharacteristics. They allow one to obtain velocity estimates

with sufficient accuracy in most cases. conservation and then uses the brightness function to esti-
mate optical flow. Given the color functions, each of theseIn this work the multiple constraint method was used

to estimate image flow. But we note that the color functions methods can be implemented using the color invariance



358 GOLLAND AND BRUCKSTEIN

FIG. 9. Real images. The object is moving in the plane approximately parallel to the image plane. In the first line (a) the first frame of the
sequence and (b) the eighth frame of the sequence are shown. For each method the estimated field and the confidence measure are reported: (c)
the brightness (R, G, B), (d) the normalized RGB, and (e) the HSV quantities.

under motion, which will result in better estimation of In certain regions of the image (especially for man-made
objects), the color gradient is not strong enough to providecomplex types of motion. User requirements should be

carefully considered when a certain gradient-based method reliable information for estimation. In this case brightness
information can and should be used in addition to coloris selected for implementation. For example, a multiple

constraint approach for motion estimation uses entirely to obtain velocity estimates based on the stronger assump-
tion of brightness conservation. Even though more preciselocal information, and therefore the estimates are less sta-

ble than the ones produced using some neighborhood in- estimates can be obtained using color in presence of the
sufficient color gradient, brightness information definitelyformation. If black-and-white images are considered, the

neighborhood-sampling approach provides a more stable should not be ignored, but used as an additional cue for
estimation when the color based method fails to producesolution than the multiple constraint approach, and hence

it will also produce better results if the color functions are reliable results.
Experimental testing confirmed that the new proposedused instead of brightness. Therefore, if one is interested in

higher accuracy and stability, the neighborhood-sampling methods provide good estimates of the image flow in re-
gions with considerable gradient of color, whereas in re-approach should be considered, but using the color func-

tions and not the brightness functions. gions of uniform color these methods failed to produce
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FIG. 10. Real images. The object is rotating in the plane approximately parallel to the image plane. In the first line (a) the first frame of the
sequence and (b) the eighth frame of the sequence are shown. For each method the estimated field and the confidence measure are reported: (c)
the brightness (R, G, B), (d) the normalized RGB, and (e) the HSV quantities.

reliable results. This defines the domain of possible applica- 5.1. Normalized RGB Representation
tions for the methods using color for motion estimation.

The normalized RGB representation uses the (R, G, B)
values divided by their sum:

APPENDIX: COLOR REPRESENTATION

The most natural way to represent the color perceived r 5
R

R 1 G 1 B
, g 5

G
R 1 G 1 B

, b 5
B

R 1 G 1 B
. (19)

by a vision system is by the (R, G, B) triplet, which is the
output of the three types of light detectors. This approach,
however, does not represent intrinsic color in the best way, These are clearly not independent quantities—given two

of them the third one can be determined; therefore twosince the chromatic properties of the spectrum are not
separated from the non-chromatic ones, such as brightness. independent parameters are enough to describe uniquely

a point in the space of [r, g, b]T vectors (which is actuallyA number of representations have been developed to sepa-
rate the intensity and the color characteristics. Two such a two-dimensional space). This representation does not

consider the intensity of light having a given spectrum, allsystems are presented below and used in this work for
motion estimation. possible spectra being normalized. A graphic illustration of
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FIG. 11. Real images. The object is moving toward the camera. In the first line (a) the first frame of the sequence and (b) the eighth frame of
the sequence are shown. For each method the estimated field and the confidence measure are reported: (c) the brightness (R, G, B), (d) the
normalized RGB, and (e) the HSV quantities.

the normalized RGB system is the so-called ‘‘chromaticity intensity measure and corresponds to non-chromatic light
characteristics, hue and saturation are chromaticity param-diagram,’’ which is a graph of (r, g) pairs corresponding

to different colors (Fig. 12a). All feasible colors are repre- eters, encoding the color information. Saturation is a mea-
sure of pure color in a certain spectrum (ratio betweensented by points inside the convex region defined by the

‘‘pure color curve’’—the set of the points representing pure color and white light), and hue encodes the color of
wavelength information.pure colors. A color represented by a point N on the

line passing through white and any pure color M can be The mathematical formulae relating RGB and HSV sys-
tems are as follows:generated by mixing this pure color with white in quantities

proportional to the ratio of lengths of the line segments
NM and ON. Value 5 Max(R, G, B),

5.2. HSV Representation Saturation 5
Max(R, G, B) 2 Min(R, G, B)

Max(R, G, B)
,

The HSV representation uses three other values to de-
fine color—hue, saturation, and value. While value is an Hue 5 if R 5 Max(R, G, B)
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FIG. 12. Graphical representation of the normalized RGB and the HSV systems.
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