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Abstract 

Consider a projectile that must be launched at a given time from a given point into linear constant velocity motion, facing 
possible encounters with other objects moving at known constant speeds. The cost (or utility) of interaction between the projec- 
tile and each object is quantified by an essentially arbitrary, possibly object-specific, function of proximity. It is shown that this 
constrained problem framework allows fast approximation of the globally optimal projectile velocity using Hough-Transform 
techniques. 

1. Introduction 

Suppose that a projectile has to be launched from 
a given point and at a given time, to travel at constant 
velocity on a straight line through a region in space 
in which other objects move at known constant 
speeds. The cost (or the utility) of an encounter be- 
tween the projectile and each of the other objects de- 
pends on their proximity and is quantified by an es- 
sentially arbitrary and possibly object-specific 
function of the minimum distance, which is referred 
to in the sequel as the cost function. This paper is 
concerned with the problem of choosing the constant 
velocity such that the total cost associated with the 
resulting trajectory would be minimized. 

Somewhat related problems arise in the field of  ro- 
bot navigation and path planning in the presence of 
obstacles (see, e.g., Khatib, 1986; Hwang and Ahuja, 
1989; Warren, 1989; Rimon and Koditschek, 1990). 
Robot path planning is usually studied in a frame- 
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work that admits variable velocity robot motion and 
various complicated shapes of the robot and the ob- 
stacles. On the other hand, even with the potential 
function approach, the only significant interaction 
possible between the robot and the obstacles is 
collision. 

The approach taken in this paper is different; quite 
general interaction mechanisms can be represented 
by essentially arbitrary and possibly object-specific 
cost functions, but the constraint of linear constant 
velocity motion and an assumption that the projec- 
tile and the other objects are small, allow to rapidly 
obtain an approximation to the global opt imum us- 
ing parameter space techniques related to the Hough 
Transform (Duda and Hart, 1972; Ballard, 1981). 
The latter is a useful method for detecting lines, cir- 
cles and other pre-defined shapes in digital images. 
Kiryati and Bruckstein ( 1991 ) apply Hough-Trans- 
form techniques to design optimal straight paths be- 
tween s t a t i o n a r y  points that are surrounded by radi- 
ally symmetric cost fields. 

For clarity of presentation, the results are de- 

0167-8655/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
SSD10167-8655 (93) E0046-Q 



330 Y. Pnueli et aL / Pattern Recognition Letters 15 (1994) 329-336 

scribed in a two-dimensional space• As demonstrated 
in the text, the generalization to three dimensions is 
straightforward. 

Preliminary results were reported by Pnueli et al. 
(1989). 

2. Problem formulation 

Let { g i l i =  1,..., n) and {0~1 i=  1 .... , n} respec- 
tively denote the initial position and the (constant) 
velocities of n objects in a two-dimensional space. Let 
gp be the initial position of a projectile, and let gp de- 
note its constant velocity that must be chosen. A cost 
function c~ is associated with each object, quantifying 
the cost of interaction between the object and the 
projectile, as a function of the highest proximity at- 
tained r m~n. The problem is to select ,~opt that mini- ~p 

mizes the total cost, i.e., 

/~pnpt =arg min ~ ci(rmin(vp) ) ( 1 ) 
Op i=l  

Variations of this problem, e.g., to take "exposure 
time" or encounter synchronization into account are 
also considered. 

Let .2i={xi, yi}, Oi={Pxi,Vyi}, gp={xp, yp} and 
tTp = {v~., vy.}. At time t~> O, the distance between the 
projectile and a typical object is 

r,(t)= [IXp-X~ + t ( O p -  ~,)11. (2) 

The highest proximity rl~"(Op) is either the initial 
distance 

r , ( t=0)  =x/  (xp-x , )2  + ( yp -  yi) 2 , (3) 

or the distance at time t o that satisfies 

dr~(t=t°) =0 (4) 
dt 

if t o > 0. It is easy to show that 

to= (xi--Xp)(vxe--v*')+(Yi--YP)(vye--vY') (5) 
( v ~ . -  Vx,)~ + (v~. - v~,) 2 

and that 

n( t  o) = I ( x~ . -x3 (v~e-v~ , )  - ( y p - y , ) ( v + - V x , ) l  
( ( Vxp__Vxi)2 + ( Vyp__Vyi)2) 1/2 

hence 

• ~'r,(t= 0), t°~<O, 
rm'n(op)=[ri(toi) ' to>o" (7) 

Consider the possibility of solving (1) analyti- 
cally, i.e., by the solution of 

dc i Or rain O~ci(rmin(vp)) = 2 drmin = 0  ( 8 )  
OVxp OVxp ' 

OEcRrmin(#p) ) dc~ Or mi" 
dry v = ~ dr mi----~" Ovyp = 0 .  (9) 

Difficulties may arise first with the differentiability 
of C~(vmin(~p)), then with the (possibly numerical) 
solution of (8) and (9), and eventually due to the 
fact that these are just necessary conditions for local 
extrema. Thus, only with very special selection of cost 
functions the analytic approach might be computa- 
tionally attractive, and another approach should gen- 
erally be taken. 

3. The velocity space approach 

The velocity space approach to solving ( 1 ), i.e., to 
finding the projectile velocity vector ~, that mini- 
mizes the total cost 

C(Op)A ~ c,(rmin(op)) (10) 
i=1 

is based on creating a discrete approximation of 
C(O~), followed by an exhaustive search for the global 
minimum, as follows. 

First, an array of accumulators that will hold the 
discrete approximation of C(Op) is allocated. The 
number of accumulators depends on the desired res- 
olution and on the bounds on the velocity of the pro- 
jectile. In particular, assuming 

Ippl w V~xp "-[- V2~ ~< Urea x (11) 

with discretization steps Avx~ = Avy, = A, the discrete 
approximation of C(~p) requires 

2 Vmax 
NA- 2 A 2 (12) 

(6) accumulators, i.e., NA is O((vine/A)2).  
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For each of the n moving objects, a discrete ap- 
proximation of c i ( r3~ (#p ) )  as a function of ~p is 
computed and accumulated in the accumulator ar- 
ray. This is the heaviest computational burden in the 
process, requiring O(r/(Vmax/A) 2) operations: for 
each moving object and each quantized value of ~p, 
r3i~(~p) must be evaluated, c~(rmi~(~p)) must be 
computed and accumulated. The accumulator array 
is then searched to obtain the minimum, which is 
taken as an approximation to the global minimum of 
C(~p). 

In the sequel it is shown that the constraints 
embedded in the problem formulation induce special 
structure on the functions {ci(rmin(¢p))}. This al- 
lows to limit the operations that must be performed 
0 (n ( v ~ / A )  2 ) times essentially to actual accumu- 
lation, with only 0 (n (Vm~/A) )  operations in the ex- 
pensive evaluation of the functions {c~ (train (~p)) }. 

Fig. 1. The spatial structure of rmin(/?p) (and ci(rmm(~p) ) ). These 
functions are constant in a half-plane, and constant along rays in 
the other half-plane. 

4. Velocity space porcupines 

Consider the spatial structure of r~m(~p). In the 
space of projectile velocity vectors fp, the regions that 
correspond to negative and positive values of  t o are 
separated by the straight line, 

( x i - x p ) ( v x p - V x , ) + ( y , - y p ) ( v y p - V y i ) = O  , (13) 

that passes through the point 17~. Furthermore, ob- 
serve that (6) can be rewritten as 

r ~ ( t ° ) -  x/'lfl+'t~, (14) 

where 

o~ "_- vyp-vy ,  (15) 
V . x p  - -  V x i ' 

fl~ *---- Yp - - Y i -  ott (xp - -x , )  . ( 16 ) 

oti is constant along rays emanating from the point ~i 
in the velocity space. This means that rmin(ZTU) (and 
c~(rmin(zTp) )) are constant in a half-plane, and con- 
stant along rays in the other half-plane, as shown in 
Fig. 1. Computing the discrete representation of 
G(rmm(~p))  thus requires merely O(v~ax/A) evalu- 
ations of  r mm and of c~, rather than the O ((Vm~x/A) 2) 
evaluations required in the naive approach. 

The discretization of the velocity space leads to loss 

Fig. 2. A porcupine. This is the spatial structure of ci(r~in(Pp) ), 
with the constant value G(r~(t=O)) assigned to all points in a 
small circle around vi- 

of accuracy, and only an approximation to the global 
minimum of ( 1 ) is found. The resolution can be im- 
proved by decreasing A, i.e., increasing the density of 
the discretization grid and the total number of  accu- 
mulators. A difficulty seems to arise near the "focal 
points" (vi} in the parameter space, from which the 
rays emanate. Near these points very small changes 
in {~p} can lead to large changes in rmln(0p) and 
ci(r~in(~p) ). But, for values of ~p near a focal point 
~i, the relative speed between the projectile and the 
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Fig. 3. Visualization of  a porcupine-like voting pattern in an accumulator array, 

Fig. 4. The contents of  the accumulator array with eight objects initially located on a circle around the projectile, moving in the tangential 
directions. 
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Fig. 5. The contents of  the accumulator array with eight objects initially located on a circle around the projectile, moving towards the 
center of  the circle. 

object is nearly zero. Thus, the point of minimum 
distance will be reached only after a very long time. 
This means that in practical bounded time problems 
the constant cost c ~ ( r ~ ( t = O ) )  can be assigned to 
points in a small circle around f~, leading to a porcu- 
pine-like structure of ci(r~in(0p)), as shown in Fig. 
2. This allows a reasonable representation of 
c ~ ( r m i n ( ~ p )  ) by a finite resolution grid of  sampling 
points. 

The suggested algorithm has been implemented and 
the computational benefits in making use of the spa- 
tial structure of  {ci(rmin(vp))} have been demon- 
strated. Using a 400 × 600 accumulator array and de- 
fining cg(') as a large table of  640 entries, the 
execution time was about 3 seconds per object on a 
SPARCstation 14- workstation. It is also evident that 
the algorithm is very well suited to parallel 
implementation. 

The contents of the accumulator array for several 
arrangements of  objects are visualized in the follow- 
ing figures, all with cost functions of the form 

Ci( r rain) = a / r  mi"2 • ( 17  ) 

Fig. 3 shows the "porcupine" accumulation pattern 

associated with a single object. Fig. 4 corresponds to 
eight objects initially located on a circle around the 
projectile, and moving in the directions tangential to 
the circle. Fig. 5 relates to eight objects, initially lo- 
cated on a circle around the projectile, and traveling 
towards it. Fig. 6 is associated with eight objects as in 
Fig. 4 and eight objects as in Fig. 5, and is thus a su- 
perposition of those two images. Fig. 7 corresponds 
to a similar arrangement of objects, with eight objects 
moving in directions tangential to the circle and eight 
towards the center of the circle, but with a different 
initial position of the projectile, that does not coin- 
cide with the center of the circle and introduces 
asymmetry in the accumulation pattern. 

These results are easily extended to 3D. Defining 

Vzp - -  Vz~ 
7i~ (18) 

Vxp -- Vxi ' 

di ~- zp  - z i  - y i (  xp  - x~ ) , ( 1 9 )  

it is easy to extend (14) to obtain 

r, (t°) = - -~ /  ~ 2 ~  • (20) 
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Fig. 6. The contents of  the accumulator array, with eight objects as in Fig. 4 and eight objects as in Fig. 5. This figure is clearly the 
superposition of  Figs. 4 and 5. 

Fig. 7. The contents of  the accumulator array, with objects similar to Fig. 6, but with an initial position of  the projectile that does not 
coincide with the center of  the circle, thus introducing asymmetries. 
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a~, fl~, ~ and fii are again constant along rays emanat- 
ing from the point Oi in the velocity space, hence 
r~i"(Op) (and c i ( rmin(op) ) )  are constant in a half- 
space, and constant along rays in the other half-space. 
With bounded speed 

_ _  2 2 2 lop I--x/Vxp +Vyp +vzp<~Vmax (21) 

and with discretization steps Avxp = Avyp = Avzp = A, 
the number of  operations in the evaluation of the 
function {ci(rmi"(Op) )} is thus only O(n(Vm~x/A)2) ,  
even though the velocity space is three-dimensional. 

/AG2) = p / i ( G l ) .  (25) 

Hence, in the gradual interaction problem definition, 
even though Ii is not constant along lines through 0~ 
in the velocity space, there is a simple relation (25) 
between the values o f / ,  along such lines. It is thus 
possible to actually evaluate the integral (24) just on 
the boundary of the velocity space, and fill in values 
along straight lines from points on the boundary 
through 0~ according to (25). 

5. Continuous encounters 

In the original problem formulation (Eq. ( 1 ) ) the 
cost of  interaction between the projectile and an ob- 
ject depended only on the highest proximity reached. 
Suppose now that costs add gradually, i.e., if  the pro- 
jectile is at distance ri( t )  from an object for infinites- 
imal time dt, the cost is increased by ci(ri(t) ) dt. The 
problem is thus to select ,7opt according to - - p  

G°Pt=arg min ~ i ci(ri(OP' t ) )  dt (22) 
Op i = l  

0 

In the original problem we have shown that 
rmm(0p) (and c i ( r ~ ' n ( G )  ) ) are constant in the half 
of  the velocity space that corresponds to movement  
away from the object. Here, since costs add gradually 
and do not depend just on the highest proximity 
achieved, this is not the case• In the original problem 
we have also shown that in the other half-space 
rmm(0p) and c i ( rm 'n (o , ) )  are constant along rays 
emanating from 0~. This has been the key to a great 
computational advantage. In the present case, let 0pl 
and 0p2 be two projectile velocity vectors located on 
the same line passing through O, in the velocity space, 
i.e., for some real p, 

p(Op2 - 0 i )  :0p l  - O  i . (23) 

Let L (zTp) denote the total added cost due to the grad- 
ual interaction between the projectile and the object: 

<3O 
/ *  

L(v-p) "- J c i ( r i (G ,  t) ) d t .  (24) 
0 

Using Eqs. (2) and (23), it is easy to show that 

6. Simultaneous encounters 

Consider a modification of the original problem 
formulation. Again, n objects move at given constant 
velocities, and a projectile has to be launched at a 
given time into constant velocity motion. But here 
the goal is to reach a point in which all of the objects, 
or, e.g., the maximum possible number of objects, are 
within a given range from the projectile• It seems that 
such problems can be practically solved using com- 
putational geometry techniques; Pnueli et al. (1989) 
show that these problems can also be solved using the 
suggested parameter space approach. A meaningful 
comparison of the computational cost of  the two ap- 
proaches depends on the exact problem formulation, 
and should be performed in the context of  the actual 
application• 
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