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Abstract 

Kiryati, N., M. Lindenbaum and A.M. Bruckstein, Digital or analog Hough transform?, Pattern Recognition Letters 12 (1991) 
291-297. 

A variation of the Hough Transform that is aimed at detecting digital lines has been recently suggested. Other Hough 
algorithms are intended to detect straight lines in the analog pre-image. These approaches are analyzed and compared in terms 
of the relation between the achievable resolution and the required number of accumulators, using a definition of resolution 
that is based on the Geometric Probability measure of straight lines. It is shown that the 'analog' approach is greatly superior 
in high resolution applications, where a 'digital' Hough Transform would generally require an infeasibly large number of ac- 
cumulators. 

Keywords. Digital lines, geometric probability, Hough transform. 

1. Introduction 

The Hough Transform [2], [4] is a well known 
technique for recognizing predefined features in 
edge maps. In this paper, the Hough Transform 
for detecting straight lines is considered. 

Most Hough algorithms consist of an incremen- 
ration stage, in which each edge point 'votes' for 
the parameter-pairs of all possible straight lines on 
which it can lie, and an exhaustive search for 
peaks. These correspond to large collinear sets of 
edge-points. 

Originally, the slope-intercept (re, b) para- 
metrization of straight lines had been employed in 
the Hough Transform. It has the advantage that an 

edge point corresponds to a straight line in the 
parameter space, thus voting is simple. Its draw- 
back is that the parameter space is unbounded, 
implying some theoretical and practical difficulties. 
With normal (~,O) parametrization of. straight 
lines, as suggested in [2], an edge point corres- 
ponds to a sinusoid in the parameter space, thus 
voting is somewhat more complex. The normal 
parametrization has the advantage that a bounded 
image leads to a bounded parameter space. Other 
straight-line parametrizations have also been sug- 
gested, see [4], [11], [17]. 

In most implementations of the Hough algo- 
rithm the parameter space is represented by a rec- 
tangular accumulator array, such that each 
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accumulator corresponds to a rectangular, cons- 
tant size domain in the parameter space. The quan- 
tization of the parameter space greatly influences 
the resolution and detection capabilities of the 
algorithm, as well as the computational and 
storage requirements; see [6], [16]. 

Errors in the location of the edge points impair 
the performance of conventional Hough algo- 
rithms. Such errors are usually due to the effects of 
image noise and distortion, including image digiti- 
zation, on the output of the edge detector. Modern 
forms of the Hough Transform, e.g. [15], [I0], [6], 
and provide some compensation for location er- 
rors in the data, thus improving the performance 
of the algorithm. These variants do not provide 
special treatment for location errors which are due 
to image digitization; this is justified by the ability 
of modern edge detection schemes to offer sub- 
pixel accuracy when the levels of other sources of 
image noise are low. In this paper, [15], [10], [6], 
and related versions are referred to as 'Analog 
Hough Transforms', since they are intended to 
detect straight lines in the analog 'pre-image'. 

An interesting form of the Hough Transform 
has recently been described in [1]. It is specifically 
aimed at detecting digital straight lines [3], and 
is thus referred to here as the 'Digital Hough 
Transform'. This version of the Hough Transform 
employs the slope-intercept parametrization, and a 
non-uniform parameter space quantization scheme 
that, in principle, assigns an accumulator to each 
of the triangular of quadrilateral domains in the 
(m,b) space that correspond to distinct digital 
lines. Such domains have been originally described 
and characterized in [3]. It is claimed in [I] that the 
Digital Hough Transform is a computationally 
attractive alternative to usual high resolution 
implementations of the Hough Transform. 

The purpose of this paper is to compare the 
analog and digital approaches to the Hough 
Transform. The analysis is specifically aimed at 
comparing the resolution that a certain number of 
accumulators can 'buy'. The Digital Hough ap- 
proach is presented and analyzed in Section 2. 
Analog Hough is treated in Section 3. Conclusions 
are drawn in Section 4. 

2. Digital Hough transform 

A fundamental observation underlying the 
digital approach to the Hough Transform is that 
AD(N), the number of possible distinct digital 
straight lines in an N × N  digital binary image, is 
finite--of order O(N4). Recently, Lindenbaum, 
Koplowitz and Bruckstein [8] have shown that 

AD(N ) = ~ N 4 + O(N 3 log N). (I) 

Dorst and Smeulders [3] have shown that each 
digital line corresponds to an (infinite) set of 
'analog' straight lines that can be represented by a 
distinct domain in the (m, b) parameter space. A 
digital Hough algorithm to detect digital straight 
lines can, in principle, be constructed by assigning 
an accumulator to each of the AD(N) domains. 
Clever data structures [1] can reduce this number 
if the number of edge pixels in the image is small. 

The Digital Hough Transform is at its best when 
the image digitization process is the dominant 
source of location errors in the data points, i.e., 
when the image contains true digital straight lines. 
It may be observed that if the task is to merely 
verify that a digital arc is a digital straight line, 
then alternative, extremely efficient O(N) algo- 
rithms [13], [7], are available. 

Unlike most conventional Hough algorithms the 
'resolution' of the Digital Hough Transform given 
an N x N  image cannot be set or modified by 
design, since the number of accumulators is fixed, 
equal to the number of possible digital straight 
lines in the digital image. (Decimation of the 
digital image would, however, allow to reduce the 
number of accumulators and degrade resolution.) 

To enable comparison with other Hough 
variants, a meaningful measure of resolution must 
be devised. For the Digital Hough Transform a 
reasonable approach seems to be the quantifi- 
cation of the 'residual ambiguity' in the position of 
a straight line once the digital straight line to which 
it relates has been identified. This requires to, 
somehow, measur.e the infinite set of straight lines 
that belong to the corresponding domain in the 
(m, b) parameter space. 

In the Digital Hough Transform the quantiza- 
tion of the (m, b) parameter space is non-uniform 

292 



Volume 12, Number 5 PATTERN RECOGNITION LETTERS May 1991 

in the sense that accumulators are assigned to 
domains of  different sizes and shapes. One might 
be tempted to determine an 'average' domain and 
perhaps regard its area as a measure of  the residual 
ambiguity. This is, however, unacceptable since 
domains of  equal area in different locations in the 
(re, b) space cannot be meaningfully associated 
with equal residual ambiguities. Furthermore, lines 
in real images are usually not drawn from a uni- 
form probability source, so there is little engineer- 
ing justification in using the average as a figure of  
merit. 

To avoid averaging, one might want to focus on 
the particular digital straight line that leads to the 
worst-case residual ambiguity. But the worst cases 
relate to straight lines that set very few pixels in the 
image, such as lines that traverse the image near its 
corners. The ambiguity in the location of such lines 
is not very interesting, so a better approach seems 
to be to measure the worst-case residual ambiguity 
among lines that intersect opposite sides of  the im- 
age and set all pixels in between. 

A meaningful measure of  (an infinite set of) 
straight lines should be invariant to translation 
and rotation of  the coordinate system. A unique 
measure satisfying these requirements is known in 
the field of Geometric Probability [12]. Two im- 
portant conclusions, informally rephrased, are 
that patches of  equal area in a (Q,0) normal 
parameter space (but not in the (m, b) space!) cor- 
respond to (infinite) sets of  lines of  equal measure, 
and that the measure of  straight lines that traverse 
a convex region is equal to the perimeter of  the 
region. 

By the Geometric Probability measure of 
straight lines, the worst-case residual ambiguity in 
the location of  lines that intersect opposite sides of 
the image and set all pixels in between is clearly 
associated with digital lines that are parallel to one 
of  the axes of  the grid, as shown in Figure 1. The 
computation of  the ambiguity is described with 
reference to Figure 2. 

Let L x  denote the set of  straight lines that in- 
tersect a geometric feature X, and let M x  = M ( L x )  
denote the measure of  that set. The worst-case 
residual ambiguity is defined as the measure of  the 
set of  lines that intersect both segments A B  and 
CD: 

A 

B 

Figure 1. The digital line that induces worst-case residual am- 
biguity among lines that intersect opposite sides of the image 

and set all pixels in between. 

RDHT(N ) -- M(LAB NLcD ). ' (2) 

Clearly, LAB tq LCD = LABo I'1LCD 0 . Furthermore, 

M(LABo f') Lcoo)  = M(LABO) + M(LcDo) 

- M(LABO U LcDo). (3) 

But LAB 0 U LcD 0 = LABcD , SO 

RDIaT(N) = MABo + McDo - MABcD. (4) 

The triangles A B O  and CDO, and the rectangle 
A B C D  are convex polygons, thus the measure of  
the lines that traverse each of  them is simply the 
respective perimeter. Hence, 

RDHT(N)=2(1/N+1/1 + I / N 2 ) - ( 2 / N + 2 ) ,  (5) 

RDHT(N) = 2(1/1 + 1 / N  2 -  1). (6) 

If  N is large the following approximation holds: 

RDHT(N ) = I / N  2. (7) 

A D 

BI_ 1 i l  C 

Figure 2. The geometric structures used for computing the 
measure of straight lines that intersect both the segment AB and 

the segment CO. 
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It is concluded that the resolution of the Digital 
Hough Transform is such that the worst-case 
residual ambiguity among lines that intersect op- 
posite sides of the image and set all pixels in be- 
tween i s  approximately I / N  2 according to the 
rotation and translation invariant measure of 
straight lines. The required number of ac- 
cumulators is asymptotically 3N4/rt 2. 

3. Analog Hough transform 

By specifically tailoring the Hough algorithm to 
detect digital straight lines, one implicity assumes 
that the discretization of the image is the dominant 
source for errors in the location of edge points. 
Very often this is not the case; the accuracy of 
modern edge detectors largely depends on the level 
of image noise, and can reach sub-pixel levels when 
the signal-to-noise ratio is high. Thus, 'Analog' 
Hough algorithms, capable of detecting straight 
lines in the analog pre-image, are useful. 

In conventional Hough Transforms, errors in 
the coordinates of data points were altogether 
ignored or believed to be compensated by the 
quantization of the parameter space. The short- 
comings of that approach manifest themselves in 
the spreading of peaks in the parameter space and 
in the appearance of false peaks. These phenomena 
can lead to considerable degradation in the perfor- 
mance of the Hough algorithm in terms of detec- 
tion capability and effective resolution. Thus, the 
simplistic assumption that the resolution of con- 
ventionai Hough algorithms is directly related to 
the quantization density of the parameter space 
fails to account for errors in the location of edge 
points. 

Variants of the Hough Transform that provide 
compensation for errors in the location of data 
points have been available for some time, but have 
usually been difficult toanaiyze. Recently, Kiryati 
and Bruckstein [6] studied an extended Hough 
Transform [15] that provides compensation for 
edge-point location errors, and using a signal- 
theoretic analysis were finally able to show how its 
resolution depends on the quantization of the 
parameter space, i.e., on the number of accumula- 
tors. This algorithm is thus an 'Analog' Hough 

Transform that is convenient to compare with the 
Digital Hough Transform with respect to the 
dependence of the effective resolution on the 
number of accumulators. Relevant ideas and 
results from [6] are presented and extended in the 
rest of this section. 

Consider the Duda and Hart [2] algorithm, in 
which detection of collinear points is substituted 
by the detection of sinusoid intersections. The 
voting process is intended to produce at the ac- 
cumulator array a discrete approximation of the 
continuous-domain Hough Transform h(Q, 8) 
defined as follows: Let 6i>_.0 and 0~<8i<2n 
denote the polar coordinates of any edge point 
pi E P. Then every pi ~ P generates a sinusoid 6o(8) 
in the (6, 8) parameter plane: 

6°(e) =6, cos(e~- e), e~ [0, n). (8) 

An indicator function is associated with each 
sinusoid: 

I I ,  0 =6°(0), (9) 
l°(6, O) = O, otherwise. 

Summing up the indicator functions yields the 
continuous-domain Hough Transform: 

h(6, 6) = E l°(6, 0). (10) 
i 

h(6, 8) is a discontinuous--hence non-bandlimited-- 
function. This is not changed by the spatial- 
dependent transformation inherent in the voting 
process. It is well known that due to aliasing ef- 
fects a non-bandlimited signal cannot be properly 
represented by a discrete set of samples. 

This basic inadequacy in the algorithm was 
studied in depth [6]; the key to the solution is the 
replacement of h(6, 0) by an 'almost' bandlimited 
function, such that 'sufficient' parameter-space 
sampling can be carried out. Interpolation by an 
appropriate low-pass filter then allows high resolu- 
tion search for maxima in the parameter space. 
The smoothing of h(6,8) must be performed 
before sampling, in a way that preserves the useful 
properties of the algorithm in line detection, and in 
a computationaily feasible manner. 

In particular, it has been suggested [6,15] that 
the indicator function (9) be replaced by 

Ij(#, 0) = C(6 - #°(0)) (11) 
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where C(. ) is an 'influence function' to be dis- 
cussed in the sequel. This results with a modified 
continuous-domain Hough Transform 

zCQ, 0) = ~/~(0, 0). (12) 
i 

z(Q,O) can b e  point-sampled by assigning ac- 
cumulators to a discrete set of sampling points, 
and evaluating (12) only at these points. 

The replacement of (9) and (10) by (11) and 
(12) can be visualized as the replacement of the 
sinusoids in the Duda and Hart algorithm by 
sinusoidal bands whose vertical profile is C(. ). If 
C(. ) has finite support, the algorithm remains 
computationally feasible (and apt for paralleliza- 
tion). 

The introduction of the influence function C(. ) 
into the Duda and Hart algorithm is equivalent to 
surrounding each edge-point by a circularly sym- 
metric density distribution (which is the inverse 
Abel Transform of the influence function) and 
replacing the Duda and Hart Transform by the 
Radon Transform. By choosing C(. ) to be sym- 
metric, positive, reasonably 'well behaved' and of 
finite support (-rm, rm), the useful properties of 
the algorithm are maintained, and compensation 
for location errors (limited to rm) is provided. 

Kiryati and Bruckstein [6] have shown that if 
C( . )  is bandlimited to (--O~m,O,)m) , then the 
modified continuous-domain Hough Transform 
z(Q, 0) is also 2-D bandlimited, and can be fully 
represented by a discrete set of samples. The uncer- 
tainty principle of signal representation dictates, 
however, that the influence function C(. ) and its 
Fourier Transform cannot both be of 'short du- 
ration'. Since implementation of the modified 
Hough Transform implies an influence function 
C(. ) of finite support, the use of support limited 
influence functions that have the smallest possible 
'effective bandwidth' in a certain sense has been 
suggested, e.g. 

f k c o s ( n r / 2 r m ) ,  [r[ ~<rm, (13) 
C ( r )  = Co ' Irl >rm 

where k is a constant. With k > 0  this influence 
function is a positive, symmetric and monotonical- 
ly decreasing function of Irl. Furthermore, it has 
the smallest possible effective bandwidth (in the 

sense of the second-order energy moment of its 
Fourier Transform) among all functions that are 
support limited to r m. 

With a support limited influence function which 
is also effectively bandlimited, z(Q, O) is effectively 
bandlimited, has finite support in the p direction 
and is periodic in the 0 direction. Thus it can be 
represented by a f in i t e  set of point samples with 
negligible aliasing. It has been shown that due to 
the bow-tie shaped band-region of z(t~, 0), optimal 
sampling of z(p, 0) is on an hexagonal grid, and 
sampling on a rectangular grid doubles the sam- 
piing requirement, i.e., the required number of ac- 
cumulators. 

Assuming a circular image of radius Qm, Kiryati 
and Bruckstein [6] have shown that the minimum 
required number of accumulators is 

A°=(~m+rm)Com(LQmcoml )+3) /n  (14) 

where Lx] is the largest integer equal to or smaller 
than x. To compare with the Digital Hough Trans- 
form a unit square image is considered. A unit 
square circumscribes a circle of radius 0.5 and is 
inscribed in a circle of radius ~/2/2. Reasonably 
assuming rm<~ 1, it immediately follows that AA, 
the minimum required number of samples in this 
'analog-type' Hough Transform satisfies 

2 
(.0 m 

A A  = a - -  (15) 
2n 

where 0.5 < a < 1 is a constant. Using the influence 
function (13) and the convention that its effective 
bandwidth is triple the square root of the normal- 
ized second-order energy moment of its Fourier 
Transform, 

09 m = 3 n / 2 r  m . (16) 

Therefore, the minimum required number of 
accumulators is: 

9n 
AA = a 8rm2 <17) 

where rm is the radius of support of the influence 
function C(. ), and represents the ambiguity in the 
location of the data points. Hence, the resolution 
of this version of  the Hough Transform is upper- 
bounded either by the assumed magnitude of edge- 
point location errors (forcing certain rm and AA) 
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or by the available number of accumulators A A, 

forcing r m to be larger than a certain minimum. 
To compare with the Digital Hough Transform, 

we proceed to determine (in terms of rm, and 
through (17) in terms of  AA) the worst-case am- 
biguity in lines that intersect opposite sides of the 
image and set all pixels in between. As in the case 
of  the Digital Hough Transform, the worst-case 
corresponds to lines that are parallel to one of the 
image sides and yield collinear edge-points. See 
Figure 3. If  rm,~ 1 as assumed, one can simply 
substitute 

1/N=2r m (18) 

in (7), to obtain 

RAH v ---- 4r2m . (19) 

This means that the resolution of this Analog 
Hough Transform is such that the worst-case am- 
biguity among lines that intersect opposite sides of 
the image is approximately 4r 2 according to the 
rotation and translation invariant measure of 
straight lines. The minimum required number of 
accumulators is 9aTt/8r 2, where 0 . 5 < a < l  is a 
constant. (Note that if the errors in the location of 
the data points are mainly due to digitization, 
choose r m ~ 1/2N.) 

% 

A ¢ ~-----~ / 

Figure 3. In the Analog Hough Transform [6], the worst-ease 
ambiguity among lines that intersect opposite sides of the image 
and set all pixels in between is associated with lines that are 

parallel to one of the coordinate axes. 

4. Conclusions 

In this paper digital and analog Hough algo- 
rithms are compared. The Digital Hough Trans- 
form is aimed at detecting digital straight lines; it 
implicitly assumes that the discretization of the im- 
age is the dominant source for edge-point location 
errors. When the image is corrupted with noise or 
when edge detectors capable of sub-pixel accuracy 
are employed that assumption is not valid. The 
term 'analog Hough Transform' refers to algo- 
rithms that are aimed at detecting straight lines in 
the analog 'pre-image'. In particular, the digital 
approach is advocated by [I]; analog Hough algo- 
rithms are represented by the algorithm of [6]. 

The comparison is made in terms of the relation 
between the achievable resolution in each of 
the approaches as a function of the number of 
accumulators. In the Digital Hough Transform, 
the resolution and the required number of ac- 
cumulators are fixed and governed by the dimen- 
sions of the digital image, which can only be 
coarsely modified by decimation. In Analog 
Hough Transforms the number of accumulators 
(and the resulting resolution) can be set by design 
according to specifications. 

Resolution is defined in terms o f  the worst-case 
ambiguity in the location of straight lines that in- 
tersect opposite sides of  the image and set all pixels 
in between. Ambiguity is measured by the trans- 
lation and rotation invariant measure of straight 
lines [12]. A similar approach was used in [5] to 
quantitatively evaluate digitization schemes. Worst- 
case analysis is convenient and usually meaningful 
in terms of engineering specifications. 

In the Digital Hough Transform of  an N x N  
image the ambiguity RDnT(N) is given by (7), and 
AD(N), the required number of accumulators, is 
given by (1). Asymptotically, 

AD(N) o¢ 1/R2HT(N). (20) 

In the Analog Hough Transform (of [6]) the 
ambiguity RAH T is given by (19), and A A, the 
minimum required number of accumulators is 
given by (17). It follows that 

A A ~ 1/RAH T. (21) 

The comparison between (20) and (21) reveals that, 
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in high resolution applications, the Analog Hough 
Transform is markedly superior to the Digital 
Hough Transform in terms of the resolution that 
an added accumulator 'buys'. 

In the Digital Hough Transform the tessalation 
of the parameter space is very non-uniform, 
meaning that certain digital lines correspond to 
small sets of lines in the pre-image, while other 
digital lines, that constitute the worst-case, corres- 
pond to large sets of lines in the pre-image. The 
'Muff' Transform [17] is a variant of the Hough 
Transform that has some 'digital flavour', yet 
achieves better uniformity in the tessalation of the 
parameter space. An important contribution of [1] 
is in providing a conceptual link between the 
theory of Digital Geometry and Hough Transform 
research. 
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