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Monotonicity of Linear Separability Under Translation

ALFRED M. BRUCKSTEIN AM) THOMAS M. COVER

Abstract-A set of n pattern vectors are given in d-space and classified
arbitrarily into two sets. The sets of patterns are said to be linearly
separable if there exists a hyperplane that separates them. We ask
whether translation of one of these sets in an arbitrary direction helps
separability. Sometimes yes and sometimes no, but yes on the average.
The average is taken over all classifications of the patterns into two sets.
In fact, we prove that the probability of separability increases as the
translation increases. Thus, we conclude that if points are drawn equi-
probably from densities fo(x) and fi (x) = fo (x + tw) then the probabil-
ity of linear separability is minimum at t = 0 and increases with t for
t > 0.

Index Terms-Convex sets, linear separability, monotonicity, pattern
classification.

I. INTRODUCTION
Consider the standard statistical pattern classification prob-

lem in which the classifications 01, 02, , On are independent
identically distributed random variables with P {0 = } = P {oi =
1} = 1/2, and the corresponding vector-valued observations xl,
X2, *, Xn E Rd are conditionally independently drawn ac-
cording to foi(x), where fo (x) and f1 (x) are known probability
density functions. Thus, the probability density of the classi-
fied set {Xi, 0i} 7n=I is 2-nr1=,I fot(xi). The realization {(xi,
O&)} n= 1 is called linearly separable if there exists a vector v and
a constant T such that

vtxi> T for Oi = 1

vtxi< T for 0i=O. (1)
The following result is well known (see, e.g., [1], [2]).
Theorem 1: If fo (x) = f1 (x) then

1 d
Pr{{(Xi, Oi)}= is linearly separable} 2n1 Z (n-I) (2)

i-o

Note that the probability does not depend on the underlying
density. The proof of this theorem is based on a purely geo-
metric argument which provides the number of dichotomies
that can be induced by hyperplanes on a set of points in Rd in
general position. This also makes it clear why the result is
distribution free.
We now consider densities that differ by a translation. Given

w, an arbitrary unit vector in Rd,we prove the following.
Theorem 2: If f1 (x) = fo (x + tw) then

Pr f{(Xi, 0j)j i-1 is linearly separable} (3)
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is a monotonic nondecreasing function of t > 0.

II. PROOF OF THIEOREM 2

We shall first take the probability out of the problem by a
simple observation and prove a counterpart of Theorem 2 for
a strictly geometrical setup. The probabilistic result will easily
follow.
The process of generating the classified samples for translated

underlying distributions is equivalent to choosing all the points
according to a density fo(x), classifying them at random (i.e.,
by flipping a fair coin) and then translating the points of class
1 by the translation vector tw. Consider thus a set of n points
in Rd,in general position, and all its 2n subsets, S1, S2,
S2n C {X1, X2, , xn,. Each subset defines a classification
or dichotomy {Sk, Sk} of the original set of points, where Sc
denotes the complement of S with respect to {xl, x2, , xnj.
The set pair {Sk, S7J. is said to be linearly separable if there
exists a separating hyperplane, i.e., if there exists a vector v
and a constant T such that

vtx> T for xEIS

vtx < T for xE Sc. (4)

We now evaluate the number of linearly separable dichotomies
of points which result when translating the subsets Sk by tw
to form the set Sk + tW = {xi + tw xi E Sk}. Associate to
each Sk a translation separability indicator function, as follows

(1, if {Sk + tw, Sk} is linearly separable

Ik(t)= (5)

i0,f {Sk + tw, Sc}is not linearly separable.

Ik ( t)

4-

tttl

(a)

t2

s {X2 X,x4x5, x7}
(b)

Fig. 1. Separability indicator functions.

Definition: Let f1(t) be the the number of linearly separable
sets of points among {Sk +tw,Sk}, for k=1,2<*, 2n.

It follows from (5) that

(6)
2n

(t)= E Ik(t).
k=o

Suppose that {Sk, Sk} is not linearly separable. Then trans-
lation of the points of Sk can only make the dichotomy sepa-
rable. If, however, we start with a separable dichotomy of
points, translation may at some "critical" distance t. produce
a nonseparable dichotomy. This happens when the convex hull
of the points in Sk + tw intersects the convex hull of the
"static" points Sc. As t --o the (Lichotomy will again become
separable (see Fig. 1). In Fig. 1(A), we see that Sk {X1 .X4,
x>, x6, x9} becomes separable from Sk at translation t t=,
and remains separable thereafter. Fig. l(b) shows Sl= {X2,
X4, X5, X7} becoming nonseparable at t = tc and regaining
separability for t > t2. Thus it is clear that the count function
11(t) is piecewise constant. Also, if {X1, A , xn4 is in
general position, then,

d
11(0) = 2 ( ) and [l() = 2n. (7)

i=0

We shall argue that the following result holds.
Geometric Theorem: If {x1, x2, * xnl is in general posi-

tion, the right-continuous version of H(t) is a piecewise con-
stant nondecreasing function of t, for t > 0.

Proof: It is enough to consider the behavior of [l(t) for
n > d+ 1 because Il(t) = I(O) = 2n for all t when n <d + 1.
Showing that l1(t) is nondecreasing is equivalent to proving
that no "down-jumps" will occur. Since 11(t) = 2Ik(t) and the
Ik(t) are not necessarily monotonic, we wish to find for every
Ip(t) having a down-jump at tc, another Iq(t) having a cancell-
ing up-jump at tc. Suppose that {Sp + tw, Sc} becomes non-

x7
x8

Sq = { X1, X3, X4, X6, X9}

(b)
Fig. 2. (a) and (b). Identification of set pair {Sq, Sq} cancelling loss of

separability of a given {Sp, Sp}.

separable at t = tc. This happens because (at least) one of the
points of one subset crosses a face of the convex hull of the
other [Fig. 2(a)] . Thus at the critical translation we will have
a "collision hyperplane" on which there are points of both
S + tcw and Sc. Now let S be the uniquely defined subset
comprising points which either belonged to Sp and when trans-
lated by tcw moved to the collision plane or belonged to Sp
and were not on the collision plane. It is easy to see that at
the critical translation tc, {Sq + tw, Sc} will change from non-
separable to separable and thus Ip(t) + Iq(t) will not have a
down-jump at tc [Fig. 2(b)]. Thus we have identified a set Sq
such that when I,p(t) has a down-jump, Iq(t) has a counteracting
up-jump. This matching is always possible by construction.
This proves the theorem.
A typical sample function 11(t) is given in Fig. 3. Note the

finite set of departures from monotonicity occurring at critical
values tc, mentioned in the proof. These points are those at
which general position is temporarily lost. If X1, X2, * * *, Xn
are independently drawn according to some probability density,
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11 (t )

2n,

d2d n-1)
i=0

-0---- 0

-- O

0)

0

Fig. 3. A typical separability count function. The right continuous
version is monotonic nondecreasing.

then, with probability one, any given t will not be such an
exceptional point. This will be used in the proof of Theorem 2.
The geometric result immediately implies that the probability

of linear separability when the underlying distributions are
shifted versions of one another is a nondecreasing function of
the shift parameter. This probability is given by

fl(t; XI,XX2, '* * , Xn ) n (x) iPt(n, d)=2nH~~11if(xi) dxi
j=1

(8)

X8

5 6
x 80

K (2-x3 x4 1 '

x7x

6

S 0~~~~~~~~~~~~~~~~

x8

Fig. 4. Cancelling loss of separability with hyperplanes passing through
a fixed point 0.

for i = 0 or 1, where

where Hl(t; xl, x2, * * *, xn) is the count function H(t) corre-
sponding to {x1, x2, , x,j in the geometric theorem.
Monotonicity can be shown by examining

[s

;(s)= [ fi (Q) - fo (Q) I d#.

The integrand ll(t; xl1, X2, * * *, XI ) - HU( - 5; xl1, x2, * * *, Xn )
is nonnegative almost everywhere with respect to the measure

H= 1 f(xi)dxi as argued above. Thus Pt(n, d) - Pt- , (n, d) > 0.

This completes the proof of Theorem 2.
A related question we can resolve in a similar fashion is the

following. If separability is defined as the probability that
there exists a hyperplane passing through a fixed point 0 in
Rd, how does shifting the underlying distribution of one of
the classes influence it? The answer is the same as in the pre-
vious case: separability increases monotonically with the shift
parameter. The proof of this result proceeds as follows:
separability of an initially separable sample is lost if either the
point 0 penetrates the convex hull of the moving class points
or the convex hull of the moving points intersects the poly-
hedral convex cone generated by the stationary points (see
Fig. 4). But, in both these cases we can find corresponding,
uniquely defined dichotomies which become separable at
exactly the critical translations.

III. AN OPEN QUESTION ON SEPARABILITY

We conjecture that the probability that there exists a separat-
ing hyperplane is always higher than the probability Po (n, d)
of separating n points in d-space drawn from identical densities
if the underlying distributions are simply different, rather than
shifted. For d = 1 we can prove this assertion since one can
obtain an explicit expression for the probability of separability
in terms of the underlying distribution densitiesfo(x) andf, (x).
The result is

J+oo

00

The proof of this fact is as follows.
The probability that n points drawn at random from two sets

having distribution densities fo (x) and fi (x) are separable about
a fixed threshold s, on the line, is easily obtained as

P(n, 1; s) =2n {1+;() +[1-(S]n}

E(k) (I-_;f() )k(J n-k)d
k2

,;s ) s

Now, note that we have a separable realization if and only if
one of the points, say xi, belongs to either class O = 1 or
oi = - 1 and the others form a separable realization with xi as
threshold. This proves (10), since separability is implied by
the occurrence of one of n disjoint events with probabilities
given by either p+ or p_, where

Pz=Pr[0i+lIJ P(n-1,l;s)Pr[XiE(s,s+ds)
-00

i =+ 11. (13)

Although (10) seems to be asymmetric with respect to the
class distributions, it is not difficult to recognize that the result

{[ 1 + i(s)] nf-l1 + [1 - l/i(s)]- 1}fi(s)ds is the same if we interchange f, (x) and f2 (x).
Using expression (10), we readily prove the stated conjecture

(10 ) for d = 1. Indeed, if f1 (x) * fo (x), we always have P(n, 1) >

P(d)P ( d) Jn1(t; xI, x2, , Xn ) - 11(t - 5; xI, x2,
'

,Xn ) n ()dPtn )-P- n )=nH f (xi)dxi2 ~~~~~~i=1I

(11)

(9)
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PO(n, 1) = n/2'-1 since the strict inequality [1 + 4(s)]n 1 +
[1 I- (s) n 1 > 2 must hold for some values of s.
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the data matrix Y. Xik thus represents the ith component of
the kth key vector.
A recall matrix W is computed by the formula

W= Yx+ (1)
where X+ is the Moore-Penrose generalized inverse (Ben-Israel
and Greville [6 ] ) of the matrix X. X+ can in general be found
from the singular-value decomposition of X (Noble and Daniel
[7]). In the case that the column vectors of X are linearly
independent, X+ may be found from

X + (2)

On the Effect of Noise on the Moore-Penrose Generalized
Inverse Associative Memory

G. S. STILES AND DONG-LIH DENQ

Abstract-Monte Carlo simulations of the continuous Moore-Penrose
generalized inverse associative memory (Kohonen [l]) have shown that
the noise-to-signal ratio is improved on recall in the autoassociative case
as long as the number of vector pairs stored is less than the number of
components per vector. In the heteroassociative case, however, the
noise-to-signal ratio may actually be greatly increased upon recall, par-
ticularly as the number of vector pairs stored approaches the number of
components per vector. The increase in output noise-to-signal ratio in
the heteroassociative case is found to be due to the fact that the inverse
of the product of the key vector matrix with its transpose may increase
without bound in spite of the fact that the key vectors are linearly
independent.

Index Terms-Associative memory, associative recall, correlation ma-
trix memory.

I. INTRODUCTION

Associative memories are systems that allow the recall of data
by the (possibly partial) specification of a key related to the
data item sought. If the key is identical to the data item the
recall operation is termed autoassociative; if the key differs
from the data item the recall is heteroassociative (Kohonen
[II). Associative memories (AM) of the type we shall be
discussing may be further classified as continuous or discrete
(Murakami and Aibara [ 3 ] ), depending upon whether the items
stored are composed of elements that may take on a continuous
range of values or only values from a finite set.
Kohonen [ 1] and Kohonen and Ruohonen [ 2] have proposed

the Moore-Penrose generalized inverse as a mechanism for im-
plementing an associative memory. In this model the kth
item to be stored consists of two parts, the key vector x and
the data vector y (in the autoassociative case the paired x's and
y's are identical). Each vector consists of nc components (we
have assumed for convenience that the key and data vectors
are of the same length; this assumption is not necessary). The
number of vector pairs stored is nv. The nv key and data vec-
tors are represented as column vectors in the key matrix X and
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In the simulations discussed below we have used an algorithm
described by Rust et a. [4] to find the generalized inverse.
The recall operation is performed by multiplying an input

vector x' (which may be a corrupted version of one of the key
vectors) by the recall matrix W. The product (output) vector
z = Wx' should then be "close" to the data vector y paired
with the key vector x that is "closest" to the input vector x'.
In the case that the key vectors are linearly independent and
the input vector x' is identical to one of the keys x, the output
vector z will be identical to the data vector y paired with the
key vector x. If the keys are not linearly independent then the
output z will be the closest approximation (in the least squares
sense) to the desired vector y.
The least squares measure of closeness is equivalent to mini-

mizing the square of the Euclidean norm of the difference of
the two vectors in question. The square of the norm is simply
the dot product of the difference with itself, (z- y) (z- y),
and can be interpreted as the noise power in z when compared
to y. Ideally, the associative recall operation will result in an
output noise-to-signal ratio that is smaller than the input noise-
to-signal ratio.
Kohonen [ 1] analyzed rigorously the improvement in noise-

to-signal ratio for the autoassociative AM. Using the fact that
the autoassociative recall matrix is the orthogonal projection
operator on the space spanned by the key vectors, he proved
that the output noise-to-signal ratio should be nv/nc times the
input noise-to-signal ratio.

In the autoassociative case the output vector is a linear com-
bination of the original data vectors (or of the key vectors,
since the key and data vectors are identical), with the data vec-
tor closest to the input expected to be the dominant term in
the sum. Irn the heteroassociative case the output can also be
expressed as a linear combination of the original data vectors
and the coefficients in this combination are identical to those
which would have been obtained if the operation had been
autoassociative. Based on this observation, Kohonen [1 ] rea-
soned that the heteroassociative operation should show the
same improvement in noise-to-signal ratio as the autoassociative.
We have found, however, that this is not always the case.
We first came across this problem in a study of several dis-

crete AM schemes (Stiles and Denq [5 1). Using Monte Carlo
methods we evaluated the recall accuracy of the discrete gener-
alized inverse AM operating with vectors of components re-
stricted to the values - 1 and +1. The recall operation was
performed as described above with the addition that the com-
ponents of the output z were quantized to -I or +1 depending
upon whether they were respectively less than, greater than,
or equal to zero. In the autoassociative case we found that
the noise-to-signal ratios followed the result derived by Koho-
nen; i.e., the output noise-to-signal ratio was nv/nc times the
input ratio.

In the heteroassociative case, however, we found a great dis-
crepency in the vicinity of nv - nc. In this region the output
noise-to-signal ratio could become many times that of the in-
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