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Abstraet--A new approach to digital implementation of continuous-scale mathematical morphology is 
presented. The approach is based on discretization of evolution equations associated with continuous mul- 
tiscale morphological operations. Those equations, and their corresponding numerical implementation, can 
be derived either directly from mathematical morphology definitions or from curve evolution theory. The 
advantages of the proposed approach over the classical discrete morphology are demonstrated. 

Mathematical morphology Scale-space Curve evolution 
Digital implementation Numerical algorithms 

Partial differential equations 

I. I N T R O D U C T I O N  

A new definition of discrete mathematical morphology 
is presented. First, continuous mathematical morphol- 
ogy is given as a dynamic process, where the basic mor- 
phological operations are obtained as solutions of par- 
tial differential equations. Then, discrete mathematical 
morphology is defined via an efficient numerical im- 
plementation of this continuous process. The result is 
that this new discrete morphology approximates con- 
tinuous morphology much better than the classical dis- 
crete one. 

Traditionally, mathematical morphology is intro- 
duced in a set-theoretical setting." 3) Morphological 
operators are defined as operators on sets in RN(R 2 in 
case of shapes or binary images). The dilation 8~: R N 
R v and the erosion e~:R N ~ R  N of a set X ~ R '~' by a 
structuring element B ~ R N are defined as the sets 

3B( X) A= U ~) x + b = { x + b : x e X ,  baB} (1) 
bEB xeX  

~:B(X) A= (~ U x - b .  (2) 
beB xeX 

It is well known that erosion can be derived from 
dilation since tl 

~:8(x) = (6~(xc)) c 

where X ~ is the complement of X, and/} is the "'transpose" 
of B,/3 a= { b : - b e B } .  Then, dilation is obtained via 
vector addition of all elements of the set X and the 
structuring element B, and erosion is the dual operation 
("dilation of the background"). 

The second pair of dual morphological operations 
is obtained via the concatenation of erosion and dila- 

tion. Opening is defined by 

C L 6B(~(X)) 

and closing by 

~ L ~B(6B(X)). 

Figure 1 shows an example of these four operations on 
the plane (R2). Note that opening smoothes the figure, 
and closing smoothes the background. 

From the definitions above we see that all the basic 
operations of mathematical morphology are derived 
from the dilation operator. In the sequel, we shall there- 
fore refer to dilation only. 

Function, or multi-level, morphology is usually de- 
rived from set morphology via a homeomorphism 
between the space of functions f:  RN~ fi where R = 
R ~  {zc, - ~},  and the subspace of umbra sets in R N+ t 
An umbra set S is a set for which 

(xt,x2 ..... XN, XN+ t)~S 

: : ~ ( X I , X  2 . . . . .  XN, y ) E S  , V y  ~__~ XN+ t" 

The dilation of functions can also be formulated in 
function terminology ") 

6.(f)(x)= sup {f(x-y)+,qO')} (3) 
y~R N 

where g : R N ~ R is a function or multi-level structuring 
element. Usually the support of the structuring element 
of the morphological operation is finite. In set mor- 
phology, finite support simply means that the structur- 
ing element B has finite extent. In function morphology, 
finite support of the structuring function g means, that 
the support set G = {y:,q(y)> - ~ }  is finite. In those 
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Fig. 1. Example of the four basic operations of mathematical 
morphology. The set X is a planar set, and the structuring el- 

ement B is a disk. 

Opening Closing 

Fig. 2. Example of mixed morphology operations. 

cases the dilation can be reformulated as 

6o(f)(x ) = sup { f ( x  - y) + 9(Y)}. (4) 
y~G 

Sometimes it is useful to deal with a subset of the finite 
support structuring functions, namely, those functions 
assuming a constant (usually zero) value over their sup- 
port. The dilation with such a structuring function is 
described by the local supremum operator 

6,( f ) (x)  = sup { f ( x  - y)}. (5) 
yeG 

The resulting operators can be considered as a special 
family of mixed morphology: the operators act on func- 
tions, though their structuring elements are support 
sets. Henceforth they will be denoted by 

3o(f)(x)  = supf(x  - y). (6) 
y6G 

Figure 2 shows examples of mixed morphology oper- 
ations. 

In reference (4) (see also reference (3)), Maragos des- 
cribes a way to obtain the mixed morphology directly 
from the set morphology (sometimes called binary 
morphologym), without the need to go through func- 
tion morphology. First, the function f is transformed 
into a family of threshold sets 

Ta(f) ~= {x: f (x )  >_ a}, VaeR. (7) 

Maragos proved that 

6~(f)(x) = sup{ae f l : xe6o(T , ( f ) ) } .  (8) 

Hence, mixed morphology can be obtained via set 

morphology. It is also possible to obtain set morphol- 
ogy from mixed morphology (see Section 3). 

Morphological operators can be approached as scale- 
space operators/5~ It can be shown that if the structur- 
ing set (or umbra of the structuring function) is convex, 
then TM 

c~,, +,2~e(X) = fi,,n(,~,2o( X) ) 

6(, +,2~o(f) = 5,10(6,2o(f)) 

L, +,2,G(f): g,,J,2o(f, 
where for t~R +, tB = { t . x :x~B}  and tO(x)= t 'y(x/t).  
Scale-spaces can therefore be defined for every morphol- 
ogical operator 5,n(X), 6 , , ( f )  or 6,G(f), where t is the 
scale parameter. In addition to its theoretical import- 
ance, the scale-space approach is also important in 
applications such as size filtering, pattern spectrum, 
and smoothing/3'6) 

Figure 3 presents an example of the dilation of a 
continuous set with a disk of two different radii rl and 
r2 (r2 > rl). From the property presented above, we 
observe that the result of dilating the set with the 
bigger disk, can be obtained either by dilating the 
original set with a disk of radius r 2, or by dilating the 
intermediate result (dilation with a disk of radii rl) 
with a disk of radii r 2 - -  r 1. 

In applications of mathematical morphology, the 
implementation is performed on digital computers. 
Indeed, the above theory is easily expressed in digital 
terms replacing R N by Z N. (See Fig. 4 for examples of 
morphological operations on the discrete plane Z2.) 
However, in many applications where morphology is 
called upon because of intuitively agreeable results, 
discrete morphology provides results considerably 
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Fig. 3. Example of the dilation scale-space. The given set is 
dilated with two disks of different radii. 
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Since discrete versions of morphological techniques 
often fail, digital implementation of morphological 
operations must be based on other methods. A direct 
approach is based on distance transformations. (9' 10) A 
distance transformation labels every pixel in an im- 
age with its distance to the closest boundary pixel. The 
dilation fitB(X), of a shape X by a circle tB of radius t, 
is the union of all pixels with labels less or equal to t. 

In this paper we present two alternative methods for 
computer implementation of set and mixed morphol- 
ogical scale-spaces. The first results from differential 
geometry, and is described in Section 2. In it, instead 
of deforming the shape, it is the boundary that is 
deformed through an evolution equation. The algor- 
ithm we discuss is based on the ideas of Sethian and 
Osher(~l.t2) who developed numerical algorithms for 
curve and surface evolution. The other method, pre- 
sented in Section 3, is derived from a recent result by 
Brockett and M aragos. (13~ They introduced a method 
describing the function morphological operators as a 
result of a partial differential equation (PDE). For  set 
morphology, we propose an algorithm based on the 
numerical implementation of this PDE, and on an 
"inverse definition", defining set morphology via mixed 
morphology. In Section 4 we discuss the two methods 
and show that they turn out to be identical. It is 
important to note that the algorithms presented here 
are based on discretization of continuous mathematical 
morphology, in contrast to the discrete morphology 
usually proposed to address such issues (operations 
on sets in ZN). The advantages of this method are dem- 
onstrated by examples, and are discussed in Section 4 
as well. 

mmmnm 
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mDDJN 
mmmmm 

2 3 E  

Ctosing Opening 

Fig. 4. Morphological operations on a discrete plane. 

worse than those expected from continuous formulation. 
Therefore, some of the advantages of morphology as 
a shape analysis tool, are diminished in discrete mor- 
phology. 

The problem of discrete morphology stems from the 
difficulty to create a convincing approximation of cir- 
cles at different scales. (7's) A square or a hexagon may 
be used as digital disks, in spite of the fact that those are 
not good approximations of continuous disks at all 
radii. To address such a problem is one of the goals 
of this work. Due to the close relation between set, 
function, and mixed morphology, solving this problem 
for one of them results in solving the problem for the 
others, as we shall show in this paper. 

2. MORPHOLOGICAL OPERATIONS BY CURVE EVOLUTION 

A set (or shape) is well defined by its boundary (a 
closed planar curve in the case of planar shapes). There- 
fore, when performing morphological operations on 
sets, it is enough to investigate the influence of these 
operations on their boundary, In this section we will 
show how to perform morphological operations via 
curve (boundary) evolution. We first present the basic 
concepts of planar curve evolution. 

Let <g(p, t): S 1 x [0, T) -* R2 be a family of embedded 
closed curves, where t denotes time, and p parameter- 
izes each curve. Assume that this family evolves accord- 
ing to the following evolution equation: t 

~t 

<g(p, 0) = <go(P) (9) 

where/V is the outward Euclidean normal, T the unit 
tangent,(~ s-i 7) and ct and fl are the tangent and normal 
components of the evolution velocity V, respectively. 
Assuming that the normal component fl of V is a geom- 

"t" The theory can be extended to surfaces in R", n > 2. ~14~ 
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etric function of the curve, like curvature, t~7) it can 
be proven that the tangential component ct of V does 
not affect the geometric behavior of the evolving curve, 
only its parameterization. "s) Since we are interested 
only in shape, we consider the evolution equation 

- - = / ~ H  (10) 
~t 

where fl = T. N, i.e. the projection of the velocity vector 
on the normal direction. 

The evolution (I0) was studied by different resear- 
chers for different functions ft. If, for example, fl = - ~< 
(the Euclidean curvature (~ 7)), it can be shown that any 
closed, planar, simple, and smooth curve, converges to 
a round point. (19-21) Kimia et at. (22-24) recently intro- 
duced the theory of curve evolution into computer 
vision. They studied the evolution given by fl = 1 - e.K, 
and based on it they defined a reaction-diffusion scale- 
space for planar shapes. If fl = 1, equation (10) simulates, 
under certain conditions, the grassfire flow. (22'23'25'26) 

The grassfire flow is the morphological scale-space 
created by a disk. Later in this section, we will show 
that morphological scale-spaces of some other struc- 
turing elements can also be simulated with different 
selections of ft. 

A number of problems must be solved when imple- 
menting curve evolution equations such as (10) in digi- 
tal computers. The basic problems are" 

(1) Accuracy and stability. The numerical algorithm 
must approximate the evolution equation, and it must 
be robust. (These are general requirements for any 
numerical algorithm.) Sethian "2) proved that a simple, 
Lagrangian, difference approximation, requires an im- 
practically small time step in order to achieve stability. 
The basic problem with Lagrangian formulations is 
that the marker particles on the evolving curve come 
very close during the evolution. This can be solved 
by a re-distribution of the marker particles, altering 
the equations of motion in a non-obvious way. 

(2) Development of singularities. If, for example, 
fl = 1 in equation (10), even an initial smooth curve 
can develop singularities (see Fig. 5(a)). The question is 

(ol (b) 

Fig. 5. Problems in curve evolution implementation. 
(a) Development of singularities--even a smooth initialcurve 
can develop singularities when evolving with velocity N. The 
first singularity occurs at the center of curvature correspond- 
ing to the maximal curvature of the initial curve (marked 
point). (b) Topologicalchanges--an initial connected curve, 
evolving with velocity N, can be disconnected when evolving 

in time. 

how to continue the evolution after the singularities 
appear. The natural way is to choose the solution 
which agrees with the Hfiygens principle. (26) If the 
front is viewed as a burning flame, this solution states 
that once a particle is burnt, it stays burnt/TM The 
importance of this solution in shape analysis was pre- 
viously pointed out and analyzed by Kimia et al. ~22 24) 
Also, it can be proven that from all the weak solutions 
corresponding to equation (10), the one derived from 
the Hiiygens principle, is unique, and can be obtained 
by a constraint denoted entropy condition. ~27) 

(3) Topological changes. As we see in Fig. 5(b), topo- 
logical changes may occur in the curve when evolving 
according to equation (10). This raises the problem of 
handling splitting and merging curves. 

Sethian and Osher "~' 12.26.28)proposed an algorithm 
for curve (and surface) evolution that solves these prob- 
lems. This algorithm consists basically of two steps. 
First, the curve is embedded in a higher dimensional 
function. Then, the equations of motion are solved 
using numerical techniques derived from hyperbolic 
conservation laws. t12'29) The basics of the algorithm 
are given below. For the details, see references (11, 12). 

The curve Cg(p, t) is represented by the zero level set 
of a smooth and Lipschitz continuous function O: R 2 x 
[0, T] ~ R. In the following we assume that ~ is neg- 
ative in the interior and positive in the exterior of the 
zero level set. Consider the zero level set, defined by 

{ ~( t )eR2:C~(~, t )=0} .  (11) 

We have to find an evolution equation of O, such that 
the evolving curve cg(t) is represented by the evolving 
zero level ~'(t), i.e. 

~(t) -= ~'(t). (12) 

By differentiating (11) with respect to t we obtain 

w(~' , t ) .  L +*,(~',t) = 0. (13) 

Note that for the zero level, the following relation 
holds: 

Vii) _ ft. (14) 
IIV~lj 

In this equation, the left-hand side uses terms of the 
surface O, while the right-hand side is related to the 
curve c£. The combination of equations (10)-(14) gives 

• , =  -/~PPv~II (15) 

and the curve cg, evolving according to equation (10), is 
obtained by the zero level set of the function ~, which 
evolves according to equation (15) (see Fig. 6). 

The implementation of the evolution of • is based 
on a monotone and conservative numerical algorithm, 
derived from hyperbolic conservation laws (see Ap- 
pendix and for details see reference (11)). For  a large 
class of functions fl, this numerical scheme automatically 
obeys the entropy condition, i.e. the condition derived 
from the Hfiygens principle. (zs'29) (In what follows, we 
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t2 

X 

Fig. 6. Embedding the curve in a higher dimensional func- 
tion solves automatically a number of topological problems. 
The evolving curve is obtained as a level set of the evolving 
surface, which remains continuous (and connected) even when 

topological changes as the one in Fig. 5(b) occur. 

refer only to weak solutions for which the entropy con- 
dition holds.) 

As was reported elsewhere (see for example refer- 
ence (22)), the weak solution c~,(p, t) of the evolution 

simulates the grassfire flow and gives the dilated version 
of the curve (or shape) ~o(P), where the structuring 
element is a disk of radius t. This solution can be easily 
obtained by implementing the mentioned numerical 
algorithm. The scale-space evolution equations are 
presented below for set dilations with general convex 
structuring elements. 

Let the binary,  convex, s t ruc tur ing  e lement  B 
be given by a curve ,~ in R 2 ( ~  is the boundary  of the 
set B). Each point in ~ is represented by V(0), where 0e  
[0, 2rt], 7 e R  2. Morphological  di lat ion can be inter- 
preted as a generalization of the Hiiygens principle: 
each point in the curve is the source of a new local 
wave, whose shape is given by the structuring element. 
The new wavefront is obtained (as in the classical 
Hiiygens principle), by the envelope of the local waves 
(see Figs 7(a) and (b)). The velocity of each point in the 
curve is given by the maximal projection of the struc- 
turing element boundary  on the normal  direction 

[2 = sup { V(0). N}. (16) 
0 

This can be explained as follows: each point p in the 
curve ~(p,t) moves, due to the Hiiygens principle, 
toward the boundary .~ of the structuring element B 
centered at the point p. This motion generates an 
infinite set of possible velocity vectors, one for each 
point in ~ .  Those velocity vectors can be decomposed 
into normal  and tangential  components.  Since the 
tangential  component  does not affect the behavior  of 
the evolving curve, the effective velocity is obtained 
from its normal  component .  The maximal  normal 

(o) 

I ¸ 

I V '~°° 

(c) 

Fig. 7. The geometry of dilation by curve evolution. (a) The 
classical Hfiygens principle. (b) Generalization of the Hiiygens 
principle for a square--each point in the curve is the source 
of a "square" local wave, and the new wavefront is obtained 
via the envelope of the local waves. (c) Evolution velocity for 
a square--the velocity of the point is given by the maximal 
normal component of the infinite set of possible velocities. 

component  then gives the local propagat ion velocity 
(Fig. 7(c)). 

F rom equations (10) and (16), we obtain the following 
evolution for a general convex structuring element: 

~ '  = sup { V . N } N .  (17) 
?t 

The weak solution ~-(p, t) of equation (17), holding the 
entropy condition, gives the dilation of the initial curve 
rgo(p) (or of the shape it defines), by the structuring 
element tB. Observe that  from equations (15), (16), and 
relation (14), we obtain the surface evolution equation: 

• , = - sup { F ' .V~}.  (18) 
0 

Let us now consider examples for different structuring 
elements. Define u ~ ~x and v _a__ ~r" Simple geometric 
computat ions  yield the following results: 

sup { ~'.V(I)} = IIV~ll if B = disk 
0 

sup { ~"V(l)} = max { [u[, bvl } if B = d iamond 
0 

sup { V' V~} = [u[ + Iv[ if B = square. 
0 

(19) 
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As mentioned above, the equation for a disk was 
previously reported elsewhere, tt2'22'26) 

If the structuring element B is symmetric with respect 
to both coordinate axes, the weak solution of equation 
(17) is obtained by solving equation (18) with the men- 
tioned numerical scheme (see Appendix). For  non-sym- 
metric elements, different related numerical schemes 
must be implemented32st 

We conclude in proposing the following algorithm 
for set morphological  dilation of X e R  2 with the con- 
vex symmetric element B: 

1. Define a smooth and Lipschitz continuous initial 
function ~ 0 : R 2 ~  R, such that its zero level set gives 
the boundary ~go of the initial set X. 

(a) 

(b) 

(d) 

(e) 

(c) (f) 

Fig. 8. Examples of morphological operations via the algorithm described in Section 2. The gray curve 
represents the original shape. The figure frame contains 128 x 128 pixels. The curves, which are zero level 
sets of the function ¢, are represented using a simple contour finding algorithm described in reference (28). 
(a) Dilation scale-space of a point with a circular structuring element (disk). The result is a very good 
approximation of a circle at ail scales, in contrast with what is obtained via discrete morphology, using a 
discrete disk. (b) Dilation scale-space of a point with a diamond. Note that the algorithm automatically 
solves boundary problems. (c) Dilation scale-space of a curve (Mickey) with a disk. The initial curve is not 
connected, and it becomes connected after certain radius. The proposed algorithm solves this problem 
automatically. (d) Erosion scale-space of Mickey with a disk. (e) Dilation scale-space of Mickey with a 
diamond. (f) Erosion scale-space of Mickey with a diamond. (g) Erosion-dilation (opening) of Mickey with 

a disk. (h) Opening of a polygon with a disk. 
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(h) 

(g) 

Fig. 8. (Continued.) 

2. Compute sup { F.VO} for the given structuring 
0 

element B. 
3. Propagate the surface according to equation (18) 

by means of the numerical scheme described in refer- 
ence (I 1) (see equation (A3) in the Appendix). 

4. At each time t, the zero level set of O gives 6ts(X ), 
the boundary of the dilated version of X with the 
structuring element tB. 

Figure 8 shows a number of morphological operations 
with different convex structuring elements. 

Note that: 

1. Erosions are obtained by taking/~ pointing inward, 
i.e. changing the sign in equation (18). 

2. The results presented here for planar curves, 
representing sets in R 2, can be extended to surfaces 
in higher dimensions, in order to operate on higher di- 
mensional sets. 

3. The reaction-diffusion scale-space studied by 
Kimia et a l .  (22'23) is based on dilations with disks. Using 
the evolution equations discussed here, this scale-space 
can be generalized for general convex structuring el- 
ements. 

3. SET M O R P H O L O G Y  VIA M I X E D  M O R P H O L O G Y  
E V O L U T I O N  E Q U A T I O N S  

We describe now another approach for the computer 
implementation of set morphology. The relation be- 
tween this approach, and that presented in Section 2, 
is discussed in Section 4. 

In reference (13), Brockett and Maragos introduced 
a new approach to the scale-space of mixed and function 
continuous morphology. Their motivation is based on 
a feature of the image scale-space created by convolving 
the image with a Gaussian kernel (with variance as 
scale parameter). This scale-space can be described as 
a result of solving a partial differential equation (PDE) 
(diffusion in this case), with the original image as initial 
condition. Brockett and Maragos argue that it is pos- 

sible to also describe the mixed (and function) mor- 
phological scale-space as a result of a PDE. Convolu- 
tion is a linear operator, therefore the corrresponding 
PDE is linear. Morphological operators, on the other 
hand, are nonlinear. Therefore, it is not surprising 
that the PDEs describing the morphological scale-space 
are nonlinear as well. We now present the equations 
describing mixed morphology. For details and exten- 
sions to function morphology, see reference l13). 

Brockett and Maragos derive the following differen- 
tial equation for the case when the structuring element 
B is a sphere of radius r in RN: 

- sup {Vx6,B(f)(x)" v: Ilvll < rl 
~Stl3(f)(x ) = lim 

r~O P 

They further show that in R 2, if the structuring element 
B is a disk, a diamond, or a square, this equation yields 
the following first-order PDEs, respectively 

V \I ix I 8y ) 

~ S , n ( f ) ( x ) = m a x ~  OS,. IS, .  ~ B = d i a m o n d  
U & I '  c~y J 

8x + 8y B = square. 

(20) 

Those PDEs are well defined whenever 8tn(f ) is dif- 
ferentiable. When this is not the case, alternative dev- 
elopment rules should be formulated. Those rules are 
formulated via the morphological derivative M 

8ta,=(f) = (21) M(6tn(f)). 

The derivation of M is done through morphological 
considerations. In the one-dimensional case the mor- 
phological terminology can be transformed to the fol- 
lowing expression: 

M(f)(x) = max {D+(f), - D  (f),0} 
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where D ÷ ( f )  and D-  ( f )  are the forward and backward 
derivatives of f .  Note that if f is differentiable then 
O + ( f ) =  D - ( f )  = (t3/~qx)f and M = I(B/dx)fl. A straight- 
forward discretization of the above continuous formu- 
lation results in an approach for implementing mixed 
mathematical morphology on digital computers. 

Set morphology can be derived from mixed mor- 
phology. Thereby it can also be obtained from the evol- 
ution equations described above. It can be shown t3'4} 
that the following relation holds: 

(~o(To(f)) = To(3~(f) ) (22) 

where Ta(. ) is the threshold function defined by (7). 
Note that in equation (22), the dilation of the right- 
hand side is a mixed operator whereas the operator of 
the left-hand side is a set dilation. 

We conclude, that if we had a good method of im- 
plementing mixed morphology, there would be a good 
way to implement set morphology as well. This yields 
the following idea: first, create any function f * ,  such 
that its zero level set determines the initial set X 

X = To(f*).  (23) 

Then, perform a mixed morphological dilation on f* ,  
and threshold the resulting function to obtain its zero 
level set. This zero level set, is the result of applying 
the corresponding morphological dilation on X: 

6~(X) = To(6~(f*)). (24) 

The proposed way to implement the mixed morphol- 
ogical operator in equation (24) is obtained by subse- 
quent discretization of equation (21). 

4. COMPARISONS, DISCUSSION, AND CONCLUSIONS 

In this work, a new approach for computer imple- 
mentation of mathematical morphology was discussed. 
The approach is based on discretization of non-linear 
evolution equations associated with multiscale con- 
tinuous mathematical morphology, i.e. continuous 
mathematical morphology is presented as a dynamic 
process, and discrete mathematical morphology is de- 
fined as the result of the numerical implementation of 
this process. 

The evolution equations were previously presented, 
based on a completely different approach, by Brockett 
and Maragos ~13} for general convex elements, and by 
other au thors  ~22'23'26} for circular structuring elements. 
The works in references (22, 23, 26) are based on the 
theory of curve evolution and numerical algorithms 
for surface evolution. 

We first showed how to derive, from the theory of 
curve evolution, the corresponding evolution equations 
for set dilation (and any other morphological operator) 
with any convex structuring element tB. The evolving 
curve c~(t) is the boundary of the set being dilated. This 
"dilation via curve evolution" approach is very intuitive, 
and is derived from a generalization of the Htiygens 
principle for any convex structuring element. In order 

to solve topological problems in the curve evolution 
implementation, c~(t) is embedded in a higher dimen- 
sional evolving function ~(t). This embedding is per- 
formed in such a way that ~(t) is obtained from the 
zero level set of ~(t) (see equations (11) and (18)). 

We also showed how to obtain set morphology 
operators from the mixed morphology PDE presented 
in reference (13). This algorithm is also based on defin- 
ing an arbitrary function f *  (see equation (23)) which 
has the set as its zero level set, performing mixed 
morphological dilation on it, and looking at the zero 
level set (equation (24)). 

Note that the evolution equations, derived in dif- 
ferent ways, are identical. Specifically, evolution equa- 
tions (18) and (19), derived from the theory of curve 
evolution for set dilation, are identical to equation (20), 
presented in reference (13) for mixed morphology. There- 
fore, choosing ~(x, y, 0) = f*(x ,  y, 0), the propagated 
surfaces will be the same, i.e. ~(x, y, t) = f*(x ,  y, t). Then, 
the curve evolution approach presented here for set 
morphology, gives automatically mixed morphology 
as well: O(x, y, t) is the result of dilating ~0(x, y) with 
the structuring element tB (see also reference (30)). 

The discretization of the evolution equations gives 
a new method for implementing (and defining) scale- 
space mathematical morphology in digital computers. 
The numerical approach, presented by Sethian and 
Osherl~ 1.12} for curve evolution, was demonstrated to 
be very accurate for the implementation of the derived 
evolution equations. Error analysis can be found in 
reference (11). 

The algorithm complexity is O(N2(ro/At)), where N 
is the picture size, r 0 the radius of the structuring 
element, and At the time step (see Appendix). Of course, 
for the same "price", the morphological operations for 
all radii r < r 0 are obtained, i.e. the whole scale-space 
is obtained in O(N2(ro/At)) time. The algorithm can 
be parallelized, reducing the complexity to O(ro/At ). A 
different way of reducing the algorithm complexity is 
by performing the numerical evolution only at the 
neighborhood of the set boundary, i.e. just on the curve 
or zero level set. This makes the algorithm linear 
instead of quadratic. Therefore, we see that the algorithm 
is more time consuming than classical discrete mor- 
phology. On the other hand, in contrast with discrete 
morphology, the results obtained "look" like conti- 
nuous morphology, making it very attractive. 

The proposed method attempts to solve one of the 
most difficult problems in digital morphology: the di- 
gital implementation of a morphological scale-space 
with smooth convex structuring element. From the 
examples presented (see Fig. 8), we see that with this 
approach, we obtain a digital implementation of mathe- 
matical morphology which agrees with the intuition 
provided by continuous morphology. Note that in 
contrast with discrete morphological dilation, based 
on small template approximation of a circle, prolonged 
time dilations provided by the proposed algorithms, 
accurately approximate a disk. Furthermore, with the 
proposed algorithm, sub-pixel approximations of mor- 
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phological  opera t ions  are obta ined.  Classical discrete 

morpho logy  canno t  achieve such accuracy. 
We conclude tha t  the discret izat ion of con t inuous  

morpho logy  presented here, approximates  con t inuous  
morpho logy  much  bet ter  t han  the classical discrete 
morphology.  This result can be applied to the areas 
where con t inuous  morpho logy  achieves good results. 
These include sub-pixel distance computa t ion ,  shape 
offsetting, skeleton computa t ion ,  CAD, ~3 l) and  geom- 
etric smooth ing  (see Fig. 8). These and  other  appli- 
cat ions are current ly  being implemented.  
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APPENDIX 

We now describe the numerical implementation of equa- 
tion (15). For simplicity, we consider the one-dimensional 
case, and assume that fl = - 1. For more details, extensions 
to higher dimensions, and other functions ,-q, see references 
(11, 12, 29). 

The one-dimensional version of equation (I 5) is ([~ = - 1) 

O, = 11VO 1] = x/(O~). (A l) 

Define u a__ Ox and H(u) a= _ x/(u2) By differentiation of the 

above equation with respect to x, we obtain the following 
hyperbolic conservation law: ~11.2 v.291 

u, + [H(u)]x = 0. (A2} 

To devise a numerical scheme, define uTa=u(iAx, nAt). A 
three-point conservative and monotone, differential scheme 
is built for uT, holding (A2)/1 u It can be proven that a scheme 
of this kind, obeys the entropy conditionJ TM 

From the scheme for u, the one for • is obtained by inte- 
gration.i11.121 If H(u) = h(uZ), a simple numerical flow of (A 1 ) 
is given by the following equations: 

g(uT, uT+ 1) ~= h[(min {u~,0})2 + (max {u7+1,0} ) 2  ] 

o7 + ~ = o7 + At- g (O - 07, O + O7) 

w h e r e  D - ( O , . " ) = ( O i " - O " , .  l ) /Ax  and  O+lO,  ") 
(07+ 1 - OT)/Ax. 

This is a so-called first-order scheme. More sophisticated 
higher order schemes, as well as accuracy and stability analysis, 
are presented in reference (11). The above scheme is easily 
extended to more than one dimension, and to different func- 
tions H(u,v) as those in equation (19). For example, for 
H(u, v) = h(u 2, v 2) (u = • x, v = Or) we obtain 

g = h((min (D; (O7j), 0))2 ~_ (max (D:, + (O7j), 0))2: 

(min (D• (O7j), 0))z + (max (D; (O,."j), 0))2 ) 

07/1 _ , . - . . . .  
- -  Oij + At g(D x (Oij), Dx (Oij), 

- n + n D r (Ou),Dy (Ou)). (A3) 
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Note that the discretization of the evolution equations is 
performed on a rectangular grid. 112) This rectangular grid 
can be associated with the pixel grid of digital images, making 

this discretization method natural for image processing. As 
pointed out in Section 4, this method also allows sub-pixel 
approximation. 
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