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causes the center of mass to move in a conic section, e.g.,
in case of uniform gravity a parabola described byThis paper deals with a problem in computer vision: how to

recover the motion of a disk, thrown toward an observer, from
a sequence of images acquired by a pinhole camera. Polynomial
equations describing the motion are established, and techniques
from algebraic geometry are used to show that in general a 5

xcm(t) 5 x0 1 vxt

ycm(t) 5 y0 1 vyt

zcm(t) 5 z0 1 vzt 2
gt2

2
,

sequence of three images is sufficient for the recovery of motion
of the disk when it is known to be moving along a straight line,
and that five images suffice in the more general situation in
which the disk travels in a gravitational field. Examples are

where (x0 , y0 , z0) and (vx , vy , vz) are the initial positionworked out in detail to illustrate our results.  1996 Academic Press, Inc.

and velocity. About the center of mass the gravitational
forces acting on the rigid body have no torque, hence,

1. INTRODUCTION (under the assumption that air friction, etc., are negligible)
the motion about the center of mass conserves the angular

In this paper we consider the problem of recovering the momentum L. Since the rotational kinetic energy is con-
physical motion of a disk when its outline, or just several stant, we have that L ? v(t) is constant as well. Conse-
points on its perimeter,are assumedto bevisible to apinhole quently v(t), the instantaneous angular velocity, has a con-
camera imaging system. The perspective projection of the stant projection on a fixed direction and may wander about
disk’s boundary onto the image plane is an ellipse in general, in the plane defined by L ? v(t) 5 L ? v(0). It turns out to
with a line segment or a circle being special cases. Individual be very difficult to analyze exactly the motion of v(t)
point correspondences between frames need not be known. in this plane for general bodies characterized by general
Rather, just enough points to determine each ellipse are all moments of inertia. However, in case the object has a
that is needed. Once the motion parameters are recovered, rotational axis of symmetry one can rather easily deduce
the entire trajectory of the object becomes available, en- that v(t) is either constant or has a constant length and
abling a robot system to generate the actions necessary to precesses about L on a circle in the plane L ? v(t) 5 con-
catch the free-flying disk. (see Fig. 1.) We shall show that in stant (see [1]). This implies that points on that object move
the case of a disk moving along a straight line at constant according to the constraints discussed below.
speed three image frames in a sequence with known timing
are sufficient to recover the motion parameters and predict 3. FORMULATION AND NOTATION
the future trajectory. There is a possible ambiguity of the
disk’s rotation in case one cannot determine which side is The image geometry of the problems we will consider
facing the camera in each frame. If the disk is instead moving is shown in Fig. 1. A pinhole camera model is used. Without
along a general conic section as it would in outer space, five loss of generality we can take z 5 1 to be the image plane.
image frames are sufficient to determine uniquely its motion Images are taken of a moving object at evenly spaced times
and trajectory. tj , starting at t0 . It is not necessary for the time intervals

to be equal so long as they are all known in order to2. SOME PHYSICS OF RIGID BODIES IN FREE FALL
analyze these problems, but the algebra is considerably
simplified with the equal time intervals condition. By pro-When a rigid body is thrown in the air, its motion is
cessing these images, one attempts to determine both thegoverned by the laws of dynamics. The gravitational force
motion and the structure of the object. The motion parame-
ters are determined by solving equations in which the given1 Permanent address: Dept. of Computer Science, Technion—IIT

32000, Haifa, Israel. data are the coefficients of equations for image ellipses.
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the disk has center p0 5 (x0 , y0 , z0), radius r, and lies on
the plane G(x 2 x0) 1 H(y 2 y0) 1 I(z 2 z0) 5 0, where
G, H, and I are normalized so that

G2 1 H 2 1 I 2 5 1. (2)

Then its perspective projection onto the plane z 5 1 is
given by Ax2 1 Bxy 1 Cy2 1 Dx 1 Ey 1 F 5 0, where

A 5 (G2 1 H 2)y2
0 1 2HIy0z0 1 (G2 1 I 2)z2

0 2 G2r2

B 5 2[GHz2
0 2 (G2 1 H 2)x0y0 2 HIx0z0

2 GIy0z0 2 GHr2]

C 5 (G2 1 H 2)x2
0 1 2GIx0z0 1 (H 2 1 I 2)z2

0 2 H 2r2 (3)

D 5 2[GIy2
0 2 (G2 1 I 2)x0z0 2 HIx0 y0 2 GHy0z0 2 GIr2]

E 5 2[HIx2
0 2 (H 2 1 I 2)y0z0 2 GIx0y0FIG. 1. Perspective imaging geometry for a rotating circular disk.

The disk is rotating about some line through p0 , its center. The ellipse 2 GHx0z0 2 2HIr2]
on the image plane is the perspective projection of the disk.

F 5 (G2 1 I 2)x2
0 1 2GHx0y0 1 (H 2 1 I 2)y2

0 2 I 2r2.

The quantities (A, B, C, D, E, F) are determined up to aThe following notation will be used:
common scale factor.

Let N( j) 5 [G( j) H ( j) I( j)]T denote the normal vector top 5 (x, y, z) coordinates of a 3D point at
the plane of the disk at time tj . Then we have RN( j) 5time t0 ,
N( j11), or

P 5 (X, Y, 1) coordinates of the correspond-
ing image point at t0 , R[G( j) H ( j) I ( j)]T 5 [G( j11) H ( j11) I ( j11)]T, (4)

p( j) 5 (x( j), y( j), z( j)) coordinates of the same 3D
and N( j21) ? N( j) 5 N( j) ? N( j11), orpoint at time tj ,

P( j) 5 (X( j), Y( j), 1) coordinates of the image point
G( j21)G( j) 1 H ( j21)H ( j) 1 I ( j21)I ( j) 5 G( j)G( j11)

(5)at tj .
1 H ( j)H ( j11) 1 I ( j)I ( j11).

The superscript ( j) denotes j ‘‘primes’’ and refers to quanti-
In the course of solving equations of the form (3), it wasties at time tj . The object and image point coordinates are

found to be expeditious to use resultants to eliminate therelated by
unknowns x0 , y0 , z0 , and r. For good discussions on resul-
tants see [5, 6]. In this process, it was found using the
symbolic manipulation program MAPLE [7] that certain

Xi 5 xi/zi , Yi 5 yi/zi

X ( j)
i 5 x( j)

i /z( j)
i , Y( j)

i 5 y( j)
i /z( j)

i .
(1)

factors in the resulting polynomials could be eliminated,
and the following equations remained, dropping the super-

In these problems the observed quantities are the elliptic scripts:
projections of the disk onto the image plane z 5 1. The
unknown quantities we wish to determine are the 3D loca- 2BEG2H 1 B(C 2 F)G2I 1 (AE 1 BD)H 2

tion of the disk’s center, its radius, trajectory, the plane 1 2A(F 2 C)GHI 1 (BD 2 AE)GI 2

on which it lies, and the rotation R. Here R is the rotation 2ADH 3 1 BFH 2I 2 (AD 1 BE)HI 2 1 BCI 3 5 0 (6)
to which the disk is subjected. The axis of R is in the same

2EGH 2 1 2H(C 2 F)GHI 1 EGI 2 1 DH 3direction as L, the axis of precession as described in Section
2BH 2I 1 DHI 2 2 BI 3 5 0.2, and the angle of rotation is the angle formed by the

projections of the normals to the disk at two successive
times onto a plane perpendicular to L. As the permutations (A, E, G, x0) R (C, D, H, y0) R (F, B,

I, z0) leave Eqs. (3) unchanged, four more equations can beWe will now establish several polynomial equations re-
lating the unknowns, a technique used in [2–4]. Suppose obtained by applying these permutations to (6). The validity
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of these equations can be verified by direct substitution of [8]. In each case two solutions for (G, H, I, G9, H9, I9, G0,
H 0, I 0) up to a common scale factor were found, but the(3) into (6).

Among the intermediate results obtained while eliminating only difference between the two solutions is that the signs
of (G9, H9, I9) were reversed. This corresponds to thevariables one at a time is this equation which is homogeneous

and linear in x0 , y0 , z0 possibility that the disk is ‘‘flipped’’ in the second frame.
The disk flips between times tj and tj11 if the signs of I ( j)

and I ( j11) are different. Since N9 5 [G9H9I9]T and 2N9 are(EI 2 1 EG2 2 DGH 2 2FHI)x0 (7)
normal to the same plane, the actual planes of the disk at5(DH 2 1 DI 2 2 EGH 2 2FGI)y0 ,
times t0 , t1 , and t2 are uniquely determined. Also, dehomo-
genizing the solution with Eq. (2) gives two inhomoge-and the two equations obtained by taking the same permuta-
neous solutions corresponding to each of the two homoge-tions of variables. Once the quantities G, H, I are determined
neous solutions which are complete opposites of eachfor each frame, the unknowns x0 , y0 , z0 can be found using
other. The four solutions for the normals may be written(7) and appropriate constraints on x0 , y0 , z0 , such as whether
as (N, N9, N0), (2N, 2N9, 2N0), (N, 2N9, N0), and (2N,they lie on a line or a general conic.
N9, 2N0). The algebraic geometry theorems below can be
used to show that there are in general four solutions for4. THREE VIEWS OF A DISK IN CONSTANT
the normals to the three planes. Hereinafter the phraseLINEAR MOTION
‘‘in general’’ will mean that the stated property holds for

In this problem the disk is precessing about some axis all possible values of the image data except for a subset
through its center, while the center itself is moving with of measure zero.
constant velocity along some line. Let p( j)

0 be the point on The finding of the normal vectors immediately allows
the line at which the disk’s center is located at time tj . If the rotation R to be determined. Geometrically, the axis
p is an arbitrary point on the disk at time t0 , then the of rotation is the direction toward the center of the circle
motion of that point is governed by defined by the tips of the vectors, and the angle of rotation

is the angle formed by the projections of N and N9 onto
p( j) 5 p( j)

0 1 R j(p 2 p0), (8) a plane perpendicular to the axis of rotation. The rotations
corresponding to the triples (N, N9, N0) and (2N, 2N9,
2N0) are identical, as are the rotations corresponding tofor some 3 3 3 rotation matrix R. Knowledge of the posi-
(N, 2N9, N0) and (2N, N9, 2N0), but in general the fourtion of the center of the disk at three time instants allows
rotations correspond to two distinct identical pairs.the determination of its speed and the line on which it

Once the values of the G( j), H ( j), and I ( j) are determined,travels. Furthermore, in addition to Eqs. (2)–(7), we
Eqs. (7), (9), and (10) are used to find the center of thealso have
disk at each time instant and the translation T. In each
case the quantities (x0 , y0 , z0 , x90 , y90 , z90 , x00 , y00 , z00) and Tp90 5 p0 1 T p00 5 p0 1 2T, (9)
were uniquely determined up to a common scale multiple.
The same values were obtained independent of the fourfor some 3 3 1 translation vector T, and hence
ways the normals N, N9, N0 may be chosen. The solution
for (p0 , p90 , p00) may be normalized in such a way that the

p0 2 2p90 1 p00 5 0. (10) disk has unit radius and z . 0, the latter condition being
equivalent to the center of the disk being located in front

In order to discover all the unknowns, it is simplest to of the camera at time t0 . An example with a unique solution
first solve for the G( j), H ( j), and I ( j), which describe the for the p( j)

0 and two solutions for R and the (N, N9, N0) is
plane on which the disk lies at time tj . In order to use the given in Example 1. Since there is an example with exactly
algebraic geometry theorems in the appendix below we two solutions, we can use Lemmas 1 and 2 below to claim
must have a system of homogeneous equations. Equations that there are two solutions for nearly all possible ob-
(5), (6), and (7) are already homogeneous in the G( j), H ( j), served data.
and I ( j), while Eq. (2) will be put into this form to make
it homogeneous as well: THEOREM 1. Suppose we are given the perspective pro-

jections of a disk, in torque-free rigid motion about its center,
G( j)2

1 H ( j)2
1 I ( j)2

5 G( j11)2
1 H ( j11)2

1 I ( j11)2
. (11) at three evenly spaced time intervals. Suppose further that

the center is known to be traveling along a straight line at
constant velocity. Then there is in general a unique solutionSolutions for several specific examples of the system

comprising (5)–(7) and (11) were found through the use of for the trajectory of the center of the disk, and two solutions
for its rotation. If one can keep track of which side of thethe algebraic geometry computing package MACAULAY
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disk is facing the camera, then there is in general a unique
solution for its rotation as well.

The complete proof is quite involved and can be found Rank3
G0 G90 G00 G-0 G(4)

0

H0 H90 H 00 H-0 H (4)
0

I0 I90 I 00 I-0 H (4)
0

1 1 1 1 1

45 3, (13)
in the appendix.

5. FIVE VIEWS OF A DISK IN GENERAL MOTION

or in other words, each of the five 4 3 4 subdeterminantsIn this problem the disk is precessing about some axis
of (13) is zero. The above results can be rephrased asthrough its center, while its center is moving along some
saying that there is a unique solution of Eq. (5)–(7) andconic section. The motion of an arbitrary point p on the
(11)–(13) for (G, H, I, G9, . . . , I (4)) up to a commondisk is still governed by Eq. (8), but the center is no longer
scale factor.constrained by (9) or (10). Instead, in addition to Eqs.

Once the values of the G( j), H ( j), and I ( j) are determined,(2)–(7) and (11), we will use the fact that the center of
Eqs. (7) and (12) are used to find the center of the diskthe disk travels on a plane. Thus we obtain
at each time instant. In each case the quantities (x0 , y0 ,
z0 , x90 , . . . , z(4)

0 ) were uniquely determined up to a com-
mon scale multiple. The solution for (p0 , p90 , p00 , p-0 , p(4)

0 )
may be normalized in such a way that the disk has unit
radius and z . 0, the latter condition being equivalent toRank3

x0 x90 x00 x-0 x(4)
0

y0 y90 y00 y-0 y(4)
0

z0 z90 z00 z-0 z(4)
0

45 2, (12)
the center of the disk being located in front of the camera
at time t0 . An example with a unique solution is given in
Example 2. Since there is an example with a single solution,
we can use Lemmas 1 and 2 below to claim that there is

or in other words, each of the ten 3 3 3 subdeterminants a unique solution for nearly all possible observed data.
of (12) is zero. Knowledge of the position of the center of

THEOREM 2. Suppose we are given the perspective pro-the disk at five time instants allows the determination of
jections of a disk, in torque-free rigid motion about its centerthe conic section on which it travels.
at five evenly spaced time intervals. Suppose further that theAs was the case with constant linear motion, it is still
path of the center is known to be a conic section. Then theresimplest to first solve for the G( j), H ( j), and I ( j). Solutions
is in general a unique solution for the trajectory of the centerfor several specific examples of the system comprising (5)–
of the disk and for its rotation.(7) and (11) were found through the use of MACAULAY.

In each case two solutions for (G, H, I, G9, . . . , I (4)) The proof is very similar to that of Theorem 1 and a sketch
up to a common scale factor were found, with the only may be found in the appendix.
difference between the two solutions being that the signs
of (G9, H9, I9, G-, H-, I-) were all reversed. This corre-

6. EXAMPLESsponds to the possibility that the disk is flipped in the
second and fourth frames.

EXAMPLE 1. This is an example where three snapshots
As before, dehomogenizing the solution with Eq. (2)

of a rotating disk are taken at evenly spaced time intervals
gives two inhomogeneous solutions corresponding to each

(see Fig. 2). We assume that the center of the disk travels
of the two homogeneous solutions which are complete

along a straight line at constant speed. There are two possi-
opposites of each other. The four solutions for the normals

bilities for the rotation of the disk, while its center and the
may be written as 6(N, N9, N0, N-, N(4)) and 6(N, 2N9,

path of its center are uniquely determined up to a common
N0, 2N-, N(4)). However, there is a significant difference

scale factor.
when it comes to solving for the rotation R. If the tips of
the vectors N9 and N- are co-circular with those of (N, N0,
N(4)), then in general 2N9 and 2N- will not be. Therefore

j 0 1 2
there is a rotation compatible with only one of the sets of
normal vectors (N, N9, N0, N-, N(4)) and (N, 2N9, N0, A( j) 33 144 185

B( j) 24 2264 3882N-, N(4)), and thus a unique solution for the rotation.
Another way of looking at this is to impose the condition C( j) 13 128 365

D( j) 222 192 94that the tips of the five vectors (N, N9, N0, N-, N(4)) all lie
on a circle. An equation expressing the weaker condition E ( j) 232 2184 4

F ( j) 12 65 8that the tips of these five vectors are coplanar is
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FIG. 2. Image plane observations for Example 1. Parts (a), (b), and (c) are the views at times t0 , t1 , and t2 . The bold ellipses are the
images of the disk, and the light line segments represent the normal to the plane of the disk. In each frame, the point depicted on the
normal represents the image of the center of the disk.

With these observations we find the following solutions.

R 5 3
0 1 0

21 0 0

0 0 1
4j 0 1 2

x( j) 1/3 21/3 21
ory( j) 4/3 1 2/3

z( j) 5/3 1 7/3
G( j) 2/3 62/3 22/3
H ( j) 2/3 72/3 22/3 3

0 21 0

3/5 0 4/5

24/5 0 3/5
4 .I ( j) 1/3 61/3 1/3

The coordinates (x( j)
0 , y( j)

0 , z( j)
0 ) are chosen so that the

disk has unit radius. The center of the disk travels on the The former rotation has the same side of the disk facing
the camera in all three views, while the latter rotation hasline (1/3, 4/3, 5/3) 1 (22/3, 21/3, 1/3)t. Between succes-

sive pairs of snapshots the disk is subjected to the rotation the disk flipped in the second frame.
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EXAMPLE 2. This is an example where five snapshots though results on the minimal number of snapshots neces-
sary to recover the motion are mathematically interestingof a rotating disk are taken at evenly spaced time intervals

(see Fig. 3). We assume that the center of the disk travels and pleasing, they should only be regarded as proofs of
the fact that the necessary information is indeed availablealong a conic section. The rotation of the disk is uniquely

determined, and its center and the path of its center are in the assumed input. A tracking system, or a robot at-
tempting to catch a flying saucer, will have to use moreuniquely determined up to a common scale factor.
robust data gathering processes.

APPENDIXj 0 1 2 3 4

A( j) 2729 16 9 4 1969 In this section the proofs of the algebraic geometry theo-
B( j) 23422 8 22 28 2182 rems needed for Theorems 1 and 2 are given. Some terms
C( j) 5905 64 1 4 3649 are needed and will now be defined. See also [9] and [3].
D( j) 27942 244 26 4 2806 Following Morgan and Sommese [9], on complex n-
E ( j) 4344 220 0 24 21816 space (Cn), an (affine algebraic) variety is the zero set of
F ( j) 3673 19 1 1 2839 finitely many polynomials. If V is a variety, then the Zariski

topology on V is obtained by defining the closed sets of
the topology to be the subvarieties (subsets of V whichWith these observations we find the following solutions.
are themselves varieties) of V. Sets that are both open and
dense in the Zariski topology are called Zariski open dense,

j 0 1 2 3 4 and these are also both open and dense in the usual com-
plex topology. A variety is irreducible if it cannot be ex-x( j)

0 9/5 2 1 0 1/5
pressed as the union of two proper closed subsets. Projec-y( j)

0 21/5 0 1 1 3/5
tive n-space Pn is the set of (n 1 1)-tuples (z0 , z1 , . . . ,z( j)

0 7/5 2 3 2 7/5
zn) besides (0, . . . , 0) where points lying on the sameG( j) 1/9 2/3 1 2/3 1/9
line through the origin are identified. Using terminologyH ( j) 4/9 2/3 0 22/3 24/9
from Hartshorne [10], a quasi-affine variety is an openI ( j) 8/9 1/3 0 1/3 8/9
subset of an affine algebraic variety. The notation A\B
indicates the set of points in A which are not in B, and A

The coordinates (x( j)
0 , y( j)

0 , z( j)
0 ) are chosen so that the denotes the closure of the set A. The proofs of the two

disk has unit radius. The center of the disk travels in the lemmas below can be found in [3] and [11].
plane x 1 2y 2 z 5 0 and on the ellipse which is the LEMMA 1. Let V be an irreducible affine algebraic vari-
intersection of this plane with the cylinder x2 1 2xy 1 ety. Let f be a rational map from V to Cn given by (p1/q1 ,
2y2 2 3x 2 4y 1 2 5 0. Between successive pairs of snap- . . . , pN/qN), where the pi and qi are polynomials and in par-
shots the disk is subjected to the rotation ticular PN

i51 qi is not identically 0 on V. Define V9 5
hz [ VuPN

i51 qi(z) 5 0j. Then f (VyV9) contains an irreducible
quasi-affine variety which is Zariski open dense in f (VyV9).

LEMMA 2. Let f (z, q) be a system of polynomials fi(z,R 5 3
2/3 2/3 1/3

22/3 1/3 2/3

1/3 22/3 2/3
4 .

q), i 5 1, . . . , N, where z [ U 5 Pj Pnj, a product of
projective spaces, and q [ Q where Q is an irreducible
quasi-affine variety. Suppose there is a q0 [ Q such that

7. CONCLUSIONS f(z, q0) 5 0 has only a finite number k of solutions. Then
there is a Zariski open dense set Q0 # Q such that f(z,

We have shown that five snapshots of a flying saucer q) 5 0 has at most k (nonsingular) solutions for all q [
undergoing torque-free rigid motion in a gravitational field Q0 . If the dimension of U is N (that is, oj nj 5 N), then
are enough to recover its entire trajectory and rotation. f (z, q) 5 0 has exactly k solutions for all q [ Q0 .
Furthermore, in the simpler case of constant linear motion

Here the phrase ‘‘in general’’ can be made more precise.three snapshots suffice provided that we can keep track of
Properties holding in general are true for all data valuesthe side that is facing the camera. The snapshots provide
except for those in the complement of a Zariski open denseonly the outline of the disk-like object. However, to really
subset of the set of data values, or parameter space. Suchtrack a flying disk-like object, we shall need a continuous
a set is of lower dimension than and has measure zero insequence of images, and an extended Kalman filter type of
the parameter space.tracking algorithm. Such an algorithm is robust to modeling

errors and incorporates all the information available. Al- THEOREM 1. Suppose we are given the perspective pro-
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FIG. 3. Image plane observations for Example 2. Parts (a) through (e) are the views at times t0 through t4 . The bold ellipses are the
images of the disk, and the light line segments represent the normal to the plane of the disk. In (d), the disk is seen edge on and its image
is a line segment. In each frame, the point depicted on the normal represents the image of the center of the disk.

jections of a disk, in torque-free rigid motion about its center for its rotation. If one can keep track of which side of the
disk is facing the camera, then there is in general a uniqueat three evenly spaced time intervals. Suppose further that

the center is known to be traveling along a straight line at solution for its rotation as well.
constant velocity. Then there is in general a unique solution
for the trajectory of the center of the disk, and two solutions Proof. We will show that the system comprising Eqs.
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(5)–(7), (10), and (11) has a unique solution for the p( j) (5)–(7), (10), and (11) has exactly two solutions at all points
and T and two solutions for R for almost all possible values of a Zariski open dense subset of Q. n
of the observed data. Then knowing the position of the

THEOREM 2. Suppose we are given the perspective pro-center of the disk at three time instants allows us to deter-
jections of a disk, in torque-free rigid motion about its centermine on which line it is traveling and its speed.
at five evenly spaced time intervals. Suppose further that theIn order to use Lemmas 1 and 2, a parameter space W
path of the center is known to be a conic section. Then theremust be introduced. Here the parameter space W will be
is in general a unique solution for the trajectory of the centerthe set of all points (A, B, C, D, E, F, A9, . . . , F0) in C18

of the disk and for its rotation.such that there is a 3 3 3 rotation matrix R, a 3 3 1 vector
T, and scalars x0 , y0 , z0 , r, G, H, I for which Eqs. (3) (along Proof. The proof is very similar to that of Theorem 1
with versions with one and two primes on each variable), and will not be given in detail. We show that the system
(4), and (9) hold. (5)–(7), (11), and (13) has one solution for the trajectory

It will now be shown that the system of Eqs. (3), (4), and and the rotation for almost all possible values of the ob-
(9) satisfies the hypotheses of Lemma 1. The irreducible va- served data by presenting one example with a unique solu-
riety V of Lemma 1 is SO(3) 3 C3 3 C7, where SO(3) is the tion for hG, H, I, G9, . . . , I (4), x0 , y0 , z0 , x90 , . . . , z(4)

0 j
special orthogonal group of 3 3 3 matrices with determinant in P14 3 P14. Such an example is presented in Ex-
1. V is irreducible because Cn and SO(n) are for all n. A point ample 2. n
w in V can be regarded as a 9-tuple (R, T, x0 , y0 , z0 , r, G, H,
I). The closed set V9 is hw [ Vuz0z90z00 5 0j. This eliminates REFERENCES
the degenerate cases where the center of the disk lies in
the camera plane in at least one of the views. The map 1. S. W. McCuskey, Introduction to Advanced Dynamics, Addison-Wes-

ley, Reading, Massachusetts, 1959.f : V\V9 R W is given by f (R, T, x0 , y0 , z0 , r, G, H, I) 5 (A,
2. H. Shariat and K. Price, The motion problem: How to use more thanB, C, D, E, F, A9, . . . , F 0), where the A( j), . . . , F ( j) are

two frames, IEEE Trans. Pattern Anal. Mach. Intell. 12, 1990, 417–434.given by Eqs. (3), (4), and (9). The parameter space W is
3. R. J. Holt and A. N. Netravali, Motion and structure from multiplef (VyV9). All the hypotheses of Lemma 1 are satisfied, so

frame correspondence, AT&T Technical Memorandum 11256-there is an irreducible quasi-affine variety Q # W which is
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