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The application of gray-scale digitizers to digitization of binary 
images of straight-edged planar shilhouettes is considered. A mea- 
sure of digitization-induced ambiguity is introduced. It is shown 
that if the gray levels are not quantized and the spatial sampling 
resolution is sufficiently high, error-free reconstruction of the orig- 
inal binary image from the digitized image is possible. When the 
total bit-count for the representation of the digitized image is 
limited, i.e., sampling resolution and quantization accuracy are 
both finite, error-free reconstruction is usually impossible. In this 
case a bit allocation problem arises, and it is shown that the 
sensible bit allocation policy is to increase the quantization accu- 
racy as much as possible once a ‘%uffic~ent” spatial sampling 
resolution has been reached. o 1~1 Academic press, IK. 

1. INTRODUCTION 

The processing of images by a digital computer re- 
quires their prior digitization. It is customary to assume 
that the digitization of binary images should be carried 
out by assigning a single bit to represent the image bright- 
ness at each sampling point or the average brightness 
level within each picture element [l, 21. This process is 
referred to as a bilevel digitization scheme. As the sam- 
pling density increases, more accurate (less ambiguous) 
reconstruction of the original binary image is possible, 
hence the digitized image better represents the original 
one. However, when a binary image is scanned, the out- 
put of the sensor is a continuous variable, the resulting 
image being in gray scale. Due to the nature of the scan- 
ner’s spread function, the “gray level” at a picture ele- 
ment can be assumed to approximate the fraction of its 
area occupied by an object. To obtain a bilevel scheme, 
the scanner’s output is thresholded, and an information 
loss clearly takes place. Therefore the application of 
gray-scale digitizers to the digitization of binary images 
has been suggested [ 1, 3-51. 

’ This research was supported in part by the Foundation for Research 
in Electronics, Computers and Communications, administered by The 
Israel Academy of Sciences and Humanities. 

The motivation for gray-scale digitization of binary im- 
ages for machine use, as suggested in the sequel, lies in 
the hope that gray-level information can decrease the di- 
gitization induced ambiguity and enhance the accuracy of 
the representation, i.e., allow more accurate reconstruc- 
tions of binary images from their digitizations. (It is inter- 
esting to note that gray-scale display of binary images 
improves the appearance of edges to a human observer 
[I, 3, 61). 

Hyde and Davis [4] developed an estimation process to 
achieve sub-pixel accuracy of edges from gray-level data, 
which yielded little or no improvement with respect to 
estimation without gray-level information. Klaasman [5] 
studied the accuracy of the position of a reconstructed 
straight line on a grid from gray-level information, and 
concluded that for any finite spatial sampling density, the 
error in the position is finite even if the gray levels are not 
quantized. 

This paper focuses on the digitization of binary images 
of straight-edged silhouettes for machine use. The rela- 
tions between the nature of an image, the sampling den- 
sity (i.e., spatial resolution), the gray-level quantization 
accuracy, and the achievable reconstruction accuracy 
are studied. 

Assume that the gray levels are not quantized, and 
consider a straight edge which traverses a pixel. The gray 
level of the pixel yields a constraint on the position of the 
edge. If a few pixels are traversed by the edge, the inter- 
section of the respective constraints may uniquely deter- 
mine the edge and enable its error-free reconstruction. A 
few difficulties, however, arise: first, it is required that 
the edge would traverse at least a certain (small) number 
of pixels; second, it is difficult to extract a constraint 
from a pixel which is crossed by more than one edge; 
third, given a digitized image, it is not obvious how the 
pixels which were only traversed by a single common 
straight edge can be identified. This research shows that 
for images of straight-edged silhouettes, error-free recon- 
struction is possible if the gray levels are not quantized 
and the spatial resolution is sufficiently high. The re- 

31 
1049-9632191 $3.00 

Copyright 0 1991 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



32 KIRYATI AND BRUCKSTEIN 

quired spatial resolution depends on the amount of detail 
in the image, and, given a set of images, can be evaluated 
using simple geometric criteria. 

When the gray levels are quantized, error-free recon- 
struction is usually impossible. If the total number of bits 
available for digitization is fixed, a bit allocation trade-off 
arises between spatial resolution and gray-level quantiza- 
tion accuracy [ 1, 101. A “worst-case” measure for digiti- 
zation-induced ambiguity is introduced, and the bit allo- 
cation trade-off is studied. Extending the results of the 
unquantized case, it is shown that the sensible bit alloca- 
tion policy is to increase the quantization accuracy as 
much as possible, once sufficient spatial resolution has 
been reached. 

Comparing gray-level and bilevel digitization of binary 
images of straight-edged silhouettes, it is demonstrated 
that with gray-level digitization the performance im- 
proves exponentially as the total number of bits is in- 
creased, while a bilevel scheme only achieves linear im- 
provement. Hence if the total available number of bits is 
large, a low-resolution gray-level digitizer can potentially 
out-perform a high-resolution binary scanner. 

Preiiminary results appear in [ 121, [ 131. 

2. RECONSTRUCTION FROM EXACT GRAY 
LEVELS-MAIN RESULT 

In this section a model of an “exact gray level” digi- 
tizer is presented, and a class of binary images of 
straight-edged objects is defined. A theorem is then pre- 
sented, establishing the possibility of error-free recon- 
struction of an image in that class from its digitization, 
and stating the spatial-resolution requirement. 

The image to be digitized is assumed to appear on a 
unit-square retina, which is divided into N2 squares. A 
sampling point is set at the center of each square, and the 
digitizer’s spread function is assumed to be constant 
within a circle of radius 1/2N around the sampling point 
and zero elsewhere, as shown in Fig. 1. These circles are 

FIG. 1. Sampling geometry, N = 4. 
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FIG. 2. Violation of constraint X, - 1. 

referred to as “pixels”: {P(i, j)}. The digitizer’s output at 
each sampling point represents the average intensity 
within the respective pixel, and is assumed to be propor- 
tional to the area covered by objects in that pixel. This 
model approximates some real world digitizers, such as 
flying spot scanners. In this section it is further assumed 
that the exact, unquantized, output of the digitizer is 
available. 

Consider binary images in a unit square which consist 
of straight-edged silhouettes, with corners formed by no 
more than two edges each. Two straight edges meeting at 
a common corner are called adjacent. For every image of 
this type it is possible to find a sufficiently small real E > 0 
such that the following two constraints are met: 

x1 - 1: Let p be any straight edge in the image, and 
LY, y its (at most) two adjacent edges. Let Q E p be an 
edge point on /3, and C, a circle of radius (V’? + 1)~ 
centered at Q. For every such Q in the image, the only 
edges allowed within C, are p itself and only one of its 
adjacent edges (Y, y. Cp may, however, intersect the im- 
age boundary. A counterexample is shown in Fig. 2. 

x2 - 2: Construct a template as shown in Fig. 3. For 
every edge in the image it must be possible to align the 

FIG. 3. Template for constraint X1 - 2. 
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FIG. 4. Constraint XI - 2 is satisfied. 

main axis of the template along part of the edge, such that 
no other edge, nor the image boundary, intersects the 
template. See Fig. 4. 

An image fsatisfying these constraints for a given 8 is 
said to belong to the SX,(&) class of images. With an 
appropriate choice of E, the images of Fig. 5 belong to 
SX,(s), while regardless of I, the image shown in Fig. 6 
does not. 

THEOREM 1. Any image f E S&,(E), which was digi- 
tized by the “exact gray level” digitizer previously de- 
jined, can be reconstructed without error if 

N>i E’ 

A reconstruction process is described in Section 4, and 
its correctness is formally proven in [12]. 

3. RECONSTRUCTION FROM QUANTIZED GRAY 
LEVEL-MAIN RESULTS 

In the previous section it was assumed that the exact, 
unquantized, output of the digitizer at each pixel is 
known; in practical digitizers, however, the output is 
quantized. A gray-level quantization model is presented 
in this section, to complement the sampling model previ- 
ously described. Due to the quantization of gray levels, 
the correct reconstruction of an image from its digitiza- 
tion is ambiguous. To allow the comparison of digitiza- 

FIG. 5. Suitable images. 

FIG. 6. Unsuitable image. 
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tion schemes by the worst-case ambiguity that they 
cause, a measure of digitization-induced ambiguity for 
binary images of straight-edged objects is defined. Fol- 
lowing a restatement of the relevant class of images, an 
upper bound on the digitization-induced ambiguity in 
terms of the digitization parameters is established, lead- 
ing to a clear bit allocation rule. 

Let a continuous variable s(i, j) E [O, 77/4N2], i, j E 1, 
. . . ) N, denote the output of the scanner sensor at any 
pixel P(i, j) and represent (recall that the preimage is 
binary) the total area taken by objects within the pixel. 
The quantization model employed is that each of the re- 
sulting N2 variables {s(i, j)} is assumed here to be nonli- 
nearly quantized as follows: 

Define cu(i, j) E (0, 2371 by 

s(i, j) = 0.5(l/2N)2[(u(i, j) - sin (~(i, j)]. (2) 

Define r(i, j) E [-I /2N, 1/2N] by 

r(i, j) = (1/2N) cos[O.Sa(i, j)]. (3) 

Then for a totally white (“all background”) pixel s(i, j) = 
0 and r(i, j) = 1/2N; for a totally black (“all object”) 
pixel, s(i, j) = 7r/4N2 and r(i, j) = -1/2N. If a pixel 
contains a single straight edge, then a(i, j) and r(i, j) 
have a clear geometric interpretation, lr(i, j)( being the 
distance between the edge and the center of the pixel, as 
shown in Fig. 7. The variables {r(i, j)) are quantized 
uniformly, with the exception that the values r(i, j) 1 I/ 
2N (“all white”) and r(i, j) 5 -112N (“all black”) are 
represented by distinct codes, analogous to the “over- 
flow” and “underflow” indications in A/D converters. 
Let rQ(i, j) denote the quantized value of r(i, j). Since 
the nonlinear transformation s(i, j) + r(i, j) is l-l, rQ(i, 
j) is a quantized representation of s(i, j) as well. In the 
following r(i, j) is referred to as the (i, j) pixel value, and 
rQ(i, j) is referred to as the (i, j) quantizedpixel value. If 
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r(i,j)cO r(i,j)>O 

FIG. 7. The geometric interpretation of cr(i, j) and r(i, j). 

b bits are available for gray level quantization, i.e., for 
the quantization of r(i, j), then the maximum quantiza- 
tion error is 

Ar = maxlrQ(i, j) - r(i, j)l = 2N(2: _ 2). (4) 

The output of the digitizer is the set of N2 quantized 
values {rQ(i, j)}, i, j E 1, . . . , N, and the total bit count 
is 

B = N2b. (5) 

Given a certain total number of bits B available for digiti- 
zation, a bit allocation tradeoff arises between gray-level 
quantization (by 6) and spatial resolution (by N). 

In this paper digitization schemes are to be compared 
by the worst-case ambiguity that they induce on the re- 
construction of an image from its digitization. Let Bx 
denote a class of binary images of straight-edged objects 
which satisfy a set of constraints X. Let f E Bx be an 
image in the class, and let /3 E fbe a straight edge in the 
image. Straight edges can be represented (excluding their 
extent) by their normal parameters (p, 0) [7]; for unique- 
ness of edge representation p > 0 values are used when 
the intensity vector, defined as shown in Fig. 8, points 
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FIG. 8. The normal representation of edges. 

away from the origin, and p < 0 values are used when the 
intensity vector points toward the origin. The normal rep- 
resentation maps p to a point in the (p, 0) parameter 
plane. Consider the set of possible edges that have the 
same digitized appearance as /3 ; when normally repre- 
sented, this set corresponds to a domain up in the (p, 0) 
plane. A meaningful measure pfl of the ambiguity in p 
induced by digitization is the area of the domain a@. pP is 
actually the integral-geometry measure of the set of pos- 
sible edges which appear similar to /3, and is invariant to 
coordinate system translation and rotation [l 11. The in- 
terpretation of this measure is roughly equivalent to the 
meaning of the magnitude of parameter-plane quantiza- 
tion errors in the Hough transform [93. 

A measure px of the digitization-induced ambiguity as- 
sociated with the class %,r and a certain digitization 
scheme is 

(6) 

PX is thus defined as the worst-case ambiguity induced by 
digitization on any edge among all possible images in 5%~) 
and depends on the digitization scheme and on the spe- 
cific set of constraints X. 

Reconsider binary images in a unit square containing 
straight-edged silhouettes with corners formed by no 
more than two edges each. For every image of this type it 
is possible to find two sufficiently small real numbers E > 
0 and 6 > 0 such that the following three constraints are 
met: 

x2 - 1: Similar to Xi - 1, except that the radius of 
the circle is (4e + 1)~. 

x2 - 2: Similar to Xr - 2, except that the length of 
the segment OIOZ in the template is changed to 9.011~. 

x2 - 3: Let Bap denote the (smaller) angle between 
any two adjacent edges (Y and /3 in the image, hence 19,~ E 
(0, r). Every such angle in the image must satisfy OUp E 
(0, 7r - 6). 

An image fsatisfying these constraints for given E and 
6 is said to belong to the %&(a, 6) class of images. With 
an appropriate choice of E and 6 the images of Fig. 5 
belong to $xz(~, 6); however, regardless of E and 6, the 
image of Fig. 6 does not. 

THEOREM 2. An image f~ FFx2(c, 6) which was digi- 

N>J 
E 

b B max 4, 

tized by a digitizer satisfjhg 

1 
2 ’ 0.5 - sin(n/6 - 6/2) 1 11 (7) 
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(where 1x1 denotes the smallest integer equal to or larger 
than x) can be reconstructed such that the existence of 
every edge p E f is uniquely determined, and the ambigu- 
ity in /3 satisfies 

1 

” zs tiN(2b - 2)2’ 

A reconstruction process is described in Section 5, and 
its correctness is formally proven in [12]. Since pp de- 
creases faster with b than with N, then given a fixed total 
number of bits, the best bit allocation policy is lo allocate 
all available bits to improve the quantization accuracy as 
soon as the necessary spatial resolution is reached. 

4. HOW TO RECONSTRUCT AN IMAGE FROM EXACT 
GRAY LEVELS 

In this section a method is presented for the recon- 
struction of images which were digitized according to the 
requirements of Theorem 1. First we need some defini- 
tions. 

* A pixel P(i, j) is called gray if Ir(i, j>l < 1/2N. 
Note that Ir(i, j)] < 1/2N if and only if IrQ(i, j>l < 1/2N. 

* An edge p is said to generate a pixel P(i, j) if P(i, j) 
fl p # 0. The (gray) pixel P(i, j) is then said to be 
generated by the edge /3. 

* A gray pixel is called proper if it is generated by a 
single straight edge. Otherwise it is called improper. 

* A pixel P(i, j) and a pixel P(m, n) are neighbors if 
jrn - iI 5 1 and ]lz - j( 5 1. 

* A pixel-block B(i, j) (1 < i, j < N) is defined as the 
set of pixels consisting of P(i, j) and its eight neighbors: 
B(i, j) = {P(m, n) : jrn - i( 5 1 and In - jl 5 l}. 
Note that 1 < i, j < N implies that P(i, j) is not at the 
border of the image, hence it always has eight neighbors. 

* A pixel-block B(i, j) is called gray if its center pixel 
P(i, j) is gray. 

* A gray pixel-block is called proper if its gray pixels 
are all generated by a single common straight edge. The 
proper pixel-block is then said to be generated by the 
edge. 

* A gray pixel-block B is called strict-sense straight if 
it is possible to construct a proper pixel-block B’ having 
similar (quantized) pixel values. A straight edge p which 
generates B’ is said to fit B. 
Note that strict-sense straightness may thus strongly de- 
pend on the quantization accuracy. In the present con- 
text, equality of the (unquantized) pixel values is re- 
quired. 

* A gray pixel-block B is called wide-sense straight if 
it is possible to construct a proper pixel-block B’ such 

that black, white, and gray pixels in B correspond to 
black, white, and gray pixels in B’. 

It is obvious that any proper pixel-block is strict-sence 
straight, and that strict-sense straightness implies wide- 
sense straightness. 

An image f E gr,(&) which was digitized according to 
the requirements of Theorem 1 is shown in [12] to satisfy 
the following properties: 

* Every straight edge in the image generates at least 
one proper pixel-block. 

* Given a strict-sense straight pixel-block B, its cor- 
responding proper pixel-block is unique; i.e., if a straight 
edge p fits B, then /3 is unique. 

* A pixel-block B is strict-sense straight if and only if 
it is a proper pixel-block. 

These properties reduce the reconstruction problem to 
detecting the strict-sence straight pixel-blocks in the digi- 
tized image and determining the corresponding straight 
edges. For computational economy this can be carried 
out in stages: wide-sense straight pixel-blocks can be eas- 
ily found first by comparing each pixel-block to the lim- 
ited set of possible wide-sense straight pixel-block pat- 
terns, and strict-sense straight pixel-blocks can then be 
searched for only among the wide-sense straight group. 

Given a wide-sense straight pixel-block B(i, j) in a digi- 
tized image with exact gray levels, it is possible to detect 
whether or not it is strict-sense straight by regarding the 
nine pixel-values of B(i, j) as constraints on the position 
of a straight edge @ in an attempt to make /3 fit B(i, j); 
thus either the position (i.e., the parameters) of /3 is de- 
tected, or the existence of such j3 is ruled out. To illus- 
trate, consider a gray pixel P(k, 1) f B(i, j) whose center 
point (expressed in polar coordinates) is (pkl, 19~~) in re- 
spect to a coordinate system whose origin is located at 
the lower left corner of the retina (see Fig. 9). Let r(k, 1) 

BACKGROUND 

FIG. 9. The pixel-value v(k, I) constrains the normal parameters 
(pa, 0,) of any possible straight edge p through that pixel. 
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, 

FIG. 10. An input binary image. 

be the pixel value. If P(k, 1) is a proper pixel generated by 
a straight edge p of normal parameters (pp, Op), then the 
parameters must satisfy 

Pp = r&t 1) + p!d cos(q3 - e/d) (9) 

(9) is a constraining relation on (pp, 0,) due to P(k, 1). 
Represented in the (p, 0) parameter plane, (9) is a “d.c.- 
biased sinusoid” of amplitude pkl, phase shift &l, and 
bias r(k, I). A white pixel P(m, n) E B(i, j) yields 

ppz 1/2N+p mn cos($3 - &n> (10) 

and a black pixel P(m, n) gives 

pp 5 -1/2N + pmn cos(19~ - e,,). (11) 

Represented in the (p, 0) parameter plane, (10) and (11) 
constrain (pp, 0,) to respectively lie above or below a 
d.c.-biased sinusoid. 

Let oij denote the intersection in the (p, 0) plane of 
the nine constraints due to the nine pixels of B(i, j). Cij 
can be determined in many ways, one of them being a 
Hough-like algorithm [7, 81. If oij is an empty set, then 
there exists no edge /3 that fits B(i, j), hence B(i, j) is not 
strict-sense straight. If aij is not empty, then there exists 
an edge p with (pp, 0,) E cij. p fits B(i, j), and B(i, j) is a 
strict-sense straight pixel-block. 

A software package has been written to verify and 
demonstrate the possibility of using gray levels to accu- 
rately reconstruct digitized binary images. The input to 
the program is a synthetic binary image of straight-edged 
silhouettes as shown in Fig. 10. The program simulates 
the digitization process and displays the resulting average 
gray levels, as shown in Fig. 11. Then, using only these 
average gray level values, the program first detects the 
wide-sense straight pixel-blocks (these are marked by 
squares in Fig. 12), then the strict-sense straight pixel- 
blocks, and reconstructs the edges. Fig. 13 shows the 
strict-sense straight pixel-blocks, and within them the re- 
constructed edges. For comparison, the true original 
edges are also displayed. Since oij has been determined 
using a straightforward Hough-like algorithm, small er- 
rors, due to parameter-plane quantization effects, are vis- 
ible. They can be reduced as desired; e.g., by employing 
a “coarse to fine” focusing algorithm. 

FIG. 11. The image after digitization. The outlines of the original 
edges are indicated. squares. 

FIG. 12. The wide-sense straight pixel-blocks are indicated by 
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FIG. 13. The strict-sense straight pixel-blocks are indicated by 
squares. The reconstructed edges are shown within the pixel-blocks, as 
well as the original edges. Small differences, due to implementation- 
induced quantization effects, can be seen. 

5. HOW TO RECONSTRUCT AN IMAGE FROM 
QUANTIZED GRAY LEVELS 

In this section a method is presented for the recon- 
struction of images which were digitized according to the 
requirements of Theorem 2. We again need some defini- 
tions . 

* Two gray pixel-blocks B1 and B2 are said to be ad- 
joining if they have no common pixels, but there is a pixel 
bi E BI which has a neighbor b2 E &. 

* Three gray pixel-blocks B1, B2 and B3 are said to be 
an adjoining triplet if they have no common pixels, and 
B2 is adjoining both BI and B3. See Fig. 14. 

* An adjoining triplet is called proper if its pixel- 
blocks are all proper and generated by a single common 
straight edge. The proper adjoining triplet is said to be 
generated by the edge. 

FIG. 14. An adjoining triplet. 

* An adjoining triplet T is called strict-sense straighr 
if it is possible to construct a proper adjoining triplet T 
having similar (quantized) pixel values. A straight edge p 
which generates T’ is said to $t T. 

* An adjoining triplet T is called wide-sense straight if 
it is possible to construct a proper adjoining triplet T 
such that black, white, and gray pixels in T correspond to 
black, white and gray pixels in T’. 

Any proper adjoining triplet is obviously strict-sense 
straight; strict-sense straightness of an adjoining triplet 
clearly implies wide-sense straightness. 

An image fe $X2(~, 6) which was digitized according 
to the requirements of Theorem 2 is shown in 1121 to 
satisfy the following properties: 

* Every straight edge /3 E f generates at least one 
proper adjoining triplet of pixel-blocks. 

* In every strict-sense straight adjoining triplet T, the 
“center” pixel-block is proper. 

The reconstruction problem is thus reduced to detecting 
the strict-sense straight adjoining triplets in the digitized 
image, and determining the straight edges which corre- 
spond to the “center” pixel-blocks. 

The determination of whether or not an adjoining trip- 
let T, which consists of three pixel-blocks B,, Bz, and B3, 
is strict-sense straight, can be done in stages. First, for i 
= 1, 2, 3, verify whether or not Bi is a strict sense straight 
pixel-block, and determine oBL, the domain in the (p, 8) 
plane which corresponds to the set of edges {pi} that fit 
Bi. Then find or = cB, n oBZ fl crs, , the domain in the (p, 
0) plane which corresponds to the set of edges {p} that fit 
T. If CT is empty T is obviously not strict-sense straight. 

The verification of whether or not a gray pixel-block 
B(i, j) is strict-sense straight can be carried out using a 
parameter plane approach as in the previous section. 
However, since the gray levels are now quantized, the 
equality constraint (9) must be replaced by the inequality 
constraint 

IPP - [re@, 0 + Pkl coS@p - ekl)l/ < Ar, (12) 

where Ar relates to b and N according to (4). While (9) is 
described by a d.c.-biased sinusoid in the (p, 19) parame- 
ter plane, (12) is described by a d.c.-biased sinusoidal 
band of vertical thickness 2Ar, as shown in Fig. 15. Let 
Oij denote the intersection of the nine constraints of the 
types (12), (lo), (11) yielded by the nine pixels of B(i, j). 
If oii is an empty set, there exists no straight edge that fits 
B(i, j). If aij is nonempty, every edge p whose parame- 
ters (pp, 6,) belong to o;j fits B(i, j). fljj would usually 
have a nonzero measure (area) pij, so that p would not be 
unique. Note that pij is upper bounded by (8). 
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e 

FIG. 15. The parameter-plane representation of inequality (12). 

6. THE BIT-ALLOCATION PROBLEM 

Assume that a total number B of bits is available for 
digitization: 

B 2 N2b. (13) 

This leads to an optimization problem, in which pP is to 
be minimized under the constraints (I), (7), (13). Satisfy- 
ing the constraints implies 

1 
* max i 4, 1 In [ 2 + 0.5 - sin(n/6 - 6/2) 111 ’ (14) 

Since pp decreases far faster with b than with N, the best 
bit allocation is to allocate all available bits to increase 
the quantization accuracy once the required spatial reso- 
lution has been reached. This means that 

N 
1 

opt = ; 11 
b opt =j$-@= 

(15) 

(16) 

bopt is unlikely to be integer, so some trimming may be 
required. Substituting NO,, and [boptl in (8) yields 

pp 4 l/[tiN,,,,(2tb~p~~ - 2)2]. (17) 

(17) holds for every edge /3 E fin any imagefE $,~~(a, S). 
Hence an upper bound on the digitization induced ambi- 
guity of %x2(&, 6) images which have been digitized using 
the gray-level digitization scheme can be stated: 

pXZ(e, G)(gray-level scheme) 

1 
s fi [1/,](p/[1/4*l _ 32 (B L Bnd* (18) 

Note the exponential improvement (decrease) of the am- 
biguity with B. 

To compare gray-level digitization with a bilevel 
scheme, consider subset digitization [2]: The unit square 
retaina is divided into N2 square cells, and a sampling 
point is set at the center of each square. A binary variable 
is associated with each sampling point, assuming the 
value “black” if the sampling point lies in an object, 
“white” if in the background. The total bit count is B = 
N*. In [12] the following lower bound is proven: 

pX2(.e, 6)(bilevel scheme) 2 $ (B 4 1). (19) 

The comparison between (18) and (19) reveals that for 
large values of B the multilevel scheme performs far bet- 
ter than the bilevel scheme. 

7. DISCUSSION 

This paper analyses the use of gray levels in the digiti- 
zation of binary images of straight-edged objects. It has 
been shown that if the gray levels are not quantized, 
error-free reconstruction is possible at finite spatial reso- 
lution. It has been further shown that if the total number 
of bits is limited, i.e., the number of quantization levels 
must be finite, one should allocate the available bits to the 
increase of quantization accuracy, once sufficient spatial 
resolution is reached. An interesting conclusion is that if 
binary images of polygonal silhouettes are to be digitized, 
then low-resolution gray-scale digitizers can potentially 
induce less ambiguity than high-resolution bilevel digitiz- 
ers. The reconstruction methods which are suggested in 
this paper have good potential for practical implementa- 
tion, as they mostly consist of the local processing of 3 x 
3 pixel-blocks. 

In the physical world truly straight edges do not exist, 
even seemingly straight edges as in machine parts, 
printed circuit boards, and bar-codes being always some- 
what “noisy.” The effect of these imperfections on the 
performance of gray-level digitization is presently being 
studied, as well as that of employing more realistic 
spread function models and gray level quantization 
schemes. The applicability of the theory presented in this 
paper can be enhanced by extending it to allow straight- 
edged gray-level images, such as images of agricultural 
fields obtained by satellites. 
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