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Conjecture 1: Let `(m) denote the linear span ofSm, whereSm
is the 0; 1 sequence from the Segre hyperoval defined in the last
paragraph. Then

`(m)=m = 1 + `(m� 2)=(m� 2) + `(m� 4)=(m� 4)

for all m � 9.
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Design of Shapes for Precise Image Registration

Alfred M. Bruckstein, Larry O’Gorman,Fellow, IEEE,
and Alon Orlitsky

Abstract—This correspondence deals with the problem of designing
planar shapes for subpixel image registration. Basic theoretical con-
siderations are shown to lead to a lower bound on location accuracy.
Optimal registration marks achieving this bound are discussed. These
optimal designs, however, require very high printing or etching resolution
and are inherently very sensitive to variations in the image sampling
model (like scaling of grid size and rotation). More robust, optimal and
suboptimal “topology-preserving” registration marks are then introduced
and analyzed.

Index Terms—Grid geometry, image registration, information-theoretic
precision bounds.

I. INTRODUCTION

Suppose that a planar shape is digitized by point sampling at lattice
points defined by a square grid. The result is a binary two-dimensional
“digital image” of the shape: a pattern of zeros and ones indicating
whether the corresponding grid point belongs to the shape or its
background (see Fig. 1). In case the planar shape is known up to an
arbitrary translation in the plane, the two-dimensional pattern of zeros
and ones that form its digital image provides information about its
location in the plane. Formally, the planar shapeS can be described
by an indicator function overR2

�S(x; y) =
1; if (x; y) 2 S
0; if (x; y) 62 S:

(1.1)

If the shape is translated by a vector(XXX; YYY ), the translated shape
S(XXX; YYY ) has an indicator function given by

�S(XXX;YYY )(x; y) = �S(x�XXX; y � YYY ): (1.2)

We digitize translated versions ofS on the unit gridf(i; j) 2 Z2g.
The result of digitizingS(XXX; YYY ), on the lattice is

B(i; j) = �S(XXX;YYY )(i; j) = �S(i�XXX; j � YYY ): (1.3)

We address in this correspondence the following questions.
1) Given a planar shape of finite support, sayS � [0; A) �

[0; A) � R2 (i.e., �(x; y) = 0 for (x; y) 2 R2n[0; A) � [0; A)),
how should we estimate the translation vector(XXX; YYY ) from B(i; j)?

2) What is the best that we can do in estimating the location ofS
over all the possible planar shapes of finite extent and what shapes
achieve minimum error in location?

3) How to design “good” shapes for location estimation when the
shapes are constrained to obey certain further restrictions on size,
topology, etc.
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Fig. 1. Image digitization by point sampling.

The motivation for the above problems arises from the necessity
to design fiducials—standard marks or shapes—for locating objects
in images in various machine-vision applications. For example,
such standard marks are etched into printed circuit boards and on
VLSI wafers, with the aim of enabling subpixel (i.e., less than grid
size) registration accuracies when placing overlay masks, mounting
integrated circuit packages on PC boards, etc. Since the problem
arose in industrial applications, it has received some attention both
by theoreticians, e.g., [1], and by application-oriented engineers,
e.g., [2]–[8]. However, the problem was approached mostly via a
correlation or template-matching type of analysis [5], [8], [9]. When
dealing with binary digitizations of two-level images the approach
to subpixel accuracy registration was based upon either centroid
computations for the digitized images [2], [4], [3] or the theoretically
amenable problem of digitized straight edge location [1].

This correspondence is based on a technical memorandum issued
in 1989 at Bell Laboratories, [10], which had a limited circulation. At
the time this memo was published, a paper [11] dealing with related
topics appeared. A subsequent paper by Havelock [12] deals with
some extensions of ideas from [11] and [10]; however, the results to
be presented here have never been published before.

The important topic of circularly symmetric and bull’s-eye fiducials
discussed in [10] and here, in Sections IV and V, has been the subject
of several papers since 1989. In [13], bull’s-eye patterns were studied
by simulation while [14] analyzed rotation-invariant fiducials in the
spirit of [10], using results from lattice geometry and number theory.
The paper [15] deals with some practical topics arising from the use
of circularly symmetric fiducials, while [16] advocates the idea of
exploiting gray-scale information to improve the location accuracy for
circular fiducials. This idea, also discussed in [11] and [17] is, in our
opinion, an important direction of research in the context of fiducial
design and should be the subject of further theoretical investigations.

II. THEORETICAL CONSIDERATIONS

Suppose that a shapeS translated by the unknown(XXX; YYY ) yields a
digitized imageB(i; j). Returning to the problems defined in Section
I, we shall first address the issue of estimating the vector(XXX; YYY ) from
the dataB(i; j). Clearly, the digitized image can, and usually will
be the same for a range of different translation vectors (the mapping
of (XXX; YYY ) via �S(x�XXX; y�YYY ) into B(i; j) is many to one). The
best we can hope for is to determine the regionR

R = f(X; Y ); �S(X; Y )(i; j) = B(i; j); 8i; jg � R2: (2.1)

This, however, is easy to do since from the valueB(i; j) at each
(i; j) and the assumed complete knowledge of�(x; y) we get
constraints on(XXX; YYY ). Indeed, ifB(i0; j0) is known, we have from

�S(i0 �XXX; j0 � YYY ) = B(i0; j0)

Fig. 2. The meaningful samples forS � [0; A) � [0; A).

that (XXX; YYY ) is constrained to be in the region

R(i ; j )
�
= f(X; Y ): �S(X; Y )(i0; j0) = B(i0; j0)g � R2 (2.2)

providing the observed sample valueB(i0; j0) via (2.2). Then we
clearly have

R =

(i ; j )2Z

R(i ; j ) (2.3)

and all points inR are equally eligible as estimates of(XXX; YYY ).

A Lower Bound on Location Accuracy

Recall that we have assumed the registration/location shape to be
of bounded support, i.e.,S � [0; A) � [0; A) for some integerA.
Therefore, we know that the digitization ofS can have at most
A2 “meaningful bits.” Of course, all “pixel digits”B(i; j) are
meaningful, however, the prior assumption of finite support implies
that, if we know the pixel(i0; j0) (i.e., the region(i0�1; i0]�(j0�
1; j0] � R2) to which (XXX; YYY ) belongs, we knowin advancethat all
B(i; j) outside the rangei, j � [i0; i0 + A) � [j0; j0 + A) � Z2

will be zero, see Fig. 2.
Clearly, the output pattern for(XXX; YYY ) = (m + �x; n + �y) is

identical to that of(XXX; YYY ) = (�x; �y) shifted by (m) to the right
and by(n) upwards. (Here�x, �y 2 (0; 1].) In other words, up to
translation by a pair of integers, we can have at most2A different
digital patterns.

Assume first that(XXX; YYY ) 2 (0; 1] � (0; 1] and consider all the
patterns thatS generates when the origin is placed within this region.
Each pattern corresponds to a regionR of possible translations within
(0; 1] � (0; 1], and clearly, different patterns must induce disjoint
(�x; �y)-translation subsets of the unit square. Therefore, the output
patterns induce a decomposition of the unit square into some number,
sayP , of disjoint regionsR1; � � � ;RP . If P patterns are generated,
the area of the largest region—inducing the worst uncertainty in
estimating(XXX; YYY )—must be greater than1=P . Since we can have at
most2A different patterns we obtain that the worst case uncertainty
region for any shapeS, Rworst, must obey

Area fRworstg �
1

2A
: (2.4)

The above argument assumed that we know the pixel to which
(XXX; YYY ) belongs. Relaxing this assumption, requiresS to be designed
so that the “rough translation”(i0; j0) can always be determined.
We can easily ensure this by assigning part of the support ofS,
[0; A)� [0; A), to rough location, for example, by requiring that

�S(x; y) = 1; for all (x; y) 2 [0; 1)� [0; 1) (2.5)

(see Fig. 3). This implies that the lower left corner of the digitized
pattern is always an ON(= 1) bit and we can immediately locate
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Fig. 3. Shape providing immediate rough translation information.

the pattern up to a pixel size region. Indeed, if(i0; j0) is the lower
leftmost grid point that has value1, i.e.,

B(i0; j0) = �S(i0 �XXX; j0 � YYY ) = 1

we know from (2.5) thatXXX 2 (i0 � 1; i0] andYYY 2 (j0 � 1; j0].
From theA2 meaningful bits, one bit has thus been allocated

to “rough location” and the remainingA2 � 1 may yield further
location information. This could also be explained as follows: the
lower leftmost nonzero bit assumed here to be(i0; j0) provides that

R(i0; j0) = (i0 � 1; i0]� (j0 � 1; j0]

and the rest of the information bits in the pattern can serve to further
refine R(i0; j0) down to R—the final uncertainty region. In this
case the bound forRworst becomes

Area fRworstg �
1

2(A �1)
: (2.6)

If, say,A = 3 as in the example of Fig. 2, the worstR area is larger
than1=28 implying that the “best” balanced shapeS should yield for
XXX andYYY an estimate within�XXX = �YYY = 1=24 = 1=16.

For any given shape, the procedure of findingR can readily be
carried out computationally and the side ofRworst, compared to the
lower bound, will yield the location properties ofS.

Havelock [11] also considers equivalence classes of locations
that yield identical sampled and quantized images (and calls them
“locales”) and stresses their importance in evaluating the precision of
locating a translated bivariate function. His paper, however, does not
ask the question of shape design and is aimed at analyzing tradeoffs
between grey levels and sampling density, in various mensuration
tasks.

III. D ESIGN OF OPTIMAL LOCATION MARKS

The lower bound presented in the previous section enables us
to evaluate various designs forS. The question of optimal shapes
naturally arises in this context: can we design a shapeS that actually
achieves the lower bound? To answer this question let us first consider
the one-dimensional counterpart of our problem as follows.

Suppose we have to design a binary function�(x) with finite
support [0; A) with A 2 Z, and taking values inf0; 1g, so that
when�(x�XXX) is sampled at the integer coordinates the resulting0=1
pattern locatesXXX with the highest precision. From the developments
of the previous section we know that in the sampled (digitized) image
we getA meaningful bits.

Therefore, if we design a function�(x) that uses one output bit for
“rough location” and enables us to determineXXX within an interval
of length1=2A�1 in the worst case, we have an optimal design. The

Fig. 4. Optimal one-dimensional design.

Fig. 5. Each bit doubles the location precision in the optimal design.

following function is an optimal�(x):

�0(x) =

0; for x 2 (�1; 0)
1; for x 2 [0; 1)
1; for x 2 [1; 3=2); 0; for x 2 [3=2; 2)
1; for x 2 [2; 9=4); 0; for x 2 [9=4; 10=4)

1; for [10=4; 11=4); 0; for [11=4; 3); etc� � �
�
�
0; for x 2 [A; 1)

a concatenation of Haar-type basis functions [18] (see Fig. 4).
Since we have�0(x) = 1 for x 2 [0; 1), the leftmost1 of the

output pattern generated byB(i) = �0(i � XXX) will provide the
information thatXXX 2 (i0 � 1; i0]. Then (see Fig. 5) the output
pattern will look like

000 � � � 0 1b1b2b3 � � � bA�1 0000 � � �

meaningful bits

It is now easy to realize that

b1 = 1; iff �x 2 (1=2; 1]

b2 = 1; iff �x 2 (1=4; 2=4] or (3=4; 1]

b3 = 1; iff �x 2 (1=8; 2=8] or (3=8; 4=8]

or (5=8; 6=8] or (7=8; 1]; etc; � � �

and that theA�1 bits beyondb0 determine a straightforward binary
coding for an uncertainty interval of size1=2A�1. For example, if
we haveA = 4 and see the pattern

00 � � � 0 1010 000

we know thatb1 = 0 means�x � 1=2 and given this,b2 = 1 means
that �x > 1=4. Now b3 = 0 indicates that�x 2 (2=8; 3=8] and this
is the last significant piece of information we get, as we know that
A = 4. The �x has been located within an interval of length1=8,
i.e., 1=2A�1 = 1=23, the best theoretically achievable precision.

Thus we have produced an example of an optimal one-dimensional
design. It is clear from the above discussion that we can readily
produce other designs of identical performance, for example, by
reversing the levels0 and 1 over the regions(1; 2], 2; 2 1

2
,

2 1
2
; 3 , 3; 3 1

4
, 3 1

4
; 3 1

2
, 3 1

2
; 3 3

4
, 3 3

4
; 4 , etc, in arbitrary
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(a) (b)

Fig. 6. The basic cells for 2-D optimal fiducial designs.

Fig. 7. An optimal 2-D fiducial of area3 � 3.

ways. Thus we can have2P equivalent “optimal” designs where
P = 0+1+2+4+� � �+2(A�2), for a�(x) with support[0; A). Some
of these designs will be better than others in terms of the number of
0=1 transitions and the distances between them. The original design
�0(x) has1+2+4+ � � �+2A�2 = (2A�1�1) 1-valued connected
components (1 + 2 + 4 = 7 if A = 4, as in Fig. 5) but reversing
0=1 over the regions 2; 2 1

2
, 3; 3 1

4
, 3 1

2
; 3 3

4
, etc., we obtain

an optimal design with1+1+2+ � � �+2A�3 = 2A�2 (4 if A = 4)
connected1-valued runs. These latter designs achieve a location
precision of1=2A�1 with a shape that has2A�1 level transitions.
The connection between level transitions and location accuracy will
be discussed in detail in Section IV.

Two-dimensional (2-D) optimal shapes�0(x; y) can now be found
as immediate generalizations of the one-dimensional (1-D) designs
�0(x). Given a region[0; A)�[0; A) we partition it into unit squares,
use the lower leftmost pattern as a rough location sign, and assign
the remainingA2 � 1 squares, half to�x location patterns and half
to �y location patterns. The location patterns will implement the 1-D
coding idea as follows.

A horizontal1=2k unit cell is defined as in Fig. 6(a) and a vertical
1=2k unit cell as its 90� rotation, Fig. 6(b). Then we compound the
horizontal and vertical unit cells fork = 1; 2; � � � ; (A2 � 1)=2 to a
square pattern over[0; A) � [0; A) in any predetermined way. The
result will be a registration shape with the “rough location” property
and yielding a precision of�XXX = �YYY = 1=2[(A �1)=2].

Suppose, for example, thatA = 3. Then an optimal3� 3 location
mark is the pattern depicted in Fig. 7. Of course, except for the rough
location mark, we could arbitrarily permute the other regions with no
effect on the precision achieved by this shape. Also we could flip
the values of�0(x; y) as described following the discussion of 1-D
designs. Note that it is advisable to haveA an odd number, since then
we can have identical�XXX and�YYY precision, otherwise, we must
do some more thinking about the assignment of one, pairless, unit
square. Therefore, 2-D optimal location patterns do exist, however,
the examples we have seen so far are based on high-precision etching,
are very sensitive directionally, and assume “perfect” knowledge of

the pixel size. As we move the shape�(x; y) within a given pixel-
sized area (located via the rough location bit) all2A �1 possible 2-D
0=1 patterns arise as digitized images equally often, this in fact being
the secret of achieving optimality.

The optimal shapes described above achieve their goal by being
fine tuned to the sampling grid size; they are complicated topolog-
ically and are quite difficult to produce, if high location precisions
are to be achieved. In fact, any shape that achieves optimal-location
performance will necessarily require high-precision etching, tuned to
the pixel size. This is obvious from the observation that translating
an “optimal” shape by more than1=2[(A �1)=2] in either the vertical
or the horizontal direction will have to induce some changes in the
digitized patterns seen. We, therefore, are led to further consider
shapes that are simpler, more robust to errors in our knowledge of
grid size. And, although they use area less efficiently, they still yield
good location performance.

IV. DESIGN OF ROBUST LOCATION MARKS

Let us again consider a 1-D example first. Suppose we have a
function �(x) of the form

�(x) =

0; for x 2 [�1; 0)
1; for x 2 [0; l1)
0; for x 2 [l1; l2)
1; for x 2 [l2; l3)
...

...
1; for x 2 [lK�1; lK)
0; for x 2 [lK ; +1)

(4.1)

parametrized by the sequence of increasing positivenumbers
fl1; l2; � � � ; lKg. As before, assume that we digitize�(x � XXX)
by sampling it at the integers. Ifl1 � 1, �(x) has the rough location
property and we can assume thatXXX = �x 2 (0; 1]. The digitization
of �(x� �x) will result in a pattern of zeros and ones of the form

B(i) = 00 � � � 0 1� 0� 1� 0� 1� 0� 1� 00

where b� means(b b � � � b), �s times (and if�s = 0 no b at all).
Denote byfnrg the sequence

nr =

r

s=1

�s; for r = 1; 2; � � � ; K: (4.2)

From the digitization process we have that the sequencefnrg is a
function of �x and

nr(�x) = blr + �xc (4.3)

for �x 2 (0; 1], and nr(�x) jumps from blrc to blrc + 1 as �x
increases from0 to 1. The jump point will be at

�xr = 1� (lr � blrc) = 1 + blrc � lr: (4.4)

Suppose that we have, from the sequenceB(i) = �(i � �x),
complete informationon thef�sg and, consequently, on thefnr(�x)g
sequencefor each �x. Then we can look at the vector function
NNN(�x) = [n1(�x); n2(�x); � � � ; nK(�x)] and realize that the vector
NNN(�x) changes at each�xr. Therefore, givenNNN(�x) we can determine
uniquely to what interval(�xi; �xj ], �x belongs. The worst case
precision in locating�x will be determined by thelengthof the longest
interval induced on(0; 1] by the collection of breakpoints

f�xr = 1 + blrc � lr j r = 1; 2; � � � ; Kg (4.5)

induced by the designfl1 l2 � � � lKg of �(x). In the previous section
we have seen one basic example of a function�(x), composed of con-
catenating Haar-type0=1 functions of increasing spatial resolution,



3160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

that had the design

l1 = 1
1

2
; l2 = 2; l3 = 2

1

4
; l4 = 2

1

2
; l5 = 2

3

4
;

l6 = 3; etc; � � � :

For this design it was shown that the breakpointsf�xrg divided
the (0; 1] span of�x into 2A�1 equal intervals of length1=2A�1

thereby achieving the optimal precision possible for the given support
of �(x). However, forA = 5, for example, we had there a total
of 2[0 + 1 + 2 + 4 + 8] = 2[15] = 30 level transitions (15
regions) achieving a1=16 precision. Therefore, two breakpoints
always coincided in the optimal design. We could, however, find
an improved optimal design having distinct breakpoints by using the
level flipping trick discussed in the previous section. WithA = 5 we
could find an optimal design with8(= 2A�2) connected components
with value 1. This design hasK = 15 and thef�xrg’s are distinct
and divide [0; 1) into 16 equal intervals. We note that this design
works because we do have in this casecomplete informationon the
�s sequence from the dataB(i).

The point illustrated by the above argument is the following.
To obtain good designs one should try to place (by appropriately
choosing theflrg sequence) the breakpointsf�krg as uniformly as
possible over(0; 1]—however, one must also ensure the unambigu-
ous recovery of allnr(�x) of NNN(�x) from the digitized data. One
particularly straightforward way to ensure thatNNN(�x) is completely
determined by theB(i) = �(i� �x) sequence is to use 1-D designs
that “preserve topology” in the following sense. If the�(x) function
hasC “connected components” (connected regions where�(x) = 1),
i.e.,K = 2C � 1, the imageB(i) should always haveC connected
components, or runs of1 as well.

In this case, the association of a digitized imageB(i) to the
corresponding�r ’s and nr(�x) clearly becomes a trivial task. The
“topology-preservation” property will be ensured for all�x 2 (0; 1]
if and only if we have all intervals[li; li+1) at least of length1,
i.e., we need

l1 � 1; l2 � l1 � 1; l3 � l2 � 1; � � � ; lK � lK�1 � 1: (4.6)

Now we may ask the following question. What are the best achievable
location accuracies within the class of “topology-preserving” designs?
The answer to this question lies in the distribution of the jump points
�xr, induced by the designs. GivenK = 2C�1 for someC, we shall
have a topology-preserving design provided (4.6) is satisfied and the
worst case precision will be lower-bounded by

length[worst interval] �
1

K + 1
=

1

2C
(4.7)

since theK jump points determine at mostK + 1 intervals. We can
achieve this lower bound with any design that would place the jump
points at the locations

1

K + 1
;

2

K + 1
; � � � ;

K

K + 1

� f�xr = 1 + blrc � lr j r = 1; 2; � � � ; Kg: (4.8)

Indeed, setting

l1 = 1 + 1=(K + 1)
�
= D

l2 = 2 + 2=(K + 1) = 2D
l3 = 3 + 3=(K + 1) = 3D
...
lK = K +K=(K + 1) = KD

(a) (b)

Fig. 8. Two topology-preserving location marks.

we obtain the desired jump point distribution, since

�x1 = 2� (1 + 1=(K + 1)) = K=(K + 1)
�x2 = 3� (2 + 2=(K + 1)) = (K � 1)=(K + 1)
...
�xK = K + 1� (K +K=(K + 1)) = 1=(K + 1):

Therefore, withC connected components of lengthD = 1+1=(K+

1), spaced at a distanceD from one another, and for a total support of
(K+K=(K+1)) �= K+1 = 2C for �(x), we can get a design that
achieves both “topology preservation” and subpixel registration to
within 1=2C. This is seen to be anoptimal “topology-preserving”
design. To see what happens, consider the case ofC = 3, i.e.,
K + 1 = 6. The predicted accuracy is�X = 1=6 and we readily
realize that six equal intervals for�x are encoded as follows:

�x 2 (0; 1=6]! 01010100 � � �

�x 2 (1=6; 2=6]! 01010110 � � �

�x 2 (2=6; 3=6]! 01010010 � � �

�x 2 (3=6; 4=6]! 01011010 � � �

�x 2 (4=6; 5=6]! 01001010 � � �

�x 2 (5=6; 6=6]! 01101010 � � � :

Note that this design too implies complete knowledge of the sampling,
knowledge of grid size, however, it does not require the etching of
very thin lines.

From the above 1-D analysis it follows that location marks as
shown in Fig. 8 achieve a precision of�X = �Y = 1=2C

and clearly have the topology-preservation property. Note that it is
superfluous to fill the2C � 2C square with a regular checkerboard
pattern since no further increase in location accuracy will result.
However, we should be able to use area more efficiently in two
dimensions. We could strive to obtain better designs with a “topology
preservation” like property and the 1-D analysis serves as a good
guidance in this endeavor. For a general design we shall first require
the rough location property, i.e.,�(x; y) = 1 for (x; y) 2 [0; 1)�

[0; 1). The registration shape properties then clearly depend on the
set of lengthsfl(j)Hkg andfl(i)V kg that are induced by the intercepts of
S(�x; �y) with the horizontal and vertical grid lines having equations
y = j and x = i (see Fig. 9).

The location resolution for�x and�y can be theoretically predicted
provided we can determine the lengthfl(j)Hkg and fl(i)V kg, without
having to know the translation precisely. This might seem to be a
rather stringent requirement; however, it is met in an obvious way
by a rather large class of shapes, and two immediate examples are
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Fig. 9. Illustration of the general conditions for topology preservation.

Fig. 10. An efficient topology-preserving design.

the ones depicted in Fig. 8. We must also extend the “topology-
preservation” property to two dimensions, in order to ensure a simple
and robust way to solve the correspondence problem, i.e., to be
able to determine for each intersection patterns defined byfl

(j)
Hkg

or fl(i)V kg the correspondingf�ig sequences by looking at runs of
zeros and ones. A straightforward way to ensure the “topology-
preservation” property is to require that for all�x, �y the linesy = j

andx = i intersectS(�x; �y) in “topology-preserving” 1-D patterns.
If both these requirements are met, the set of horizontal and vertical
intersection patterns can readily be exploited to yield estimates of�x,
�y with theoretically predictable precision.

The examples of Fig. 8 show that within an area ofA � A (A =

2C) we can always have a simple registration shape design that
achieves a prevision of�X = �Y = 1=A, however, the area is
not used efficiently at all. Recall that in the previous section we have
seen an optimal design that does not obey the “topology-preservation”
property and achieves a precision of�X = �Y = 1=2(A �1)

in area A2. Fig. 10 shows how we could more densely pack a
topologically preserving design. The area used would be less than
3A for the same location resolution of�X = �Y = 1=A. It is clear
that the design exhibited in Fig. 10 has all the required properties.
From the 1-D analysis we realize that the first nonzero column will
yield the vertical location to a precision of�Y = 1=2C = 1=A and
the horizontal location will be provided by the shape intercepts with
the grid linesy = j. Since the horizontal intercepts are topology-
preserving and boundaries occur at(integer+k=2C) locations for all
k = 1; 2; � � � ; 2C�1 we also have a horizontal positioning precision
of �X = 1=2C = 1=A.

Thus we readily get topologically preserving designs that achieve
�X = �Y = 1=A with area�= 3A, as opposed to optimal designs
with �X = �Y = 1=2A �1 with areaA2.

(a) (b)

Fig. 11. A bad (a) and a good (b) topology-preserving design.

Fig. 12. The classical “bull’s eye.”

The above discussion shows that we should attempt to provide
designs that are topologically preserving in the sense of being able
to associate Object/Background transitions to1=0 transitions in the
digitized patterns in a unique way and that also ensure as many object
background transitions as possible at the intersections of the translated
shapeS(XXX; YYY ) with the grid. The fractional parts of the ordinates and
abscissas of these transitions should be spread as evenly as possible
on the (0; 1] interval.

With these considerations in mind we should clearly discard the
design shown in Fig. 11(a) since the fractional parts of slope1
boundary intersections with the unit grid are identical, but should
consider as potentially good a design as the one shown in Fig. 11(b).
Of course, an exact analysis of these designs would require the
general methods described in Section II, since these designs, although
topologically preserving, do not obey the condition that their grid
intersections occur ata priori predictable locations in the shape’s
master coordinate system. We refer the reader to [13] and [14]
for further discussions and theoretical results concerning circularly
symmetric fiducials suggested by these designs.

V. CONCLUDING REMARKS

We have seen that the precision in locating the shift parameters of
a given shape from its digitized image is determined by the way the
shape interacts with the digitization grid as the shape is translated in
the plane. The design of the location mark should attempt to maximize
the number of digital 2-D patterns generated at all translations. If
the grid size is perfectly known and the shape is known to undergo
translations only, optimal registration marks can be designed. If,
however, for robustness considerations we impose further conditions
on the fiducial, like for example 1-D “topology” preservation at
all translations, we considerably reduce the precision that can even
theoretically be obtained. Practically, however, a fiducial should
still induce as many digitized shapes as possible, while satisfying
additional constraints. A particularly attractive fiducial comes to mind
when considering the analysis done in Section IV is the classical
“rotationally invariant” shape of Fig. 12.



3162 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

Fig. 13. A British WWII Supermarine Spitfire fighter plane featuring a
dangerous fiducial.

A set of C concentric circles withr1 =
1+1=2C

2
and �r =

1+1=2C is expected to be a very good (although suboptimal) location
shape. Experimental tests in [13] and further theoretical developments
recently published in [14], led to the conclusion that the “bull’s-eye”
fiducial is indeed a very good, robust and practical location mark.

Hence the Royal Air Force chose, rather poorly, a deadly targeting
shape to be painted on its planes during World War II (see Fig. 13).
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An Analysis of the Timed -Channel

Ira S. Moskowitz,Member, IEEE, Steven J. Greenwald,
and Myong H. Kang

Abstract—Golomb analyzed theZ-channel, a memoryless channel with
two input symbols and two output symbols, where one of the input
symbols is transmitted with noise while the other is transmitted without
noise, and the output symbol transmission times are equal. We generalize
to the timedZ-channel, where the output symbol transmission times are
not equal. The timedZ-channel appears as the basis for a large class of
covert (communication) channels appearing in multilevel secure computer
systems. We give a detailed mathematical analysis of the timedZ-channel
and report a result expressing the capacity of the timedZ-channel as the
log of the root of a characteristic equation. This generalizes Shannon’s
work on noiseless channels for this special case. We also report a new
result bounding the timed Z-channel’s capacity from below. We show
how an interesting observation that Golomb reported for theZ-channel
also holds for the timedZ-channel.

Index Terms—Channel capacity, computer network, computer security,
covert channel, CPU scheduling, timing channel,Z-channel.

I. INTRODUCTION

In Shannon’s seminal paper, he expressed the capacity of a
discrete noiseless channel with variable symbol time durations as the
logarithm of the zero of an associated “polynomial,” see [26], [6] (in
this correspondence we abuse the term polynomial since technically
they are polynomials in the inverse of the variable). The nontrivial
exponents of this polynomial are the negatives of the symbol time
durations. Our main theoretical result is to extend this algebraic
solution to a particular type of noisy binary input channel which
has two output times.

Discrete noiseless channel with variable symbol time durations
and their “noisy” generalizations are of great interest to designers
of multilevel secure (MLS) computer systems [22]. We discuss an
application of our analysis to such a system. In this correspondence
we will restrict ourselves to a two-level system, consisting of the
(security/sensitivity) levels Low and High. The Bell–LaPadula (BLP)
[2] requirements are that a lower level user/process (Low) may not
read from a higher user/process (High) and that High may not write
to Low. However, due to the exigencies of realistic system design,
it may be possible for High tocovertly pass information to Low
in violation of the BLP requirements. Such a violation is called
a covert channel[14]. Mathematically, a covert channel is simply
a communication channel with High acting as the transmitter and
Low being the receiver. In this correspondence, as in [22], we are
interested in covert channels where time values comprise the output
alphabet. Such a covert channel is called a covert timing channel,
or more simply, atiming channel. In the literature, timing channels
often include the class of channels that use the notion of a “clock”
to count the number of symbols sent in a certain time period [29].
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