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Finding Shortest Paths on Surfaces 
Using Level Sets Propagation 

Ron Kimmel, Arnon Amir, and Alfred M. Bruckstein 

ABstract-We present a new algorithm for determining minimal 
length paths between two regions on a three dimensional surface. The 
numerical implementation is based on finding equal geodesic distance 
contours from a given area. These contours are calculated as zero sets of 
a bivariate function designed to evolve so as to track the equal distance 
curves on the given surface. The algorithm produces all paths of minimal 
length between the source and destination areas on the surface given as 
height values on a rectangular grid. 

Index Term-Curve evolution, equal distance contours, geodesic 
path, numerical algorithms, minimal geodesics. 

I. INTRODUCTION 
Finding paths of minimal length between two areas on a three di- 

mensional surface is of great importance in many fields such as com- 
puter-aided neuroanatomy, robotic motion planning (autonomous 
vehicle navigation), geophysics, terrain navigation, etc. Paths of 
minimal Euclidean distance between two points on a surface are 
usually referred to as minimal geodesics. 

A new approach for dealing with the problem of finding the mini- 
mal distance paths, in which the surface is given as height samples on 
a rectangular grid, is introduced. As a first step, a distance map from 
the source area is calculated. The distance map is computed via equal 
distance curve propagation on the surface. Equal distance curves are 
calculated as the zero sets of a bivariate function evolving in time. 
This formulation of curve evolution processes is due to Osher and 
Sethian, [14], [17]. It overcomes some topological and numerical 
problems encountered in direct implementations of curve evolutions 
using parametric representations. The implicit representation of the 
evolving curve produces a stable and accurate numerical scheme for 
tracing shock waves in fluid dynamics. 

The proposed numerical scheme is consistent with the continuous 
propagation rule. The consistency condition guarantees that the solu- 
tion converges to the true one as the grid is refined and the time step 
in the numerical scheme is kept in the right proportion to the grid 
size. This is known not to be the case in general graph search algo- 
rithms that suffer from digitization bias due to the metrication error 
when implemented on a grid [IO], [9]. 

The relation between minimal paths, geodesics and equal distance 
contours may be found in elementary differential geometry textbooks, 
e.g., [2]. Geodesics are locally shortest paths in the sense that any 
perturbation of a geodesic curve will increase its length. The minimal 
length paths between two points are the minimal geodesics connect- 
ing those points. A simple way of determining minimal geodesics is 
by constructing a so-called geodesic polar coordinate system on the 
surface around the source area. Using such a coordinate system read- 
ily provides the geodesic circle map, or the map of equal distance 
contours on the surface. 

In the next section an analytic model for the equal distance con- 
tour evolution is discussed. In Section 111, a numerical implementa- 
tion of the analytic propagation is presented. The results of the nu- 
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merical algorithm are demonstrated by an example in Section IV. We 
conclude with a discussion of some possible extensions of the algo- 
rithm and comment on its complexity in Section V. 

11. EQUAL GEODESIC-DISTANCE CONTOUR PROPAGATION 
Let us first define a differential equation describing the propaga- 

tion of equal geodesic-distance contours on a smooth surface starting 
from a point or a source region on the surface. Given a source area 
S E R3 (S is not necessarily connected), on a surface S E R3, let the 
3 0  equal distance contour of distance t from S be defined as 

{P E S I d , h  s) = t )  = c4*, 0, 
where dJp, S) is the minimal geodesic distance determined by the the 
shortest paths from a point p to an area S on the surface S. 

We shall prove that the 3D parametric representations of a(*, t ) ,  
on S, can be obtained by the equal distance contour propagation 

a,  = N xi",  given a(u, 0) = a(u) ,  (1) 

where i" is the tangent unit vector to a, and N is the surface normal. 
The traces of constant parameter along the curve evolving accord- 

ing to (1) are geodesics, and these geodesics are locally shortest 
paths. We have the following results: 

LEMMA I .  Define the curve P(t )  = a(u, t)lU=%. Then, for any uo, the 

curve Kt) is a geodesic. 

PROOF. The trace K t )  is determined by the evolution of a, = N x i", 
hence a, = N x ?" . Since Ia,l= IN x i " l  = 1, the t parameter is 

the arclength of a. 
In order to show that is a geodesic we recall the definition of 
geodesics and prove that 

d 2  
dr 
--p=AN, 

where &t)  is a scalar function. A geometric interpretation of this 
formula is that the second derivative of the curve (its normal di- 
rection hiB) is in the surface normal direction N .  To prove the re- 
sult it is sufficient to verify that 

or explicitly that 

( $ [ N x i " ] ,  N x i " )  = 0 and (f[Nxi"],  ia) = O  

which clearly force & = ;W. Let us first define k, G B ,  and iB  to 
be the curvature, normal, and tangent of f i t ) ,  respectively. Using 
the Frenet formulas we first have 

( ~ [ N x i ' ] , N x i " ) = ( P , , . P , ) = ( ~ B , j B ) = O  cit 

The second expression may be written as follows 

Therefore, we should prove that 

First note that 
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dt 

Using inner product rules we have 

Therefore, in order to show that 

it is enough to show that 

Define the metric along the curve to be g E la,,[, and compute 

d a,  - d i" = aurg-aug1 - a,, 
dt )a,\ dt g2 g g2 . 

a&, _- - .- 

Using this result we proceed 

- l l d l  
g 2 du 

= O .  

- _ _ _  

Therefore, (PI,. ;" 1) = 0, and this proves that fit) is a geodesic. 0 

Let Nu, t) be a 3 0  curve propagating on the surface S c R', 
where U is the parameter and t is the propagation time. Then 

LEMMA 2. The equal distance contour evolution is given by 

a , = ~ x i "  given a ( 0 ) .  

PROOF. As a first step we shall use Gauss Lemma to show that the 
asserted evolution rule formulates geodesic polar coordinates 
when starting from a point. The geodesic circles in this coordi- 
nates system are the equal distance contours. This result is then 
generalized to any given initial curve. 
Define the tangent plane to a point p on the surface S as Tp(3). Let 
W E Tp( S) ,  I GI = 1 he a unit vector indicating a direction from p in 
the tangent plane. Use a polar coordinate system to define 6 on 
Tp( 3) as G(u) = sin( u ) i  + cos(u)jj. Define y "(t)  to be the geodesic 
which starts from p ,  with y "(0) = p ,  and yY(0) = W(u),  where t 
stands for the arclength. 
According to Gauss Lemma, see e.g,. [2 ]  p. 287, the radial geodes- 
ics f ( t )  together with the geodesic circles q(u, t) = 

y" (t)l,,cmRusSI, form geodesic polar coordinates, in which the 

geodesic circles are orthogonal to the radial geodesic. 
Considering the constant parameter traces along the evolving 
contours as the radial geodesics P(t) = y"(t), and the contours 

themselves as the geodesic circles Mu) = q(u), we obtain that the 
equal distance contour evolution rule is given by the asserted 
equation, when starting from a point. To be more precise, we start 
from a given infinitesimal geodesic circle around the point. 
We now proceed and generalize the result to any given curve 
N u ,  O)= 4 0 )  on the surface. 
Let P be the set of points forming the equal distance contour of 
distance d from a(u, 0) on the given surface. Propagate an equal 
distance contour q(v, t )  starting from any point p E P. Stop the 
propagation when the equal distance contour first touches @U), let 
say at q = Nu0) = q ( v ,  r). According to the construction 7 = d, 
and therefore, q = q(vo, d). See Fig. la. 
At q, q(v, d) and Nu) osculate, which means that ialu=uo is paral- 

lel to t , see Fig. 1 b. 

1 b 

Fig. 1. (a) Equal distance contours are propagated from p ,  until the contour 
first touches Hu). (b) The tangent point, observe that at q: f a l u , ,  ~ ~ ~ ' l v = v o  . 

We have shown earlier that the shortest path from p to q is given 
by the radial geodesic P( t )  = y" " ( t )  = q(v, t)l,=, , and where f i t )  

and q(v ,  t )  are orthogonal along v = vo (Gauss lemma). Hence, 
I ? ' I , = d  ,"=" o ,  and therefore, 

We have just proved that the shortest paths from each point in the 
set P to a, is given by the geodesics starting from 4 u )  and or- 
thogonal to ;". This geodesic is the one obtained via the asserted 
evolution rule; using the continuity of a, the equal distance con- 
tour from Nu, 0), is obtained by the asserted evolution rule, 
a, = N X ~ " .  U 

Lemma 2 provides the evolution equation of the equal distance 
contour. Starting from the boundary of the source area 
4 0 )  = {(x, y,  z(x, y))l(x, y ,  z(x, y)) E as}, it is possible to find the 
equal distance contour for any desired distance d, by using the evo- 
lution equation to calculate Nu, t) ld.  This propagation may be used 
to build the distance map for each point on the surface. 

Implementing the three dimensional curve evolution is quite a 
complicated task. We are therefore interested in considering the pro- 
jection of the 3D curve on the (x ,  ykplane, 

CO) = .z a = [(x, y,/(x.  Y ,  z(x, y ) )  E a(t)). 

A result from the general theory of curve evolution states that the 
trace of a propagating planar curve may be determined only by its 
normal velocity [3]. Let us consider the projection of the above evo- 
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lution on the (x, y)-plane (Fig. 2). The knowledge of how this pro- 
jected contour behaves allows us to construct a simple, accurate and 
stable numerical algorithm that can be used to produce these equal 
distance contours. 

Fig. 2. The projection of an infinitesimal geodesic circle on the surface forms 
a tilted ellipse on the (1, y)-plane. 

In [4] we calculate the planar normal component of the projected 
velocity of the evolving equal distance contour, 
V,,, = (G ,  R o ( N  x iu)). Using this velocity we construct a differential 

equation describing the projected equal distance contour evolution of 
the form 

where i is the planar normal direction, as is the boundary of S, and 
VN depends on the surface gradient (p = &/ax and q = dz/&) and 6 , 
Writing the planar normal as its components ii = (n , ,  n 2 ) ,  

or 

where the coefficients a, b. and c depend on the surface gradient and 
can be computed once at the initialization step. 

A. Finding the Minimal Path 

The procedure that calculates the equal distance contours allows 
us to build a Euclidean distance map on the surface, from a given 
area. Assuming we have reliable distance map procedure in hand, we 
can construct a simple procedure that finds the minimal path From a 
source area S to a destination area D (where S, D E S). 

Defining MA as the distance map of area A as 

~ A ( x ,  Y )  = dJ(X, Y ,  ~ ( x ,  Y)) ,  A).  
we readily have the following result: 

LEMMA 3. All minimal paths between S and D on S are given by the 
set G c S, 

G = ( ( ~ 7  Y ,  z(x9 Y))  I Ndx, Y )  + N D ~  Y )  = gm) (3) 
where g, min(,,)(NS + M,) is the global minimum of the sum 
of the source and destination distance maps. 

PROOF. 
[pa  E G 2 pu E set of minimal paths] If the point pa is in G then 
d,(p,, S) + dJp,, D) = g,,,. Therefore, there exists a path from S to 
pa and from pa to D which together form a minimal length path 
that passes through pw 
[pa  e G pa e any minimal path1 If pa  P G then ds(pa, 5') 
+ ds(pa, D) > g,. Recalling the d, definition, all possible paths 
from S to 1) which pass through the point pa are longer than g ,  

Now, we can prove the following result connecting geodesics to 
the trace of tangential points of the two equal distance contours as 
and aD, propagating from the source and destination. 

LEMMA 4. The tangential points of q { u ,  t )  and a,(ii, 7) for 
r + t = g, generate the minimal paths from point PI to point P2; 
i.e., lie on a constant parameter U = u , , ( I  = iin) of the propagat- 
ing curve a+, r)(aD(I, i)). 

and, therefore, not minimal. n 

PROOF. The shortest path built by d a , / d t  = N x i "  and tangent at 

t = a at U = uo to the path built by dtx,/dt = N x at i = b at 
ii = iin, is of length a + b (see Lemma 3) .  
Assume that there is only one minimal path between PI and P2, 
and assume that the trace of that minimal path passes through two 
different parameterization points uo and ul .  See Fig. 3. 

.. 

as(uaa) 

--*a ................. ..' -a-.... 

Fig. 3. When considering only one minimal geodesic between two points, the 
path is the trace of a constant parameter along the evolution, see text. 

Let the length of the shortest distance from PI to ada ,  U,,) be a, 
and the distance from P2 to a,(;(), b)  be b. The shortest path is of 
length a + b, and it is given by the path 4-+as(un, a )  
= a&,, b)-+P2. 

Assume there is a parameterization point u I  # uo through which 
the minimal path passes at t = a + E  (? = b - E ) .  According to that 

assumption there is a minimal path PI -+ adul, a)  + a + E )  

.r* P2 of length a + E + ( b  - E ) .  However, part of this path, PI .-3 

as(ul, a),  is not equal to the original subpath of the minimal path 
PI 4 a&(), a), and this contradicts the assumption that the mini- 
mal path should pass through q u o ,  a) ,  and concludes the proof. 0 
We also have the following result. 
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COROLLARY 1 .  Al l  minimal paths between S and D which are defined 
by G (3), are minimal geodesics. 

In the next section a numerical scheme based on the level set rep- 
resentation of the evolving planar curve is presented. Note that the 
shortest paths are minimal value level sets of the function 34s + 34~. 
This observation will later be used on to find the minimal paths. 

111. THE NUMEFUCAL APPROXIMATION 

When implementing curve evolution equations such as (2) on a 
digital computer, a number of problems must be solved. 

Topological changes may occur while the curve evolves, i.e., the 
curve may change its topology from one connected curve to two 
separate evolving curves, or, two curves may merge into one. In [ 171, 
[ 141 some numerical problems which characterize a direct formula- 
tion of (2) are described. The problems are caused due to a time 
varying coordinate system (U, t )  of the direct representation (where U 
is the parameterization, and t - the time). An initial smooth curve can 
develop curvature singularities. The question is how to continue the 
evolution after singularities appear. The natural way is to choose the 
solution which agrees with the Huygens principle [16]. Viewing the 
curve as the front of a buming flame, this solution states that once a 
particle is burned, it cannot be reignited [17]. It can also be proved 
that from all the weak solutions of (2) part the singularities, the one 
derived from the Huygens principle is unique, and can be obtained by 
a constraint denoted as the entropy condition [ 141. 

Sethian and Osher [ 171, [ 141 proposed an algorithm for curve and 
surface evolution that elegantly solves these problems. As a first step 
in constructing the algorithm, the curve is embedded in a higher di- 
mensional function. Then, evolution equations for the implicit repre- 
sentation of the curve are solved using numerical techniques derived 
from hyperbolic conservation laws [ 121. 

A. The Eulerian Formulation 

Let the curve C(t) be represented by the zero level set of a smooth 
Lipschitz continuous function Q : R’x [0, T)+ R, so that $ is nega- 
tive in the interior and positive in the exterior of the zero level set 
$ = 0. Consider the zero level set defined by {X(t)  E R2 : NX, t )  = 0). 
We have to find the evolution rule of $, so that the evolving curve 
C(t) can be represented by the evolving zero level set X(t), i.e., 
C(t) =- X(t).  Using the chain rule on NX(t), t )  = 0 we get V N X ,  t )  . X, 
+ &(A’, t )  = 0. Note that for any level set the planar normal can be 
written as = V$/llV$ll. Using this relation in conjunction with the 
condition equation (2) we obtain 

where the curve C(t) is obtained as the zero level set of Q. This pro- 
cedure is known as the Eulerian formulation [ 171. 

This formulation of planar curve evolution processes frees us from 
the need to take care of the possible topological changes in the 
propagating curve. The numerical implementation of (4) is based on 
monotone and conservative numerical algorithms, derived from hy- 
perbolic conservation laws and the Hamilton-Jacobi “type” equations 
of the derivatives [ 141. For some normal velocities these numerical 
schemes automatically enforce the entropy condition, a condition 
equivalent to Huygensprinciple [ 161. 

Using the normal component of the velocity, in (4), we get in our 
case 

$, = Jucx. Y)$: ++7 Y ) @ ;  -44 Y ) @ A ,  ( 5 )  

This equation describes the propagation rule for the surface Q. 

B. Finite Difference Approximation 

In our implementation, which is motivated by the relation to the 
Hamilton-Jacobi type equations, we use the following finite differ- 
ence approximation [14], [15], [131. Define the minmod finite de- 
rivative as 

lbl) if ab > o 
otherwise 

minmod{n, b}  = 

We use this definition to approximate &$,,by 

$ x ~ y l  x = i b , y = j b y  z minmod(D,+Qi,j 9 Di4i. j)  minmod(D,+Qi,jv Di4i. j) .  

where DJ$i.j z $ ~ + , , ~  - I # I ~ , ~ ,  Di$ .  1.J =$ .  1.1 . -$. 1-1.)’ . D’$..  y 1.J = $ I . J + I  . 

-$ i . j  and D;$i,j ~ $ , , , - Q , , ~ _ , , f o r ~ , ~ ~ i h x , j A y , t ) a n d h x = A y = 1 .  
A different approximation, that is also motivated by the hyperbolic 

conservation laws, is used for the squared partial derivatives [15], 
and is defined as 

Q : l x = i b . y = j , i y  z ( m ~ ( D ~ ~ i . j ~  -DiQi.j* 0))2 
+ : l x = k , y = j t i y  z (ma(D:+i.j, -Di+i,j3 0))1 

These finite difference approximations yield a first order numeri- 
cal scheme for the equal distance contours evolution. Using a forward 
difference approximation in time gives the following numerical 
scheme for the propagation of the hnction $ F j  = $(&, jAy, n h )  on 

the (x, y )  rectangular grid 

- c,,~ minmod( D;Q,,f, D;Qi.j)minmod(D,+Qi.j, D;)i.j)]i 

which is the finite difference approximation of (5).  This numerical 
scheme is stable and inherently overcomes topological changes in the 
evolving contour. For higher order accuracy numerical schemes that 
deal with such HumiltonJacobi type of equations see [ 121. 

C. Initialization 

The function #x, y ,  0) is actually an implicit representation of ai 
-the projection of the boundary of the source area 3s to the 
(x, +plane. The first demand for $(x, y ,  0) is to follow 

X(0) = [ ( x ,  y)l+(x, Y ,  0) = 0 )  = {(I. y)l(x, Y. z(x, Y)) E as} = as. 
Furthermore, Nx, y ,  0) sho_uld admit smoothness, continuity F d  be 
negative in the interior of a, and po_sitive in the exterior of dS . The 
(20) planar zero distance contour 3s is the projection of 3s on the 
plane. 

There are many ways to initialize Hx, y ,  0), for examples see [6], [5], 
[ l l ] .  It is possible, for example, to truncate the values of 
Nx, y ,  0) using the observation that we are interested in the function be- 
havior only near the relevant contour, (the zero level set). Note that every 
$function which obeys the demands described earlier is sufficient. 

D. Distance Assignment 

After the initialization is completed, the Q function is propagated 
according to (6). While propagating the function, our goal is to find 
the distance of each grid point. A simple way of achieving (first or- 
der) accurate results is by interpolating the zero crossings. At every 
iteration step, for each grid point, check 
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Using this procedure, each grid point gets its distance at the 
“time” when the @ functions’-zero level passes through it. 

E. Finding Minimal Geodesics 

Having Ms and .nZ, on the grid, the minimal geodesic may be 
found in a simple way. Recalling that g,,, = min(Ms + MD), the pro- 
jection of the minimal geodesic, G, on to the (x, ykplane is 

G. = [ ( x .  Y)l (%S(X,  Y ) + . I M , ( X ,  Y ) )  = 4. 
The desired minimal geodesics are achieved by applying a contour 

finder on Ms+ MD to find the level set g, + E, for some very small E, 

and then applying a simple thinning algorithm that operates on the 
interior of the minimal level set. It is also possible to apply level sets 
based refinement methods [8], [l] .  

In [7] we also show how to use level sets of combinations of the 
geodesic distance maps to solve the ‘three point Steiner Problem,’ 
and how to compute Voronoi diagrams on 3 0  surfaces. 

Iv. EXAMPLES AND RESULTS 

We demonstrate the performance of the algorithm by applying it to 
a synthetic surface and finding the paths of minimal length given on a 
mesh of 256 x 256 points. The source and destination areas are 
points located at (x, y) = (64, 64) and (x, y )  = (192, 192). The (black) 
minimal geodesics connecting the source and the destination on the 
egg-box surface is presented in Fig. 4a. Fig. 4b present the projection 
of the equal distance contours from the source point, on which the 
minimal (plus epsilon) level set is displayed as a smooth black curve 
and the two minimal geodesics as a chain of pixels. The sum of the 
distance maps from the source and destination is presented in Fig. 4c 
and the geodesic distance from the destination point in Fig. 4d. The 
minimal level set of that sum surface (Fig. 4c) is the minimal 
geodesics. 

zc 0 
2 ’  . .  

1 i o  
0 

1 ,o 

53 

L 
0 50 100 150 200 250 

Fig. 4. (a) An “egg-box” surface with two minimal geodesics due to symme- 
try. (b) Equal geodesic distance contours from the source point, and the 
minimal level set as black curve. (c) Sum of the two geodesic distance maps. 
(d) The geodesic distance map from the destination point (192, 192). Artifi- 
cial singular peaks indicate the source and destination in (c) and (d). 

Ways of achieving more accurate results are by increasing the grid 
resolution, and by decreasing the time step (At = 0.21 in our examples). 

V. CONCLUDING REMARKS 
We have described a numerical method for calculating a geodesic 

distance map from a given area on a surface, so that topological 
problems in the propagated equal distance contours are inherently 
avoided. An algorithm for finding the minimal geodesics between 
two areas on the surface based on the distance mapping was con- 
structed. The algorithm works on a grid: therefore it is easy to im- 
plement the algorithm in parallel using each mesh point as a small 
calculating device which communicates with its four close neighbors. 
In each iteration we need to calculate the values of $(x, y ,  t) in those 
grid points close to the current contour and the rest of the grid points 
serve as sign holders. This can be exploited to reduce calculation 
effort. When not considering any possible redundancy, the calcula- 
tion effort is of order O(&;-m.n), where I ,  is the length of the shortest 
geodesic path and m . n is the number of grid points. 

It was shown that wavefront propagation methods in fluid dynam- 
ics also provide a nice approach to the problem of finding the mini- 
mal geodesics. 
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Correction 
Correction to “Evaluation of Binarization 

Methods for Document Images” 

0vind Due Trier and Torfinn Taxt 

In the March issue of‘ this transactions, in the above-mentioned 
correspondence (vol. 17, no. 3., pp. 312-315), the authors made two 
revisions that were not incorporated into the final version. They were: 

1. 0. D. Trier and T. Taxt are with the University of Oslo, De- 
partment of Informatics, P.O. Box 1080 Blindem, N-0316, Norway. 
E-mail: trier@ifi.uio.no, torfinn@ tor.pki.uib.no. 

2. In Section 11. Binarization Methods, in the first paragraph, 
line 7, the section “(black or gray)” should be deleted. 


