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Abstract 
Two images of a Lambertian surface obtained under different illumination conditions, determine the local surface 
normals up to two possible orientations. We show that for smooth surfaces, the local integrability constraints usually 
resolve the problem of deciding between the two possibilities. We also provide a complete characterization of the 
surfaces that remain ambiguous under given illumination conditions. 

1 Introduction 

Several investigators proposed algorithms for inferring 
the shape of an object from a shaded image, see for 
example, (Horn 1975; Horn and Brooks 1986; Ikeuchi 
and Horn 1981; Pong et al. 1984; Bruckstein 1988). The 
problem of shape-from-shading is not well posed, and 
there might exist a large number of surfaces that could 
have given rise to a particular image, even under the 
same conditions of lighting and the same surface reflec- 
tance properties. This ambiguity inherent in a single 
image was circumvented, in the work mentioned above 
by using more or less stringent constraints on the im- 
aged object, or by assuming various types of prior in- 
formation about it. 

Photometric stereo procedures, (see Woodham 1980; 
Marr 1982), use multiple images of an object, taken 
under different illumination conditions, to remove the 
ambiguity inherent in a single image. Many of the tools 
developed for the single-image, classical, shape-from- 
shading process, such as reflectance-map description 
of surface reflectivity properties (Horn 1977, 1981) pro- 
cedures for depth recovery from normals are naturally 
used in conjunction with photometric stereo. 

This work reexamines the photometric stereo prob- 
lem and presents a new method that recovers the sur- 
face normals of a height/depth profile from two shaded 
images of it. It becomes apparent from our analysis that 
under Lambertian reflectivity assumptions, given two 

different shaded images of a smooth object its shape 
can be, in most cases, uniquely determined at all points 
where self-shadows do not occur. 

This article is organized as follows. In section 2 the 
imaging model and some basic theoretical results are 
presented. Then, section 3 shows how continuity and 
integrability can be exploited to obtain unambiguous 
surface normal recovery at points illuninated by both 
light sources. We conclude with a numerical example 
and a short discussion of the limitations and generaliza- 
tions of the method. 

2 Photometric Stereo with Two Views 

2.1 Formulation of the Problem 

The two-view photometric stereo problem is the follow- 
ing. We are provided two images of the same surface, 
produced with the same camera position relative to the 
surface but under different illumination directions. It 
is required to reconstruct from this data the height pro- 
file of the surface. 

The height reconstruction is shown to be possible 
under the following assumptions: 

a. The height profile is twice differentiable. 
b. The surface reflectance is Lambertian (Horn 1975, 

1977, 1981) 
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c. Both images are produced from the same position, 
with a single distant point light source and a distant 
view point. 

d. The direction and brightness of the illumination 
sources are given. 

The problem is to determine the surface orientation 
(i.e., surface normals) at each point in the image plane. 
Reconstruction of the height profile compatible with 
these orientations is a relatively straightforward process 
(Horn and Brooks 1986). 

2.2 The Imaging Model 

Imaging systems perform the perspective projection, 
but here a distant view point is assumed, and the ortho- 
graphic projection therefore constitutes a good approx- 
imation. This is so because the imaged surface comprises 
only a small solid angle for the viewer. The viewing 
direction can then be aligned with the z axis so the point 
(x, y) on the imaged surface is portrayed by point (x, y) 
on the image, see figure 1. 

The model for the generation of image intensities is 
the following. If the height profile is represented by the 
equation z = H(x, y) and if the function H(x, y) is dif- 
ferentiable, then (see Do Carmo 1976) at each point the 
normal vector to the surface N(x, y) is given by 

N(x, y) = [ -p (x ,  y), - q ( x ,  y), 1] (1) 

where 

i°-i I -I p(x, y) = -~x q(x, y) = -~y 

The intensity at a point in an image of a Lambertian 
surface, depends only on the angle between the illu- 
mination vector and the normal vector at the point. Let 
A denote the illumination vector, that is, the unit vec- 
tor pointing in the direction of the light source. The 
components of A are ax, ay, a z. Let < A, B > denote 
the scalar product of vectors A and B, and IBI denote 
the length of a vector B. Then the image intensity IA 
at point (x, y) is given by: 

<N(x,  y), A>  
IA(X' Y) = IN(x, y)l 

1 
(1 +p2  + q2)~ 

[ ( -p  (x, y)ax - q (x, y)ay + az] (2) 

PERSPECTIVE PROJECTION 
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X 

× 
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u = x  v = y  

Fig. 1. Characterizing the image projections. (a) The perspective 
projection. For a viewing distance that is large in comparison to the 
object size, image projection can be modeled by the orthographic 
projection illustrated in (b). In orthographic projection all rays from 
object surface to image are parallel. (from Woodham [1980]). 

The second image will be In(x, y) described by an 
expression similar to (2), with the components b x, by, 
b z of the second illumination vector B, substituted for 
ax, ay, a z. In order to find the surface orientations, 
these two images will be used. 

2.3 The Ambiguity in Recovering the Normals 

Let us ask the following question: at the point (x0, Y0) 
what can locally be inferred about the surface normal 
given the two intensities IA(xo, Yo) and l~(xo, y0)? Since 
the dependence of these intensities on the surface orien- 
tations at point (x0, Y0), p(xo, Yo), and q(x o, Yo) is 
given, the partial derivatives must obey the following 
set of equations: 
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I a = ( - p a  x - qay + az)(1 + p 2  + q2)-~/2 (3) 

In = ( - p b x  - qby + bOO + p2 + q2)-,/2 

Let 

T A ( 1  + p 2  + q2),/2 (4) 

Rearranging (3) yields 

pax + qay = a z - IAT (5) 

pb x + qby = b z - IBT 

Regarded as two linear equations in two unknowns, 
these equations can be solved for p and q in terms of 
T, providing solutions of the form 

p = c p T +  dp (6) 

q = cqT + dq 

Recalling the definition of T in equation (4), that is, 
T 2 _ p2 _ q2 = 1, the solutions for p and q may be 
inserted providing a quadratic equation for T of the 
form: 

K2 T2 + K~T + K0 = 0 (7) 

where Ki are functions of 1,t, IB, ax, ay, a z, bx, by and 
b z • 

Solving (7) produces two solutions for T, they can 
be called TL and T2. If the two solutions for T are 
inserted in (6), we obtain two pairs of partial derivatives 
(Pl, ql) and (Pc, q2), corresponding to two normals, 
N~ and N2. This is all that can be obtained using the 
local constraints provided by two images at the point 
(x0, Y0). So far, the only assumption made on the 
height profile was that it has first derivatives. 

At this point we recall the classical geometric 
interpretation of the above algebraic manipulations. The 
intensity at each point in an image of a Lambertian sur- 
face gives the angle between the normal at that point 
and the illumination direction. Thus the locus of all nor- 
mals that could have produced the intensity IA at point 
(x0, Y0) is a (Monge) cone, with apex at (x0, Y0) and 
axis in the illumination direction and having an open- 
ing angle determined by arc cos (IA). If the brightness 
at the same point when illuminated from two different 
directions (photometric stereo) is known, the normal 
at (x0, Yo) must belong to two such cones. Therefore 
it belongs to their intersection. Two cones with the same 
apex either intersect along two or one half-lines or do 
not intersect at all (except for the common apex). The 
case of no intersection can not occur for genuine 
photometric stereo images and will not be considered 

here. The case of one intersection produces an unam- 
biguous solution, which corresponds to one solution 
for T in equation (7), and is of some significance as 
will become apparent. The general case is that of two 
solutions out of which only one is the "true" normal 
and this can be seen to agree with the algebra above. 

Note that, given two images of photometric stereo, 
the above described method can be used only on the 
parts of the surface that are illuminated in both images. 
Therefore the image plane will be redefined as all points 
that are out of the self shadow in both images. 

In order to correctly recover the height profile the 
"true" normals have to be chosen. An immediate way to 
choose the true normals would be by taking yet another 
image under a different lighting condition. This was 
indeed proposed by Woodham (1980). However we can 
also exploit the lateral constraints on the normals due 
to the assumed continuity and smoothness of the 
surface. It seems that this was understood by the pro- 
ponents of the method, however no theoretical analysis 
of this issue was ever carried out. 

The late David Marr, in his discussion of photometric 
stereo states that, given the data, at all points in the 
image plane "the surface orientation is narrowed down 
to just two possibilities. This essentially solves the prob- 
lem since the choice can usually be made by using 
continuity information or by taking a third picture with 
yet another lighting position" (Marr 1982). The main 
theoretical contribution of this article is to analyze the 
way in which continuity and surface smoothness con- 
straints disambiguate the recovery of the normals and 
thus pave the way for surface recovery. 

3 Using the Continuity and Integrability 
Information 

3.1 Using the Continuity Constraint 

Assume that the normals to the height profile are contin- 
uous, and consider the function T(x, y), where T was 
defined above, that is, T = (1 + p2 + q2)-,/2. T is 
clearly continuous, being the continuous function of 
the (continuous) variables p and q. Denote the two 
solutions of the quadratic equation (7), TI and T2 and 
let the T 1 solution be defined as corresponding to the 
normal with a positive projection on the direction of 
the vector A × B, T2 being the other solution. By the 
discussion at the end of the previous section it is ob- 
vious that the two possible solutions will be symmetric 
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with respect to the plane defined by the two illumina- 
tion vectors A and B, unless they both collapse to a 
single solution situated in this plane. 

Let us further define the following three sets of image 
points: A 

V 0 ~ {points where T = T1 = T2} 
V 1 S {points where T = T1 q: T2} 
V 2 = {points where T = T 2 ~e /'1} 

Obviously every point on the image plane belongs to 
one and only one of the three sets. We shall now show 
that the V 0 regions and the self-shadow regions divide 
the image plane into connected regions in each of which 
the normals continuously vary on the same side of the 
illumination-vectors-defined plane. This result follows 
from the following. 

LEMMA: Let (xl, y~) be a point on the image belonging 
to VI, (x2, Y2) a point belonging to I"2, and P any path 
from (xl, Yl) to (x2, Y2) where P is wholly contained 
in the above defined image plane. Then P must con- 
tain a point belonging to Vo. 

Proof T(x, y) is continuous on a closed set, that means 
that for any 6 > 0 there can be found an e such that 
for any (J, ~) and (J, ~), if I(J, y) - (x, Y) I < e then 
IT(k, y) - T(.~, ~)l < 6. Consider any path P defined 
as above. Further consider T a = ITl(x, y) - T2(x, Y)I, 
along the path P. Td is a continuous function in contin- 
uous variables and therefore continuous. The path P 
is a closed set and therefore T d has a minimum value 
on P, call it Tin. Suppose P doesn't contain any point 
from V o, i.e., Tm > 0. Then em~ can be found such 
that for any (J, ~) and (~, ~), if I(J, ~) - (~, Y) I < em~ 
then IT(x, y) - T(.~, Y)I < Tin~2, from the same con- 
siderations T1 too is continuous so em2 can be found 
such that for any (:~, ~) and (.~, ~), if I(x, Y) - (x, Y) I 
< e,n2 then ITl(-r, y) - Tl(X, Y)I < Tm/4. Let e m =  
min (eml, em2). Any point (J, ~) close enough to (xl, 
Yt) - (i.e., I(x, Y) - (x~, Yl)I < era) --  must also 
belong to I"1. That is so because while IT(J, y) - 
T(xt, Y0I < Tm/2, 

[Tl(Xl, y~) -- T2(J, y)[ -> ITI(L ~) - T2(L ~)1 
- [Tl(Xl, Yl) - Tl(-r, Y)I 

>_Tm-rm>Tm 
4 2 

This argument can be progressed all the way along P 
till (x2, Y2), thus finding that (x2, Y2) too belongs to Vl. 
This is in contradiction to the assumption that it belongs 

to V2, therefore Tm must be zero and Td must be zero 
somewhere. (Of course T d cannot be less than zero 
because of the way it is defined.) Q.E.D. 

It follows from this result that the image plane is 
divided into distinct connected regions each wholly 
contained in one of the three sets V o, V l, V 2, and if 
we could label each region we would know the true 
normals everywhere on the image plane. Moreover any 
two regions contained in V 1 and V 2 respectively, must 
be separated by a region (possibly a curve) contained 
in Vo. The points belonging to Vo coincide with the 
points where the quadratic equation (7) will have only 
one solution and its discriminant will be zero. 

In the next section we shall show how the assumption 
that the function H(x, y) is twice differentiable can be 
used to identify to which of the sets the points of each 
region belong. 

3.2 Using the Integrability Constraint 

The two functions p(x, y) and q(x, y) are not indepen- 
dent. They are connected by the fact that for a function 
H(x, y), for which the second derivatives exist, they 
obey the following equation 

I 2H OyOx ~ (8) 

which means for p and q that 

Oq 

In general only one of the two pairs of functions (Pl, 
q0  and (P2, q2) provided by solving (7) will satisfy 
(9). "In general" here has the following meaning: (9) 
does not hold for both (Pl, ql) and (P2, q2) unless the 
height profile satisfies some very specific constraints. 
These constraints are discussed below. 

Suppose that a surface generates the partials p and 
q. Given the illumination directions A and B, and the 
photometric stereo data, we shall be able to determine 
(at each point on the surface illuminated from both 
directions) a pair of normals, N ,  the true normal [ -p ,  
- q ,  1] and a reflected normal Nr. Let us consider for 
simplicity that the two directions A and B are both in 
the plane x - z being symmetric with respect to the 
z axis, i.e., A = [ - s in  0, 0, - c o s  01 and B = [sin O, 
0, - co s  0] for some 0. In this case the true and reflected 
normals will simply be 
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N t = [-p,  - q ,  1] and Nr = [ - p , q ,  1] (10) 

This means that we must have 
Op= o _o__ 
Oy -~x q =  Ox q (11) 

implying that 

02 H (x, y) = 0 (12) 
axay 

Therefore, both choices for the surface normal, provided 
by the photometric stereo information, will obey the 
integrability condition only if the surface obeys, within 
some region, equation (12). The general solution of this 
equation is easily seen to be a function of the form 

H(x, y) = F (x) + G (y) (13) 

with arbitrary smooth functions F(o) and G(.). 
The above discussion might seem to be restricted to 

the case of illumination directions A and B as specified 
above, however, note that we can always choose a coor- 
dinate transformation that brings us to this case, and 
the illuminated surface, in these new coordinates would 
have to satisfy (12) in order to have an ambiguous solu- 
tion, even when integrability is tested on both choices 
of normals. Note that the coordinate transformation 
does not affect the shading data, which, in the Lamber- 
tian case, is independent of the position of the viewer. 
In the appendix, we worked out the partial differential 
equation that would have to be satisfied by ambiguous 
surfaces in the original, general coordinate system case, 
however we note that this is just the image of the simple 
equation (12), under some coordinate transformations. 

In conclusion, we shall not be able to choose between 
the two normals by checking integrability, in the cases 
when the surface can be expressed as (13), in the suit- 
ably defined coordinate system (induced by the illumi- 
nation directions!). An obvious example of a surface 
that has the form (13) is the case of planar surfaces. 
Such surfaces will remain ambiguous for all illumina- 
tion directions. In general, the condition that the sur- 
face has to satisfy to remain ambiguous is seen to be 
very stringent, and dependent on the illumination direc- 
tions. A surface of the form will not remain such, if 
a general coordinate transformation is performed. 

We can conclude from the above discussion that, since 
arbitrary curved surfaces will usually not satisfy (13), 
with respect to the given directions of illumination, it 
can be expected that for all of the connected regions 
R, separated by V 0 points and/or self-shadows, only 
one of the following expressions will be (close to) zero 

0qll 
(x, y) ~ R ~ - ~ drdy (14a) 

I 12 f 0192 Oq2 drdy (14b) 
(x, y) ~ R 3y 3x 

From the knowledge which of the two expressions is 
null, a labeling of the regions follows. If (14a) is close to 
zero, the pairs (Pl, q0 are the true surface normals 
over region R, and the points of R belong to V 1, If 
(14b) is almost zero, the pairs (P2, q2) describe the cor- 
rect surface over region R, and the points of R belong 
to V 2. As all the points belonging to II0 have already 
been found, the pair (p, q) is determined for each point 
in the image plane, and we may proceed to the second 
part of the reconstruction. In the unfortunate but non- 
generic, and rare case when some region remains 
ambiguous, that is, both expressions (14a and b) are 
zero, we shall have to check both solutions and decide 
which one best fits the boundary conditions provided 
by the neighboring regions. 

If the surface normals at each point in the image plane 
have been determined, the complete surface recovery 
requires a height from normals procedure. Height 
reconstruction from normals is a standard problem, and 
several methods have been proposed in the literature. 
We used in our implementation a well-known method, 
based on the suggestions of Horn and Brooks [1986]. 

4. Simulation Results and Discussion 

The procedure theoretically discussed in the previous 
section was implemented and tested on several synthet- 
ically produced photometric stereo images. The scenes 
were composed of two to three Gaussians of different 
heights and breadth, one of the test profile being 
depicted in figure 2. 

The synthetic shading images were produced by first 
calculating the analytic normal to the surface at each 
point. Two illumination directions were chosen and 
described by unit vectors pointing in the direction of 
the "light sources" Surface portions hidden from the 
illumination direction were found by a simple ray- 
tracing algorithm. At all other points, the image inten- 
sity was computed according to (2) and discretized to 
8 bits. The two different images, IA(i, J) and IB(i, j) 
generated for a given height profile, were the input of 
the photometric stereo procedure. An example of pairs 
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Fig. 2. Example of a two-gaussian height profile used in the 
simulations. 

of such images is shown in figure 3, corresponding to 
the profile of figure 2. The surface reconstruction pro- 
cedure first determines points that belong to Vo (as 
defined in section 3), that is, points where there is no 
ambiguity as to the normal direction, were determined 
by checking for identical pairs (Pt, ql) and (/92, q2). 
Practically, this is accomplished by defining a set of 
points in the image plane larger then V0: those points 
for which the discriminant of the quadratic equation 
(7) which was derived in section 2 from the set of 
equations (4) and (5), is small. These points were found 
by thresholding the discriminant and they defined, 
together with the points in the image plane that were 
in the self-shadow in either of the images IA or IB, a 
mask we called the boundary mask. Such a mask for 
the height profile of figure 2 can be seen in figure 4. 
Then, a standard connected-components algorithm, as 
for example the one described by Rosenfeld and Kak 
(1982), was used to separate the connected regions in 
the image plane separated by the boundary mask. For 
each of the resulting connected regions in the image 
plane the discrete analogs of the two integrals in (14) 
were calculated, and were used to unambiguously 

Fig. 3. The two images used in the simulation: synthetic images of the profile depicted in figure 2, nonnormalized illumination directions 
are (1, 1, 1) and (.33, .67, 1) respectively. 
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Fig 4. The boundary mask obtained for the two gaussians height 
profile, depicted in figure 2. The filled patches are the shadows and 
are not part of the image plane. The thickness of the boundaries 
(Vo regions) is caused by the method by which they were practically 
obtained, via thresholding. 
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Fig. 5. Reconstruction of the height profile depicted in figure 2. The 
illumination directions are (1, 1, 1) and (.33, .67, 1) the rms error 
level achieved is -35.13 dB. 

recover the surface normals. The local normals, p(i, j) 
and q(i, j), together with the shadow mask were used 
in an implementation of a standard height from normals 
algorithm. The profile recovery results were then com- 
pared to the original height profile. The result of the 
height recovery procedure, for the example discussed 
above is shown in figure 5. 

In summary, we have presented a new method for 
reconstructing a height profile from only two shaded 
images of it. Previous discussions of photometric stereo 
(Ikeuchi and Horn 1981; Ikeuchi 1987; Marr 1982) sug- 
gested that a third image be taken to remove the ambigu- 
ity in determining the local surface normals, and there- 
by obtaining the shape of the imaged object. This is 
a very simple and good idea, since it removes the 
ambiguity locally, without any need to use lateral in- 
formation based on surface smoothness assumptions. 
However, from studies of monocular shape-from- 
shading, it becomes clear that for smooth surfaces, a 
lot of information on the height profile is available even 
in a single shaded image of it, therefore the question 
of conditions under which complete surface recovery 
is possible from only two shaded images provided by 
photometric stereo arises naturally. 

We discussed the issue of exploiting continuity and 
smoothness of the imaged surfaces in the photometric 
stereo framework. We showed that, in general, under 
Lambertian reflectance properties, surface smoothness 
enables a complete resolution of the local ambiguity 
in recovering the surface normal. In the first part of 
the reconstruction process for every point that is 
illuminated in both images two different normals are 
found. Incorporating continuity considerations reduces 
the ambiguity first by defining regions in the image 
where the knowledge of the solution at any one point 
determines the true solution for the whole region, and 
then using local integrability to differentiate between 
the two solutions, pointing out the more probable one. 

We believe that this method could be extended to 
images of surfaces with reflection functions different 
from the Lambertian rule. By using the reflectance map 
technique, (Horn 1981; Woodham 1981), it may happen 
for many reflectance properties that only two different 
normals are compatible with the shading data at most 
points in the image. As the arguments of section 2.2 
can be generalized for any reflectance function that 
is continuous in the surface normals, a process of 
defining regions within which the solutions are inter- 
dependent and determining the more probable solution 
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for each region could possibly be followed much along 
the lines of the method proposed above. 

Shape-from-shading methods are usually applied on 
images of smooth, continuous surfaces. The method 
described here requires continuity of the first deriva- 
tives as well, but it can be extended to surfaces with 
discontinuities in the first derivatives if the assumption 
of a uniform reflectance function is retained. Under this 
assumption discontinuities in the surface would appear 
as discontinuities in the image brightness, that is as 
edges. An edge detector can be used and smooth regions 
thus defined, The algorithm then treats each smooth 
region as a separate image and the resulting height 
profiles must then be integrated perhaps by using 
methods developed for interpreting line drawings--see, 
for instance (Ballard and Brown 1982; Marr 1982; 
Rosenfeld and Kak 1982). This is also the approach by 
Ikeuchi (1987) where photometric stereo (using three 
images) is used together with binocular stereo. 

As noted in the text and can also be seen by the "holes" 
in the reconstructed height profiles, the photometric 
stereo method provides the height only at points that 
are not in self-shadow in both images. A natural way to 
fill in the gaps is to use methods of classical shape from 
shading at points where shading information is available 
from one illumination direction, and perhaps topological 
constraints where no information is available at all. 
Because the height profile and the surface normals are 
known on the boundary of the shadow, shape-from- 
shading methods that require boundary information 
on a closed curve, such as those proposed by Horn and 
Brooks (1986), Ikeuchi and Horn (1981), and Brucks- 
tein (1988), can be applied. Further work is needed in 
integrating monocular shape from shading in the 
photometric stereo, so that the whole surface may be 
recovered. 
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Appendix 

What can be said about the height profile and illumina- 
tion directions, for which the two solutions/'1 and T2 
of the quadratic equation (7) are indistinguishable using 
the constraints of differentiability? 

In addressing the above problem the geometric inter- 
pretation is best reconsidered. As shown before the two 
solutions for the normal at a particular point are formed 
as the intersection of two cones with a common apex. 
Hence the two solutions are reflections of each other 
in the plane containing both their axes. Let f be the 
unit vector in the direction of the cross product of the 
illumination directions: 

f A _ A x B  
]A × B[ 



Integrability Disambiguates Surface Recovery 113 

Each cone's axis is an illumination direction, therefore 
the two solutions are reflections of each other with 
respect to the plane perpendicular to f. Let the true nor- 
mal be designated by Nt and the other solution by Nr 
(for reflected), then the relation between them will be 
given by 

N r = N t - 2 (Nt, f ) f  (A1) 

More explicitly consider two illumination directions 
which p roducef  = [a, b, c], and recall that Nt = [-p, 
- q ,  1], then Nr is described by 

N r = [ -p ,  - q ,  11 - 2 ( - a p  - b q  + c)[a, b, c] 

= [(2a 2 - 1 ) - p  + 2abq - 2ac, 

2abp + (2b 2 - 1) • q - 2bc, 

2acp + 2bcq - 2c 2 + 1)] (A2) 

Assuming Nr too describes a smooth surface (just 
like Nt does), the following equations should give the 
partial derivatives of that surface: 

(2a 2 - 1 ) ' p  + 2abq - 2ac 
Pr = - -  (A3a) 2acp + 2bcq - 2c 2 + 1 

2abp + (2b z - 1 ) ' q  - 2bc 
qr = 2acp + 2bcq - 2c 2 + 1 (A3b) 

Further assuming that the surface is twice differen- 
tiable we must have that Op,./Oy = aqr/OX, and thereby 
the following partial differential equation must be 
satisfied by the surface H(x, y), that provided Nt, 

(2(a 2 + c 2) - 1) 02H + 2ab--O2H 
Ox Oy 02y 

-2bc  [OI-I.cgy --OxO2Hoy - --OHox " --OZH 102y  

02H 02H 
= (2(/9 + c 2) - 1 ) ' - -  + 2 a b - -  

Ox Oy OZx 

2ac F OH 02H OH 02H 
Ox OEx - Oy " Oy ffxJ (A4) k 

This yields, by rearrangement, 

02H 2ab [ 02H 02HI 
2(a2 - b2) Ox 0--~ - OEx OEy 

OH OEH OH OEH 
- 2 c .  ~ y "  O-~x - a O--x'Oy---~x 

+ b O__H __c~2H - b __OH. __02H ] = 0 
(A5) 

Oy Ox Oy Ox OEy J 
This rather complicated-looking equation is simply the 
general image of the very simple equation (12), for 
arbitrary illumination directions. I fA and B are chosen 
so as to yield c = 0 and either a or b equal to 0, we 
clearly recover (2.12). I f  only c = 0, we get the simpler 
equation 

b E 02H [ 02H02 x 02H]o2y ] : 0  (A6) 2 ( a 2 -  ) 0 - ~ y  - 2ab 

Suppose, for example that the image surface looks like 

H(x, y) = m x  2 + ny: (A7) 

with both m and n negative, that is, we have a quadratic 
mountain. Inserting (A7) into (A6), we can get condi- 
tions on the parameters a and b that ensure unam- 
biguous recovery of the surface from photometric 
stereo. We have ambiguity if 

4ab(m - n) = 0 (A8) 

and therefore, if rn ;e n, we must have both a and b 
different from zero for complete surface recovery. This 
would indeed be the case for two arbitrarily chosen il- 
lumination directions. Clearly the case m = n is rota- 
tionally symmetric and the ambiguity cannot be 
removed keeping c = 0, as is intuitively clear. 


