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Abstract

We analyze a gathering process for a group of mobile robotic agents,
identical and indistinguishable, with no memory (oblivious) and no com-
mon frame of reference (neither absolute location nor a common orien-
tation). The agents are assumed to have bearing only sensing within a
limited visibility range. We prove that such robots can gather to a small
disk in the R2-plane within a finite expected number of time-steps, imple-
menting a randomized visibility preserving motion law. In addition, we
analyze the dynamics of the cluster of agents after gathering, and show
that the agent-cluster preforms a random-walk in the plane.

1 Introduction

Gathering is a basic task in multi-agent systems and a lot of research
is devoted to the development of algorithm for accomplishing it, under
various assumptions on agents’ motion and sensing capabilities. Here we
address the problem of achieving gathering with oblivious, anonymous
(identical and indistinguishable) and non-communicating robots, lacking
of a joint frame of reference in space that are capable of sensing their
neighbours’ bearing only within a limited visibility range.

The problem was addressed in a discrete time framework in Gordon
& Bruckstein [1][2]. The main result, proved in [2], is that a randomized
rule of motion according to which each agent jumps a limited distance
(σ) to a random location inside a region determined by the neighbours’
directions, achieves both cohesion of the swarm and gathering to a con-
stellation within a disk of diameter equal to the visibility range (V ), in
finite expected time. Experimentally it was observed that, due to bearing
only sensing, the agents’ cluster was of a smaller size, of the order of the
step size σ, and was drifting in the plane in what seemed to be a random
walk.
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In this paper, we modify the motion law discussed in [2], and prove
that it gathers the agents of the system to a disk with a radius equal to the
agents’ maximal step size σ within a finite expected number of time steps.
Furthermore, we prove that as time tends to infinity the distribution of
the agents’ centroid converges in probability to a distribution of a random-
walk variable.

We start by presenting the dynamics of a multi-agent system of agents
having unlimited visibility, applying a non-randomized motion-law. We
proceed with an explanation of the necessity for randomization in the
motion law, when applying it to a system with agents having limited-
visibility. Then, we formally define the adjusted randomized motion law,
and prove that it gathers the agents to a disk with a radius equal to the
length of the maximal allowed step, σ. We end this paper proving that
the distribution function of the average position of the agents preforms a
random motion converging in probability to the distribution of a random-
walk.

Note that by ”gathering”, we mean that the system actually reaches
the goal state, which is a closely clustered constellation of agent loca-
tions, within a finite time or number of time-steps, while the meaning of
”converging” implies an asymptomatic approach to the goal state as time
progresses, without necessarily reaching it within a finite time.

2 Preliminaries

We consider a system of n identical, anonymous, and oblivious agents in
the R2 plane specified by their time varying locations {pi(k)}i=1,2,...,n. We
assume that the agents are able to sense the direction to their neighbours
(i.e. bearing only sensing), so that their ’knowledge” about neighbours is
partial, and their motions are determined by their current location and
the set of unit vectors pointing to their neighbours. The neighbours are
defined for each agent i at time-step k as a set of agents located within
a given visibility range V form its position, pi(k), and are denoted by
Ni(k).

The neighbourhood relation between agents is usually described by a
time dependent visibility-graph. Notice that when dealing with unlimited
visibility, the setNi(k) comprises all the agents except i, and the visibility-
graph is complete, i.e. all agents sense each other.

The proofs in this paper require the use of some results from basic
geometry and the theory of random-processes which can be found in Ap-
pendix 1.

3 Unlimited visibility

The agents of the system are assumed to have bearing only sensing. Since,
they can not estimate the distance to their neighbours. Agents can not
determine the relative positions of their neighbours. However, an agent
can readily figure out whether it is located at a corner of the convex-hull
of the agents’ constellation. The agents located at such corners ”know” in
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which direction they should move in order to enter, or to go through the
agent constellation’s convex-hull. If they move in a good direction, they
have a chance to decrease the convex-hull’s area and perimeter. In the
following section we use this ability of the agents to postulate a motion
law which gathers the agents into a small region.

Since, only the agents located at the convex-hull corners can estimate
a ”good” direction of movement, we dictate that only they should move.
An agent i is located at a convex-hull corner only if ψi(k), the angle
of the current minimal angular-sector anchored at agent i’s position and
containing all its neighbours, is less than π. We set the motion law for the
agents as follows: an agent located at a convex-hull corner moves in the
direction of ψ̂i(k), the unit vector in the direction of the bisector of angle
ψi(k) a step size determined by a parameter and the cosine of ψi(k)/2,
while agents inside the convex-hull stay put. Note that, in some cases the
agents may cross the current convex-hull and leave it, to find themselves
outside of it. In the sequel we consider the minimal enclosing circle of
the agents constellation for analysing the system’s dynamics, and do not
attempt to rely on properties of the convex-hull.

We simplify the analysis of the swarm’s dynamics by defining a motion
law ensuring that the agents’ average position is a system invariant.

The law of motion:
Each agent i located at a convex-hull’s corner jumps in the direction of
the unit vector ψ̂i a distance proportional to cos(ψi(k)/2), i.e. half the
sum of the unit vectors pointing from pi(k) to its extremal left and right
neighbours. Considering that our agents are capable of jumping steps of
length at most σ > 0, the new motion law for an agent i is

pi(k + 1) = pi(k) + {
σψ̂i(k) cos(ψ(k)

2
) ψi(k) < π

0 o.w.
(1)

Lemma 1. In a multi-agent system with dynamics (1), p̄(k), the average
position of the agents, is invariant.

Proof. Let U+

i (k) and U−

i (k) be the unit vectors pointing from the posi-
tion of agent i to of the current extremal left and right agents defining
the current minimal angular-sector anchored at pi(k) and containing all
its neighbours.

Let CH(k) and ∂CH(k) be the convex-hull of the agents’ constellation
and the set of agents located at its corners. Notice that for any agent
q ∈ ∂CH(k), located at a corner of the convex-hull, the associated unit
vectors U+

q (k) and U−

q (k) are pointing to the next left and right corners of
the convex-hull, and consequently the associated angle ψq(k) is less then
π. Furthermore, for each agent q̃ /∈ ∂CH(k), we have that ψq̃(k) ≥ π, hence
it stays put.

Let us number the agents of ∂CH(k) in an ascending order of indices
choosing an arbitrary agent to be 1, so that the agent occupying the next
left corner (in the clockwise direction) of the convex-hull is marked by 2
and so on. Then, the unit vectors U−

i (k) and U+

i (k) are pointing from
pi(k) to pi−1(k) and pi+1(k) respectively. Hence, U+

i (k), the unit vector
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in the direction of the left border of an agent i’s angular-sector, is directed
opposite to the direction of U−

i+1(k), i.e.

U−

i+1(k) = −U
+

i (k)

Rewriting the motion law (1) for an agent i ∈ ∂CH(k) using the unit
vectors U−

i (k) and U+

i (k), we have that

pi(k + 1) = pi(k) + σψ̂i(k) cos(ψ(k)/2) = pi(k) + σ
U−

i (k) +U
+

i (k)

2

therefore since the agents j /∈ ∂CH(k) stay put, the average position of
the agents at time step k + 1 is

p̄(k + 1) =
1

n
∑
i

p(k + 1) = p̄(k) +
σ

n
∑

i∈∂CH(k)

U−

i (k) +U
+

i (k)

2
=

= p̄(k) +
σ

2n

⎛

⎝
∑

i∈∂CH(k)

U−

i (k) − ∑
i∈∂CH(k)

U−

i (k)
⎞

⎠
= p̄(k) + 0

hence pi(k + 1) = pi(k) for any time-step k, proving Lemma 1.

We next prove that this system gathers to a disk of radius σ within a
finite number of time-steps for any initial constellation P (0). Our proof
is based on the decrease rate of R(k), the radius of the smallest enclosing
circle of the agents. We shall show that, if R(k) is greater than σ, it
decreases to σ within a finite number of time-steps, and once it is equal to
or smaller than σ, it remains that way. We do so by showing that an agent
located at a distance of less than σ/2 from C(k), the center of the smallest
enclosing circle, will never jump to a location farther than σ from C(k),
and an agent located at a distance greater than or equal to σ/2 from C(k)
will never jump to a farther location from C(k) (Lemma 2). In addition
we show that, if R(k) is greater than σ, at least two agents that lie on
the circumference of that circle or within a close proximity to it will jump
to locations closer to C(P (k)) by a strictly positive length (Lemma 3).
Therefore, if R(k) is greater than σ, it decreases in no more than ⌈n/2⌉
time-steps by a quantity bounded away from zero by a constant.

In order to simplify our proof, without loss of generality, we let C(k)
to be the location of the origin of the R2-plane.

Lemma 2. In a multi-agent system with dynamics (1), if ∥pi(k)∥, the
current distance between the position of agent i and C(k) is greater than
or equal to σ/2, then at the next time step ∥pi(k + 1)∥ will be less than or
equal to ∥pi(k)∥. Otherwise, ∥pi(k + 1)∥ will be less than or equal to σ.

Proof. Let θi(k) be the angle between the movement direction of an agent
i ∈ ∂CH(k) and the vector pointing from pi(k) to C(k). Let us divide
the current minimal enclosing circle into two half circles by a line defined
by the points pi(k) and C(k) (the dashed line in Figure 1).
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Figure 1: Minimal enclosing circle bipartition. The dashed line
divide the current minimal enclosing circle into two half circles.

By Proposition 4 (See Apendix), there is at least one agent lying on
each one of those half circles, therefore the angles θi(k) and ψi(k), which
associate with the movement of agent i ∈ ∂CH(k), are bounded as follows:

0 ≤ θi(k) ≤
π

2
and 2θi(k) ≤ ψi(k) ≤ π

Then, by the motion law (1) we have that,

∥pi(k + 1)∥ =
√

∥pi(k)∥2 + (σ cos (ψi(k)
2

))
2
− 2∥pi(k)∥σ cos (ψi(k)

2
) cos(θi(k)) ≤

√

∥pi(k)∥2 + σ2 cos (ψi(k)
2

) cos(θi(k)) − 2∥pi(k)∥σ cos (ψi(k)
2

) cos(θi(k)) =
√

∥pi(k)∥2 + σ cos (ψi(k)
2

) cos(θi(k)) (σ − 2∥pi(k)∥)

(2)
Since, σ cos (ψi(k)/2) cos(θi(k)) ≥ 0, we have that if ∥pi(k)∥ ≥ σ/2, then

∥pi(k + 1)∥ ≤ ∥pi(k)∥

Otherwise (if ∥pi(k)∥ < σ/2),

∥pi(k + 1)∥ ≤

√

∥pi(k)∥2 + σ cos(
ψi(k)

2
) cos(θi(k)) (σ − 2∥pi(k)∥) ≤

≤
√

∥pi(k)∥2 + σ (σ − 2∥pi(k)∥) = ∣∥pi(k)∥ − σ∣ ≤ σ

Hence, ∥pi(k + 1)∥ is bounded as claimed in Lemma 2.
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Lemma 3. For a strictly positive δ < σ/2, in a multi-agent system with
dynamics (1), if R(P (k)) is greater than or equal to σ, then there are at
least two agents located within the range δ from the circumference of the
agent constellation’s minimal enclosing circle that will jump to a distances
closer to C(P (k)) by lengths bounded away from zero by a constant.

Proof. By Proposition 5 in Appendix 1, we have that for a δ < R(P (k))
there are at least two agents s1,2 located within the range δ from the
circumference of the minimal enclosing circle, and at different convex-hull
corners with inner angles ψs1,2(k) bounded away bellow π by a constant
as follows:

ψs1,2(k) ≤ ϕ(R(0), δ) = π −
2atan (δ/

√
R(0)2 − δ2)

m

If ∥ps1,2(k)∥ ≥ σ, then by (2) we have that ∥ps1,2(k+1)∥ is bounded bellow
∥ps1,2(k)∥ by a constant as follows:

∥ps1,2(k + 1)∥ =

¿
Á
ÁÀ∥ps1,2(k)∥

2 + σ cos(
ψs1,2(k)

2
) cos(θs1,2(k)) (σ − 2∥ps1,2(k)∥) ≤

√

∥ps1,2(k)∥
2 − σ2 cos2 (

ϕ(R(0), δ)

2
)

proving Lemma 3.

Theorem 1. A multi-agent system with dynamics (1) gathers to a disk
of radius σ within finite number of time steps.

Proof. By Lemma 2, no agent located at a distance greater than σ from
C(k) can jump to a farther distance, and we have that all agents located
within a range of σ from C(P (k)) remains within this range at the next
time-step. Furthermore, by Lemma 3, we have that if R(P (k)) is greater
than σ, then there are at least two agents, located on the circumference of
the smallest enclosing circle or at a distance less than δ from it jumping to
positions closer to C(P (k)) by at least a constant quantity as discussed
next. If R(k) is greater than σ, after at most ⌈n/2⌉ consecutive time-steps
all the agents of the system will fit into a smaller disk centered at C(P (k))

of a radius less than or equal to
√

∥R(k)∥2 − σ2 cos2 (ϕ(R(0), δ)/2), hence
the radius of the minimal enclosing circle will decrease within every se-
quence of ⌈n/2⌉ time-steps by at least σ sin(ϕ(R(0), δ)/2). As a conse-
quence, all agents will gather to a disk of radius σ within a finite number
of time-steps.

Recall that, by Lemma 1 the average position of the agents is invariant,
therefore we may claim that the system gathers to a static disk of the
radius 2σ centred at p̄.
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4 Limited visibility

We next assume that the agents have a limited visibility: an agent can
”see” only agents located within its visibility range V . Unlike in the former
section, which could ”figure out” whether they are located at corners of
the convex-hull or not, here the agents can not decide on this. However,
despite the agents’ lack of information, they will still be able to preform
the basic task of preserving the visibility to their neighbours while moving,
and hence they will be able to ensure connectivity, and under a randomized
motion rule even ensure a monotone evolution of the visibility graph of
the system toward a complete visibility graph.

We next present a motion rule, first suggested by Gordon at.el. in [2],
which is a restriction on the regions the agents may move into, preventing
them from losing visibility to their neighbours. An agent i may move only
into the allowable region ARi(k), defined as follows:

Let Dr(c) be a disc of radius r centered at point c, and let cij(k) be a
point at a distance V /2 from pi(k) in the relative direction of pj(k), i.e.

cij(k) = pi(k) +
V

2

pj(k) − pi(k)

∥pj(k) − pi(k)∥

Then, the allowable region of an agent i with Ni(k) as its current set of
neighbours is

ARi(k) ≜
⎛

⎝
⋂

j∈Ni(k)

DV
2
(cij(k))

⎞

⎠
∩DV

2
(pi(k)) (3)

see Figure 2.

Lemma 4. If all agents move inside their allowable regions, none of them
will lose visibility to its neighbours.

Proof. Considering an agent i, we realize that if it ”sees” an agent j in a
given direction, agent j will be somewhere at a distance less than V from
it. If the agent is at a distance V , then clearly both i and j can move into
a disc of radius V /2 centered at their average location (pi(t) + pj(t))/2
without losing mutual visibility. If j will be at a distance less than V
from i then they can again move into a disk of a radius V /2 centered at
the average of their locations. Hence we have that the intersection of all
possible moves for agent i, due to all the possible locations of agent j
within r < V distance from agent i, in the direction to j (known to i), is
given by

ARij(k) =
V

⋂
r=o

DV
2
(pi(k) +

1

2

pj(k) − pi(k)

∥pj(k) − pi(k)∥
r) =

=DV
2
(pi(k))⋂DV

2
(pi(k) +

1

2

pj(k) − pi(k)

∥pj(k) − pi(k)∥
V ) =

The allowable region for i to jump will be

ARi(k) = ⋂
j∈Ni(k)

ARij(k)
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Figure 2: Allowable regions for agent i. (a) Single neighbour.
(b) Intersection between the extreme left agent’s disc, the ex-
treme right agent’s disc, and the disc DV

2
(pi(k)). (c) No allow-

able region since the intersection yields an empty region.

hence we obtain formula (3).
Therefore, for any pair of neighbours i and j, if both i and j move into

their allowable region, we have that ARi(k) and ARj(k) are contained in
DV /2((pi(k)+pj(k))/2), hence the distance between them remains within
V .

Note that if the agents of the set Ni(k) surround the position of agent
i (i.e. ψi(k) > π), its allowable region will shrink to a single point located
at its position, hence it may not move without risking losing visibility
with some of its neighbours.

From the above result it is clear that under the motion law (1), when
σ < V /2, maintains the connectivity of the system’s visibility graph, is
maintained.
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Corollary 1. Given that σ ≤ V /2, in a system where all agents move
according to dynamic law (1), none of the agents lose visibility with their
neighbours, hence the connectivity of the visibility graph preserved.

Proof. For each agent i which currently sees all its neighbours in an angu-
lar section of angle ψi(k) < π, let θij(k) be the angle between the vectors
ψ̂i(k) and pj(k)−pi(k) where j ∈ Ni(k) (see Figure 3), and let Limiti(k)
and Limitij(k) be the lengths of the section segments crossing ARi(k)
and ARij(k) respectively, starting at pi(k) in the direction of ψ̂i(k). We
have

Limitij(k) = min{V /2, V cos(θij(k))}

Since, ψ̂i(k) is in the direction of the bisector of angle ψi(k), we have
that for each j ∈ Ni(k) the angle θij(k) ≤ ψi(k)/2 < π/2. Therefore, for a
σ ≤ V /2 we have that the step size of agent i is bounded as follows:

∥pi(k + 1) − pi(k)∥ = σ cos(ψi(k)/2) ≤
V

2
cos(ψi(k)/2) ≤ Limitij(k)

Hence, an agent i takes a step inside ARij(k) for all j ∈ Ni(k), and
therefore, clearly, takes a step inside ARi(k).

pi(k + 1) = pi(k) + σψ̂i(k)cos(ψi(k)/2) ⊂ ARi(k)

Therefore, by Lemma 4 all agents of the system maintain visibility with
their neighbours, as claimed in Corollary 1.

Figure 3: The section line of ARij(k) along agent’s i movement
direction, Limitij , is marked by the wide arrow.
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We have shown that the motion law (1) maintains the connectivity
of the visibility graph. However, due to the agents’ limited-visibility, the
constellation of the agents may get stuck in cyclic sequence of time-steps,
without gathering. We next give an example of such a situation.

Consider the constellation of agents presented in Figure 4. In this
figure the agents 1, 2, 3 and 4, 5, 6 are located on parallel lines so that

¯p1p3∥ ¯p4p6. These parallel lines are at a distance V from each other, and
only ¯p2p5 is perpendicular to ¯p1p3 (and to ¯p4p6), so that ∥p2 − p5∥ = V .
Assume ∥p1 − p3∥ = ∥p4 − p6∥ = σ < V . Both p1 and p3 are not visible to
p4, p5 and p6 since they are distanced more than V from them, and both
4 and 6 are not visible to 1, 2 and 3. Considering the dynamic rule (1),
where all agents are active at each time step, we have that at time-step
k the wedge angles of 2 and 5 are ψ2(k) = ψ5(k) = π, therefore both 2
and 5 are locked. At time-step k + 1 both agents 1 and 3 must move a
step of size σ towards each other, so that they switch positions, and so
do 4 and 6. The same switching phenomenon occurs over and over again
simultaneously, leaving 2 and 5 locked forever, preventing the system from
gathering.

Figure 4: A special constellation that prevents the gathering of
a multi-agent system of agents having a limited visibility acting
by dynamic law (1).

This example shows that the deterministic schedule of motion (1) may
lead to non-gathering constellations, hence some randomization is needed.
Indeed adding randomization to the motion schedule breaks this ”locked”
situation and ”free” the agents to move. For example, in the constellation
above, if, once in a while, an agent ”sleeps” and doesn’t move (resulting,
due to the jumps of 1 to 3 while 3 sleeps or due to the jump of 4 while 6
sleeps, in ψ2(k) = π/2 or ψ5(k) = π/2), agents 2 and 5 will approach each
other, and eventually more agents will become visible to each other.

Gordon & Bruckstein in [1][2] also suggested a randomized rule of
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motion according to which each agent jumps a limited distance (σ) to a
random location inside a region determined by the neighbours’ directions,
achieves gathering to a constellation within a disk of diameter equal to the
visibility range (V ), in a finite expected time. However, experimentally
it was observed that, due to bearing only sensing, the agents’ cluster was
always of a smaller size, of the order of the step size σ, and was drifting
in the plane in what seemed to be a random-walk.

We next modify the motion law discussed in [2], and prove that it
gathers agents of the system to a disk with a radius equal to the agents’
maximal step size σ within a finite expected number of time steps, Fur-
thermore, as time tends to infinity the distribution of the agents’ average
position converges in probability to the distribution of a 2D random-walk.

Let us define ari(k), a new allowable region of an agent i, which is
contained in ARi(k), the allowable region given in [1]

ari(k) =Dσ
2
(pi(k) +

σ

2
U−

i ) ∩Dσ
2
(pi(k) +

σ

2
U+

i ) (4)

where σ < V /2. See Figure 5. Recall that, if all agents take steps into
their allowable regions (ARi(k)), they all maintain visibility with their
neighbours. Hence, the results concerning connectivity preservation apply
to the new allowable regions (ari(k)).

We next show that, if the agents of the system jump to uniformly dis-
tributed random points in their ”new” allowable regions, they will gather
to a disk of radius σ. We have already proved gathering in a constellation
starting with a complete visibility graph. But here, we first need to prove
that, from an initial constellation corresponding to an abitrary but con-
nected visibility graph, the system reaches a constellation with a complete
visibility graph within a finite expected time, and subsequently remains
that way. To show this, we follow [2][3], adjusting the timing model of the
system to be semi-synchronised. Hence, the agents’ assumed motion law
is that, at any time-step k, each agent i has a strictly positive probability
δ < 1 to be active, and each active agent jumps to a uniformly distributed
random point inside, its current allowable region, ari(k).

pi(k + 1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pi(k) if ψi(k) ≥ π or χi(k) = 0

a random point in ari(k) if ψi(k) < π and χi(k) = 1

χi(k) = {
1 w.p. δ
0 w.p. 1 − δ

(5)
As mentioned above, we will prove that our system gathers to a disk

of radius σ, within a finite expected number of time-steps. First, we shall
show that any constellation having a connected visibility graph reaches
a constellation with a complete visibility graph within a finite expected
number of time-steps. Then, we show that, a constellation having a com-
plete visibility graph, if the radius of the minimal enclosing circle of the
system is greater than σ, it will significantly decrease within ⌈n/2⌉ time-
steps with a strictly positive probability. Recall that, for σ ≤ V /2, we
have ari(k) ⊂ ARi(k). Therefore by Lemma 4, an agent can not lose sight
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Figure 5: Allowable region according to (4): Note that, the
dashed area created by the intersection of the circles of diameter
V is a general allowable region ARi(k), and the thick line shape
created by the intersection of the circles of diameter σ < V /2 is
the new allowable region ari(k).

of any of its neighbours, hence the connectivity of the visibility graph is
preserved.

The outline of the first part of the proof is that at each time-step there
is a strictly positive probability for a specific agent, located at the sharpest
corner of the convex-hull, to be the only active agent, and to reduce its
distance from p̄(k), the current average position of the agents, by a strictly
positive quantity s∗. As a consequence the sum of all agents’ squared
distances of from p̄(k) is reduced by at least s∗

2
/n with a strictly positive

probability δ(1 − δ)n−1. Hence, as long as the agents’ interconnection
graph is not complete, there is a bounded away from zero probability
that it becomes complete within a finite number of time-steps. As a
consequence of Lemma 4, once the agents visibility graph is complete it
remains complete,. i.e. all the agents are henceforth confined to a disc of
diameter V .

Let CH(P (k)) and ∂CH(P (k)) be the convex-hull of the agents’ lo-
cations and the set of agents defining it (located at its corners). Let ϕi(k)
be the internal angle of the convex-hull’s corner associated with an agent
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i ∈ ∂CH(P (k)), and let D(P (k)) be the diameter of the convex-hull, i.e.

D(P (k)) ≜maxi,j∥pi(k) − pj(k)∥

Lemma 5. For any agent i ∈ ∂CH(P (k)), the distance between pi(k)
and p̄(k) is bounded as follows:

∥pi(k) − p̄(k)∥ ≥
D(P (k))

2n
cos(ϕi(k)/2)

Proof. Any agent i ∈ ∂CH(P (k)), either defines the convex-hull diameter
together with another agent j so that

D(P (k)) = ∥pj(k) − pi(k)∥

or there are two other agents j1 and j2 defining its diameter, so that

D(P (k)) = ∥pj1(k) − pj2(k)∥

By the general triangle inequality, we have that

max{∥pi(k) − pj1(k)∥, ∥pi(k) − pj2(k)∥} ≥
D(P (k))

2
(6)

and we also have that:

∥p̄(k) − pi(k)∥ = ∥
1

n
∑
j

pj(k) − pi(k)∥ = ∥
1

n
∑
j

(pj(k) − pi(k))∥

Let θij(k) be the angle between the vectors pj(k) − pi(k) and Ui, a unit
vector in the direction of the bisector of ϕi(k).

Figure 6: Since each angle of the convex-hull is smaller than π,
any angle defined by an internal agent, a convex-hull corner and
its associated bisector is smaller than π/2.
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Since cos(θij(k)) > 0 (see Figure 6), we have that

∥p̄(k) − pi(k)∥ ≥
1

n
∑
j

∥pj(k) − pi(k)∥ cos θij(k)

Using (6), and that θij(k) ≤ ϕi(k)/2 we have:

∥p̄(k) − pi(k)∥ ≥
1

n
∑
j

∥pj(k) − pi(k)∥ cos θij(k) ≥
D(P (k))

2n
cos (ϕi(k)/2)

as claimed.

Using Lemma 5, let us show that if the diameter of the convex-hull is
bounded away from zero, it has at least one corner farther from p̄(k) by
a bounded away from zero value.

Corollary 2. If D(P (k)) is bounded away from zero, the distance between
p̄(k) and the position of s, the agent located at the sharpest corner of the
system’s convex-hull, is bounded away from zero as well.

Proof. By Proposition 6, we have ϕs(k) ≤ ϕ∗ = π(1−2/n), and by Lemma
5, we have that

∥ps(k) − p̄(k)∥ ≥
D(P (k))

2n
cos(ϕs(k)/2)

Hence,

∥ps(k) − p̄(k)∥ ≥
D(P (k))

2n
cos(ϕ∗/2)

i.e. the distance between p̄(k) and ps(k) is bounded away from zero as
claimed.

Lemma 6. There exist strictly positive constants ρ∗ and s∗, so that for
any constellation P (k), while D(P (k)) is bounded away from zero, if agent
s is active, the probability that at the next time-step it will be closer to p̄(k)
by a distance greater than or equal to s∗ is at least ρ∗.

Proof. Let ψs(k) be the angle of the minimal sector anchored at agent
s’s position and containing all its neighbours, so that ψs(k) ≤ ϕs(k) ≤ ϕ∗.
Hence, by geometry, we have that the area of the allowable region of agent
s is

∥ars(k)∥ =
1

8
σ2

(π − ψs(k) − sin(ψs(k)))

Angle ψs(k) is upper bounded by ϕ∗, hence ∥ars(k)∥ is bounded away
from zero by a constant.

Let D∥p̄(k)−ps(k)∥−s∗(p̄(k)) be a disk centered at p̄(k) with the radius
of ∥p̄(k) − ps(k)∥ − s

∗, where s∗ is a small but bounded away from zero
value, so that if agent s jumps inside that disk, it is guaranteed to be
closer to p̄(k) (comparing to where it was before the jump) by at least s∗.

The current agents’ average position p̄(k) is located inside CH(P (k)),
hence for any agent i ≠ s the angle ∠pi(k)ps(k)p̄(k) is smaller than or
equal to ϕs(k) ≤ ϕ∗. Furthermore, by Corollary 2, if the diameter of the
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system is bounded away from zero, the distance between ps(k) and p̄(k)
is bounded away from zero, therefore for a small enough but significant
s∗, the area of the intersection of ars(k) and D∥p̄(k)−ps(k)∥−s∗(p̄(k)) is
bounded away form zero as well (see Figure 7). Denote this intersection
region by F (k)

F (k) ≜ ars(k) ∩D∥p̄(k)−ps(k)∥−s∗(p̄(k))

Then, we have that the probability that agent s (if active) moves inside
this region is strictly positive. We denote this probability by ρk, as follows:

ρk =
∥F (k)∥

∥ars(k)∥

where ∥F (k)∥ and ∥ars(k)∥ are the areas of regions F (k) and ars(k),
respectively, and argue that this value is strictly positive and bounded
away from zero by ρ∗, a strictly positive constant, for all k, while D(k) > V
(see Appendix 2). Hence, we have that whenever agent s is active and
moves into area F (k), it moves closer to p̄(k) by at least s∗. Therefore,
the probability that agent s will be closer to p̄(k), is bounded away from
zero by ρ∗ as claimed.

Figure 7: Given that agent s is active, the probability that the
current distance of agent s from p̄ will decrease in the next time-
step is the proportion between the grey area F and the current
allowable region ars of agent s.
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Let L(P (k)) be the sum of squared distances of all agents from their
current average position, i.e.

L(P (k)) =
n

∑
i=1

∥pi(k) − p̄(k)∥
2

Lemma 7. There is a probability of at least δ(1 − δ)n−1ρ∗ for a bounded
away from zero L(P (k)) to decrease by at least ∥s∗∥2

/n at each time-step.

Proof. The probability that at some time-step k only the agent s becomes
active is δ(1− δ)n−1. The probability that agent s takes a step ∆ps(k) of
a size s̃ ≥ s∗ inside the region F (k) is at least ρ∗, as shown in Lemma 6.
In this case the value of L(P (k)) decreases as follows:

L(P (k + 1)) −L(P (k)) = s̃(s̃ − 2∥ps(k) − p̄(k)∥ cos(θs(k)) −
s̃2

n
(7)

where θs(k) =∠p̄(k)ps(k)ps(k + 1).
To prove this we proceed as follows:

L(P (k + 1)) =
n

∑
i=1

∥pi(k + 1) − p̄(k + 1)∥2
=

n

∑
i=1
i≠s

∥pi(k) − (p̄(k) +
∆ps(k)

n
)∥

2
+ ∥ps(k) +∆ps(k) − (p̄(k) +

∆ps(k)

n
)∥

2
=

L(P (k)) + 2
1

n
∆p⊺s(k)

⎛
⎜
⎝
(n − 1)(ps(k) − p̄(k)) −

n

∑
i=1
i≠s

(pi(k) − p̄(k))
⎞
⎟
⎠
+

+
(n − 1) + (n − 1)2

n2
∥∆ps(k)∥

2
=

L(P (k)) + ∥∆ps(k)∥
2
+ 2∆p⊺s(k)(ps(k) − p̄(k)) −

∥∆ps(k)∥
2

n
=

L(P (k)) + s̃(s̃ − 2∥ps(k) − p̄(k)∥ cos(θs(k)) −
s̃2

n

By geometry, if agent s moves inside the disk D∥p̄(k)−ps(k)∥(p̄(k)), then
we have

s̃(s̃ − 2∥ps(k) − p̄(k)∥ cos(θs(k)) < 0

hence,

L(P (k + 1)) −L(P (k)) < −
s̃2

n
< −

s∗
2

n

Therefore, as claimed There is a probability of at least δ(1− δ)n−1ρ∗ that

L(P (k)) will decrease by at least s∗2
n

.

Theorem 2. For any initial constellation having a connected visibility
graph, all agents gathers to a disk of diameter V in a finite expected num-
ber of time-steps.
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Proof. Since the initial agents’ visibility graph is connected, D(P (k)) ≤
(n − 1)V . Note that D(P ) gets this maximal value when the agents are
evenly distributed along a straight line, with a distance V between neigh-
bours. Therefore L(P (k)) < n((n − 1)V )

2.
In addition, if L(P (k)) ≤ (V /2)2 the agents’ interconnection graph is

necessarily complete, since the maximal distance of an agent from p̄(k) is
V /2, and hence all inter-agent distances are necessarily less than V .

Therefore, the transition from any constellation comprising a con-
nected visibility graph to a complete visibility graph constellation may
be achieved by a finite number of possible steps M , where

M <
n((n − 1)V )

2
− V 2

/4

∥s∗∥2/n
+ 1

Let us examine the evolution of the agents’ constellation every M
steps. At the end of each series of M steps, the probability that L(P (k +
M)) will be less than V 2

/4 is at least (δ(1 − δ)n−1ρ∗)M . Therefore, by
Proposition 7 the expected number of time-steps for gathering to a com-
plete visibility graph is at most:

M
1

(δ(1 − δ)n−1ρ)M

By Lemma 4, once a complete visibility graph constellation is reached
the system remains in such a constellation. Therefore, gathering to a disk
of diameter V is achieved within a finite expected number of time-steps.

From this point on, we shall prove that the agents further gather to
a disk of radius σ, after having reached a constellation with complete
visibility graph. We analyse the dynamics of the system considering the
minimal enclosing circle of the agents locations, its radius and center
being denoted by R(k) and C(k). We show that any agent is located
at a distance greater than σ/2 from C(k) can not jump to a greater
distance from it, and if an agent located at a distance smaller than or
equal to σ/2 from C(k), it can not jump to a distance greater than σ
from C(k). Therefore, if R(k) > σ, it cannot increase. Furthermore, we
show that there are at least two agents located on the circumference of
the enclosing circle or within infinitesimal distances from it, that will most
likely jump to positions closer to C(k). Hence, if R(k) > σ, the radius
of the smallest enclosing circle drops significantly within a batch of ⌈n/2⌉
time-steps with a strictly positive probability, and once R(k) reaches σ it
cannot outdistance it.

Without loss of generality, let C(k) be at the origin of the R2-plane,
and let D∥pi(k)∥(0) and Dσ(0) be disks centered at C(k) = 0 of radii
∥pi(k)∥ and σ.

Lemma 8. If all the agents of the system are within visibility range of
each other, the allowable region of an agent i located at a distance greater
than σ/2 from C(k) is contained in D∥pi(k)∥(0), and the allowable region
of an agent located at a distance smaller than or equal to σ/2 from C(k)
is contained in Dσ(0).
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Proof. Let us focus on the allowable regions of the agents located at the
convex-hull’s corners (since only they have non-zero allowable regions),
and let us divide the current minimal enclosing disk into two half disks
by a line defined by the points pi(k) and C(P (k)) = 0. Since all agents
”see” each other, by Proposition 4, each one of the unit vectors U−

i (k)
and U+

i (k) are necessarily pointing from pi(k) toward agents located at
different half-disks (in some rare situations, where all agents lie on a line-
segment with i located at its edge, both unit vectors are pointing towards
the far end of the segment). Therefore, the intersection of the two disks
of diameter σ defining i’s allowable region, is necessarily contained in a
disk of radius σ/2 centered at a distance σ/2 from pi(k) in the direction
to the center of the enclosing disk (See figure 8), i.e.

ari(k) ⊂Dσ
2
(pi(k) +

C(k) − pi(k)

∥C(k) − pi(k)∥
)

Figure 8: Allowable region of agent i (bordered by the thick
line), contains in a disk of radius σ/2 centered at the distance
σ/2 from pi(k) in the relative direction to C(k) (the doted area),
due to the fact that the two intersecting disks (bordered by the
thin line circles), which comprises ari, are centered at both sides
of the line defined by points pi(k) and C(k) (dashed line).

Hence clearly, if ∥pi(k)∥ > σ/2, agent i’s allowable region is contained in
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the disk D∥pi(k)∥(0), and if ∥pi(k)∥ ≤ σ/2, i’s allowable region is contained
in Dσ(0), proving Lemma 8.

Lemma 9. If all agents are within visibility range of each other, and R(k)
is greater than σ, then there exist strictly positive constants ρ∗∗, s∗∗ and
α < σ/2, for any constellation P(k), so that at least two agents s± located
within range of δ from the circumference of the smallest enclosing circle,
have probabilities of at least ρ∗∗ to jump to positions closer to C(k) by
distances of at least s∗∗.

Proof. By Proposition 5, there exist two agents located on/or within a
range of α from the circumference of the minimal enclosing circle and
at corners of the convex-hull with inner-angles bounded away bellow π
by a constant (ϕ(α,R(0))). We refer to any one of these two agents
as agent s. Due to the fact that the angle ψs(k) is upper bounded by
ϕ(α,R(0))), the allowable region ars(k) has an area bounded away from
zero by a constant. We deal with R(k) ≥ σ, and since α < σ/2, we have
that ∥ps(k)∥ > σ/2. Then, by Lemma 8, the allowable region ars(k) is
contained in the disk D∥ps(k)∥(C(k)). Therefore, for a small enough but
strictly positive constant s∗∗, we have that each one of the agents denoted
by s has strictly positive probability to jump inside the disk DR(k)−s∗∗(0)
(see Figure 9).

Furthermore, each one of these agents has a strictly positive probability
to be active, δ, hence a strictly positive probability to jump inside the disk
DR(k)−s∗∗(0), and as a consequence to significantly reduce its distance
from C(k). We denote this probability by ρs(k), i.e.

ρs(k) =
∥ars± ∩DR(k)−s∗∗(C(k))∥

∥ars∥

where operator ∥ ⋅ ∥ returns the area of the region ⋅, and argue that ρs(k)
is strictly positive and bounded away from zero by a constant ρ∗∗, in each
time step k while R(k) > σ, where

ρ∗∗ =
π( s

∗∗
2
)

2

1
2
(
σ
2
)
2
(π−ϕ(α,R0)−sin(ϕ(α,R0)))

and

s∗∗ = σ
2
(1 − sin (

ϕ(α,R0)

2
))

(8)

For the geometric derivation of these values, see Appendix 2.

Theorem 3. If all the agents are within visibility range of each other,
they will gather to a disk of radius σ within a finite expected number of
time-steps.

Proof. By Lemma 5 the interior agents of disk Dσ(0) can not jump out of
it, and the exterior agents can not jump to distances farther from C(k).
Furthermore, by Lemma 9, there is a probability of at least (δρ∗∗)2 that
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Figure 9: The allowable region of agent s have a significant
area inside disk DR(k)−s∗∗(C(k)), marked by the dashed area.
Disks DR(k)(C(k)) and DR(k)−s∗∗(C(k)) are the interiors of the
full-line circle and dashed circle respectively, and ari(k) is the
interior of the region bounded by the thick line.

at least two agents, located on the circumference of the minimal enclosing
circle or within α distance from it, will jump to positions closer to C(k)
by at least s∗∗. By Proposition 7 of the Appendix, the expected number
of time-steps for that event to occur is (δρ∗∗)−2. Therefore, if the radius
of the minimal enclosing circle is greater than σ, the expected number of
time-steps for the radius of the minimal enclosing circle to decrease by
at least s∗∗ is at most ⌈n/2⌉⌈(δρ∗∗)−2

⌉, and consequently the expected
number of time-steps for the radius of the minimal enclosing circle to
decrease to σ is at most

⌈
R(k) − σ

s∗∗
⌉ ⌈n/2⌉⌈(δρ∗∗)−2

⌉ ≤ ⌈
V /2 − σ

s∗∗
⌉ ⌈n/2⌉⌈(δρ∗∗)−2

⌉

where s∗∗ and ρ∗∗ are given in (8). Once all agents are gathered to a disk
of radius σ, by Lemma 8, they will remain confined to such a disk, hence
the system gathers as claimed in Theorem 3.

5 Random dynamics analysis

We proved that the agents of the system gather to a disk of radius σ
within a finite expected number of time steps. The simulations we per-
formed showed that the ”minimal confining disk” defined by the agents’
constellation moves randomly in the plane.
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We next prove that the centroid of the agents’ constellation preforms
a random motion, so that its location converges in probability to the
distribution of a random-walk as k tends to infinity. To do so, we rely on
a Theorem from [4] on the convergence in probability of random variables
that are sums of uniformly bounded random increments. Given a random
variable Xk so that

Xk =
k

∑
i=1

Yi, i.e. Yk =Xk −Xk−1

If Yk satisfies
E [Yk ∣Fk−1] = 0

where Fk−1 is the sigma filed generated all prior realization of the process
and

k

∑
i=1

V ar{Yi}
a.s.
→ ∞

(i.e. the sum of variances tends to infinity with probability 1) then

Xk̃
√
ν

p
→ N(0,1)

where k̃ is the stopping time as ν goes to infinity.

k̃ = min{k ∶
k

∑
k′=1

E{∥Yk′∥2
} > ν}

Let us analyse the long term behaviour of the random variable vectors

p̄(k) = 1/n
n

∑
i=1
pi(k). Denote the step of agent i at time step k by ∆pi =

pi(k + 1) − pi(k). Then, p̄(k) obeys

p̄(k + 1) =
1

n

n

∑
i=1

pi(k + 1) =
1

n

n

∑
i=1

(pi(k) +∆pi(k)) = p̄(k) +
1

n

n

∑
i=1

∆pi(k)

Therefore, we have to consider the sum of the jumps the agents make at
each time-step.

Recall that, we have intentionally designed the motion law (5) so as
to have that, in case the agents’ constellation has a complete visibility
graph, we ensure that E{p̄(k + 1)∣p̄(k)} is equal to p̄(k).

Let āri(k) be the mean position of the current allowable region of
agent i. Then, if agent i is not located at a corner of the system’s convex-
hull, then ψi(k) ≥ π, and therefore cannot jump, i.e. pi(k + 1) = pi(k).
Otherwise, ψi(k) is equal to the inner-angle of the convex-hull corner
occupied by agent i, ϕi(k) < π. Then by (4), āri(k) is located at the
center of ari(k), as follows:

āri(k) =
x

v∈ari(k)

vdv = pi(k) +
σ

2
cos(

ϕi(k)

2
)ψ̂i(k)

Since, an agent i located at a corner of the convex-hull stays put with
probability 1 − δ and jumps with probability δ to a uniformly distributed
random point in ari(k), its expected position at the next time-step is

E(pi(k + 1)) = pi(k)(1 − δ) + (pi(k) +
σ

2
cos(

ϕi(k)

2
)ψ̂i(k)) δ
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Hence, the expected agents’ average position at the next time step is

E(p̄i(k + 1)) = 1
n ∑
i
E(pi(k + 1)) =

1
n ∑
i/∈∂CH(k)

pi(k) +
1
n ∑
i∈∂CH(k)

(pi(k) + δ
σ
2

cos(ϕi(k)
2

)ψ̂i(k)) =

1
n ∑
i
pi(k) + δ

σ
2n ∑

i∈∂CH(k)

cos(ϕi(k)
2

)ψ̂i(k)

(9)

We have seen already in the proof of Lemma 1 that the sum of cosines of
half the inner-angles of a convex-hull is zero.

∑
i∈∂CH(k)

cos(
ϕi(k)

2
)ψ̂i(k) = 0 (10)

hence we have that
E{p̄(k + 1)∣p(k)} = p̄(k) (11)

Let ∆p̄(k), be the constellation centroid displacement at time step
k, i.e ∆p̄(k) = p̄(k + 1) − p̄(k). Let Sk and Xk be the projections of the
distribution of p̄(k) and ∆p̄(k) on a unit vector with an arbitrary direction
U . Then, by (11), we have that E{X̄(k + 1)∣X(k)} = 0.

Clearly, the increments X(k) are uniformly bounded by nσ, and we
next prove that the sum of their variances tends to infinity with probability
1. Let V ar(A) be the variance of a random variable A. Then, due to
the fact that the random variables ∆pi(k) and ∆pj(k) are conditionally
independent for i ≠ j, we have that

V ar(Xk ∣P (k)) = V ar(U⊺∆p̄(k)∣P (k)) = V ar(
1

n
U⊺

∑
i

∆pi(k) ≥
1

n2
V ar(U⊺∆ps(k)∣P (k))

where P (k) = {p1(k), p2(k), ..., p1(k)}, and s is the agent located at the
sharpest corner of the constellation’s convex-hull.

The minimal value V ar(U⊺∆ps(k)) can assume is for a unit vector U
orthogonal to ψ̂s(k), i.e U⊺ψ̂s(k) = 0. Then, we have that:

V ar(U⊺∆ps(k)) = 2δ2

σ
2

∫
σ
2

sin(
ψs(k)

2
)

(x − σ
2

sin (
ψs(k)

2
))

2
√

(σ
2
)

2
− x2dx

(σ
2
)

2
(
π−ψs(k)

2
+
sin(ψs(k))

2
)

=

−2δ2

π−ψs(k)
2

∫
0

(σ
2
)

4
cos3

(θ) sin(θ)dθ

(σ
2
)

2
(
π−ψs(k)

2
+
sin(ψs(k))

2
)

=

δ2
(
σ

2
)

2 1 − cos4
(
π−ψs(k)

2
)

π−ψs(k)

2
− 1

2
sin(π − ψs(k))
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By Proposition 6, ψs(k) is upper bounded by ϕ∗ = π(1 − 2/n), hence
we have that

V ar(U⊺∆ps(k)) ≥ δ
2
(
σ

2
)

2 1 − cos4
(
π−ϕ∗

2
)

π−ϕ∗
2

− 1
2

sin(π − ϕ∗)
= V ar∗

Hence, V ar(Xk) is bounded away from zero by a strictly positive constant
V ar∗, and therefore the infinite sum of the Xk’s variances tends to infinity
almost surely.

Hence, by Theorem 35.11 in [4], we have that

Sν
√
V

p
→ N(0,1)

where ν is the stopping time as V goes to infinity

ν = min{t ∶
t

∑
k=1

V ar(Xk) > V}

Assume the mean value of the variances of the increments Xk converges
in probability to η2, i.e

∑
k

V ar(Xk)
p
→ kη2

Then, we have that
Sk
√
kη

p
→ N(0,1)

i.e the distribution of Sk converges in probability to the distribution of
random-walk with steps of the size η.

Hence, we have that the projection of the random vector p̄(k) on an
arbitrary (constant) direction U converges to a normal distribution with
a variance kη2.

We ran multiple simulations, and used the results to estimate η. We
show part of the simulation results in Figure 10, and the analysis of η in
Figure 11. Interestingly, the average random walk step size, η, is inversely
dependent on the numbers of agents

η ∝
1

n

6 Discussion

We showed that a system of identical, anonymous and oblivious agents
having limited visibility and bearing only sensing starting with an initial
constellation with a connected visibility graph gathers to a disk with ra-
dius equal to the agents’ maximal allowed step size within a finite expected
number of time steps. Furthermore, we proved that, after the visibility
graph of the constellation becomes complete, the expected location of the
centroid of the constellation remains in place, while the distribution of the
random centroid location converges to that of a random-walk dynamics.
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Figure 10: Gaussian fit for the average position of the systems’
constellations at time-step 1000. This results are for 10000 sim-
ulations with random initial constellations of {3,10,30} agents.

Figure 11: Estimation of η from Simulations results. Analysis
of the results of 10000 simulations with random initial constel-
lations of {2,3,4,5,6,7,8,9,10,15,20,25,30} agents. We pre-
formed Gaussian fit for the average position at time-step 1000,
for all the results having the same number of agents.

We may generalize the motion law to one preforming convergence in
distribution to a random-walk dynamics, as follows: Each agent i jumps
to a random point with a general, non-uniform 2D distribution function
bounded inside ARi(k), the original allowable region presented in [1][2],
with average location centroid at point pi(k)+αψ̂i(k) cos(ψi(k)/2), where
α is a strictly positive constant (recall that

ARi(k) ≜
⎛

⎝
⋂

j∈Ni(k)

DV
2
(cij(k))

⎞

⎠
∩DV

2
(pi(k))

and cij(k) = pi(k) + V /2(pj(k) − pi(k))/∥pj(k) − pi(k)∥).
In the future we intend to study a control mechanism applied on this

system, which we call broadcast control. This control model assumes that,
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we work with similar, non-communicating agents which have the ability to
”hear” a control broadcast with strictly positive probability at each time
step. The control broadcast is a vector directing the agent that hears it
towards a specific direction, for example by adding a ”virtual” agent in
the control direction.

Figure 12 described a geometrical relations between allowable regions
of different agents in a constellation having a complete visibility graph. As
can be seen in (c), there will be at least one agent whose allowable region
can be affected from the received broadcast, cancelling the ability of the
agent to jump in a direction opposite to control vector. Therefore the
expected agents’ average position will not remain at the current average
position, but rather will drift in the desired direction.

Figure 12: All allowable regions. (a) Allowable regions localiza-
tion. (b) Allowable regions right boundaries forms a circle of
radius σ/2. (c) Allowable regions of agents located at following
corners tangent to each other. The doted lines are the tangent
border lines.
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Appendix 1 - Geometry and Probability
Results

Proposition 4. Let O(P ) be the minimal enclosing circle of P a set of
points in R2. Then, any partition of O(P ) into two by a line passing
through its center results in half circles with at least one point of P on
each.

Proof. Let R(P ) and C(P ) be the radius and center of O(P ) respectively.
We have that

R(P ) ≜ min
C(P )∈R2

{max
pi∈P

∥pi −C(P )∥}

and therefore for any point pj ∈ P which not located on the perimeter of
O(P ) we have that O(P ) = O(P ∖ pj). Hence,

O(P ) = O(∂P ) (12)

where ∂P ⊆ P is the subset of agents lying on O(P )’s perimeter.
Assume we may cut O(P ) into two equal arcs by a line crossing point

C(P ) which orthogonal to a unit vector U , where none of the points from
P lie on one of those arcs. Let p ∈ ∂P be the closest point to this line,
and let d be the distance between p and the line (see Figure 13). Then,
all the points of set ∂P are contained in O′

(∂P ), a circle of the radius√
R2 − d2 centred at C′

= C + dU , so that O(∂P ) is smaller than O(P ),
which contradicts (12). Hence, the assumption cannot be true, and we
have that there must be at least one point on each half circle mentioned
above, proving Proposition 4.

Proposition 5. Given a constellation with a finite number of points n > 1
in the R2-plane, and a strictly positive diameter D. There are at least two
points within a distance α > 0 from the circumference of the constellation’s
smallest enclosing circle, at corners of the constellation’s convex-hull with
inner angles bounded away bellow π by a strictly positive value (dependent
on α).

Proof. There are at least two corners of the constellation’s convex-hull
located on the circumference of the minimal enclosing circle. Let us denote
the points located at these corners by p. Let c be the center of the enclosing
circle, let l be a line passing trough the point p + α(c − p)/∥c − p∥ and
perpendicular to the vector c − p. Let F be the region created by the
intersection of the smallest enclosing circle and the half plane bounded by
l which includes point p, and denote the set of the constellation’s points
located in F by Pα (see Figure 14).

Assuming the number of point in Pα is m ≤ n − 1, then if we cut the
constellation’s convex-hull with l into a two convex polygons, the sum of
the inner-angles of the polygon which includes point p is upper bounded
by π(m+2−2), since this polygon is comprised by the points of the set Pα
and the two points created by the intersection with l, denoted by ±. By
geometry, the inner-angles of the above mentioned polygon corners at the
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Figure 13: Orientation figure for the proof of proposition 4.
The full line dividing the the minimal enclosing circle (full line
circle) into two arcs with equal length. p is the point closet to
the dividing line from the set of points lying on the minimal
enclosing circle, which by assumption are all located only on
one arc of the enclosing circle, so that all of the points of this
set are located inside the smaller and dashed circle.

points ± are lower bounded by β = atan (α/
√
R2 − α2) (see Figure 14).

Hence, the average value of the inner-angles associated with the points of
the set Pα is upper bounded by

ϕ(R,α) =
π(m + 2 − 2) − 2β

m
= π −

2β

m

and therefore the inner-angle of the sharpest corner of the convex-hull of
the set Pδ is upper bounded as well by

ϕ(R,α) = π −
2atan (α/

√
R2 − α2)

m

Since at least two corners of the constellation’s convex-hull are located
on the circumference of the minimal enclosing circle, we have that, there
are at least two corners of the convex-hull located within a strictly positive
distance of α < R from the circumference of the minimal enclosing circle
with angles bounded away form π by a value equal to ϕ(R,α).

Proposition 6. The sharpest corner of the convex-hull of any n points
in R2 is upper bounded by ϕ∗ = π(1 − 2/n).
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Figure 14: Upper bound of the two angles of corners of the
constellation’s convex-hull which located within a strictly posi-
tive distance α < R from the circumference of the constellation’s
minimal enclosing circle. Point p is located on the circumfer-
ence of the minimal enclosing circle centred at point c, and the
angles ϕ± are lower bounded by β, as may be seen in the figure.

Proof. For any convex polygon with m ≤ n corners, the sum of the corners’
inner angles is π(m−2), and the average inner-angle is π(1− 2

m
). Therefore,

ϕs the interior angle of the polygon’s sharpest corner is necessarily smaller
than or equal to π(1− 2

m
). Since, we deal with the convex-hull of n points,

we have that
ϕ∗ = π(1 − 2/n) ≥ π(1 − 2/m) ≥ ϕs

Proposition 7. Assume that, at each time-step an event occurs with
probability p < 1, then the expected number of time-steps for the first event
to occur is p−1.

Proof. The probability that the first event occurs at exactly time-step k
is (1 − p)k−1p. Therefore, the expected number of time-steps for the first
event to occur is

∞

∑
k=1

k(1 − p)k−1p = −p
d

dp

∞

∑
k=1

(1 − p)k = −p
d

dp
(
∞

∑
k=0

(1 − p)k − 1) = −p
d

dp

1

p
=

1

p

Appendix 2 - Bounds of constants

In the following section we derive the lower bounds of the probabilities
(ρ∗/ρ∗∗) that the agents marked by s in Lemmas 6 and 9 will jump to lo-
cations closer to p̄(k) or C(k) by bounded away form zero values (s∗/s∗∗).

In order to simplify our calculations, we define the following quanti-
ties related to the allowable regions of agent s. Let ∥ars(k)∥ = σ

2
/2(π −

ψs(k)− sin(ψs(k))/2) be the area of agent s’s allowable region. Note that
∥ars(k)∥ is upper bounded by ∥ars∥max = πσ2

/4. Let phs (k) = ps(k) +
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ψ̂s(k)σ cos(ψs(k)/2) the meeting point of the two arcs bounding ars(k)
which is not located at ps(k), and let h(ψs(k)) = σ cos(ψs(k)/2) be length
of the line segment [ps(k), p

h
s (k)]. Let v(ψs(k)) = σ(1− sin(ψs(k)/2)) be

the distance between these two arcs’ middle points.

The bounds s∗ and ρ∗ in Lemma 6
Without loss of generality, let p̄(k) be the origin of the R2-plane.

By Proposition 6, the angle of the sharpest corner of the convex-hull,
occupied by agent s, is bounded by ϕ∗ = π(1 − 2/n). Being p̄(k) inside
the convex-hull, we have that ψ̂s(k), the bisector of the angle ψs(k), is
pointing from ps(k) inside the disk D∥ps(k)−p̄(k)∥(p̄(k)). Denote the angle

between ψ̂s(k) and the vector pointing from ps(k) to p̄(k) by θ. Note
that, since p̄(k) is located inside the constellation’s convex-hull θ is upper
bounded by ϕ∗/2.

Our calculations address two cases, in the first point phs (k) is inside
the disk D∥ps(k)∥(p̄(k)), and in the second case this point is not in the
disk D∥ps(k)∥(p̄(k)).

If phs (k) is inside the disk D∥ps(k)∥(p̄(k)), we have that the distance
between ārs(k), the centroid of ars(k), and p̄(k) is as follows:

∥ārs(k)∥ =

¿
Á
ÁÀ

∥ps(k)∥2 + (
h(ψs(k))

2
)

2

− 2∥ps(k)∥
h(ψs(k))

2
cos(θ) ≤

¿
Á
ÁÀ

∥ps(k)∥2 + (
h(ϕ∗)

2
)

2

− 2∥ps(k)∥
h(ϕ∗)

2
cos(

ϕ∗
2

) =

√

∥ps(k)∥2 +
h(ϕ∗)

2
(
h(ϕ∗)

2
− 2∥ps(k)∥ cos(

ϕ∗
2

))

Since phs (k) is inside the diskD∥ps(k)∥(p̄(k)), we have that h(ϕ∗) ≤ 2∥ps(k)∥ cos(ϕ∗/2)
(i.e. σ ≤ 2∥ps(k)∥), and therefore

∥ārs(k)∥ ≤

¿
Á
ÁÀ

∥ps(k)∥2 − (
h(ϕ∗)

2
)

2

= ∥ārs(k)∥max

Choosing sk = ∥ps(k)∥ − ∥ārs(k)∥max as the lower bound of agent s’s
distance reduce from p̄(k) after taking a step, we have that there is at least
half disk of diameter v(ψs(k))/2 ≥ v(ϕ∗)/2 inside the allowable region
ars(k) and inside the disk D

∥ps(k)∥−sk
(p̄(k)), as may be seen in Figure 15.

By Corollary 2, for an agent’s constellation having a diameter greater
than or equal to V , we have that

∥ps(k)∥ ≥
V

2n
cos(

ϕ∗
2

) =
V

2n
sin(

π

n
)

and therefore

sk = ∥ps(k)∥−

¿
Á
ÁÀ

∥ps(k)∥2 − (
h(ϕ∗)

2
)

2

= ∥ps(k)∥
⎛
⎜
⎝

1 −

¿
Á
ÁÀ1 − (

h(ϕ∗)

2∥ps(k)∥
)

2⎞
⎟
⎠
≥
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Figure 15: The bounds s∗ and ρ∗: if phs (k) is inside the disk
D∥ps(k)∥(p̄(k)), then we have that at least the half disk, marked
by the dashed area, is inside the allowable region ars(k) and
inside the disk D

∥ps(k)∥−sk(p̄(k)).

∥ps(k)∥
⎛

⎝
1 −

√

1 − (cos(
ϕ∗
2

))
2⎞

⎠
≥
V

2n
sin(

π

n
)
⎛

⎝
1 −

√

1 − (sin(
π

n
))

2⎞

⎠
= s∗

Hence, if active, the probability of agent s to reduce its distance from p̄(k)
by at least sk is lower bounded by

ρk =

1
2
π (

v(ψs(k)

2
)

2

∥ars(k)∥
≥

1
2
π (

v(ϕ∗)
2

)
2

∥ars(k)∥max
=

1
2
π (σ

2
)

2
(1 − sin (

ϕ∗
2
))

2

π (σ
2
)

2
=

1

2
(1 − cos(

π

n
))

2

= ρ∗

If point phs (k) is outside the disk D∥ps(k)∥(p̄(k)), we have that a line-

segment through the point p̄(k) and orthogonal to ψ̂s(k), crossing the
segment [ps(k), p

h
s (k)] at a distance ∥ps(k)∥ cos(θ) ≥ ∥ps(k)∥ cos(ϕ∗/2)

form point ps(k) (see Figure 16).
Note that, the part of the above mentioned line segment which located

inside ars(k) has a length of at least

∥ps(k)∥ cos(
ψs(k)

2
)
v(ψs(k))

h(ψs(k))
≥
V

2n
sin2

(
π

n
)
v(ψs(k))

h(ψs(k))
≥

V

2n
sin2

(
π

n
)(1 − cos(

π

n
)) = d∗
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(see Figure 16). Hence, if we choose sk as follows:

sk = ∥ps(k)∥ (1 − sin(
ϕ∗
2

))

by corollary 2, we have that

sk ≥
V

2n
sin(

π

n
)(1 − cos(

π

n
)) = s∗

and as a consequence there is at least half disk of diameter d∗ inside the
allowable region ars(k) and inside the disk D∥ps(k)∥−s∗(p̄(k)), so that

ρk ≥

1
2
π ( d

∗
2
)

2

∥ars(k)∥
≥

1
2
π (

V
2n

sin2
(
π
n
)(1−cos(π

n
))

2
)

2

π (σ
2
)

2
= ρ∗

Figure 16: The bounds s∗ and ρ∗: if phs (k) is located outside
the disk D∥ps(k)∥(p̄(k)), then we have that at least the half disk,
marked by the dashed area, is inside the allowable region ars(k)
and inside the disk D∥ps(k)∥−s∗(p̄(k)).

Therefore, in both cases the quantities sk and ρk are bounded by a
strictly positive constants s∗ and ρ∗ independent of k.

The bounds s∗∗ and ρ∗∗ in Lemma 9
We use a result of Lemma 8, which state that if an agent s is located with
a distance greater then or equal to σ/2 from C(k), the center of the min-
imal enclosing circle of the current agent-constellation, and it’s allowable
region, ars(k), is contained inside the disk D∥ps(k)−C(k)∥(C(k)).

Without loss of generality, we let point C(k) to be the origin of the
R2-plane. Let θ be the angle between the vectors −ps(k) and ψ̂s(k).
By Proposition 5, we have that the angle ψs(k) is upper bounded by
ϕ(R0, α) < π, hence by Proposition 4, we have that θ ≤ ϕ(R0, α)/2.
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The distance between points C(k) and ārs(k) is

∥ārs(k)∥ =

¿
Á
ÁÀ

∥ps(k)∥2 + (
h(ψs(k))

2
)

2

− 2∥ps(k)∥
h(ψs(k))

2
cos(θ)

hence choosing sk as ∥ps(k)∥−∥ārs(k)∥ we have that the allowable region
ars(k) includes at least half disk of diameter v(ψs(k))/2, half the distance
between the two middle points of the arcs defining ars(k) (see figure 17).

Figure 17: The bounds s∗∗ and ρ∗∗: choosing sk as the
∥ps(k) − C(k)∥ − ∥ārs(k) − C(k)∥ results with at least the half
disk, marked by the dashed area, inside the allowable region
ars(k) and inside the disk D

∥ps(k)∥−sk(p̄(k)).

Since, we deal with an agent located at a distance greater then V /2
from C(k), and θ ≤ ϕ(R0, α)/2, we have that

sk ≥
V

2
−

¿
Á
ÁÀ

(
V

2
)

2

+ (
σ

2
cos(

ϕ(R0, α)

2
))

2

− 2(
V

2
)
σ

2
cos2 (

ϕ(R0, α))

2
) = s∗∗

and

ρk ≥

1
2
π (σ

4
(1 − sin (

ϕ(R0,α))

2
)))

2

∥ars(k)∥
≥

1
2
π (σ

4
(1 − sin (

ϕ(R0,α)

2
)))

2

π (σ
2
)

2
=

1

8
(1 − sin(

ϕ(R0, α)

2
))

2

= ρ∗∗

Therefore, the quantities sk and ρk are bounded by a strictly positive
constants s∗∗ and ρ∗∗ independent of k.
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