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Design of Perimeter Estimators for Digitized Planar 

Abstract-Measurement of perimeters of planar shapes from their 
digitized images is an important task of computer vision systems. A 
general methodology for the design of simple and accurate perimeter 
estimation algorithms is described. It is based on minimizing the max- 
imum estimation error for digitized straight edges over all orienta- 
tions. Two new perimeter estimators are derived and their perfor- 
mance is tested on digitized circles using computer simulations. The 
experimental results may be used to predict the performance of the 
algorithms on shapes with arbitrary contours of continuous curvature. 
The simulations also show that fast and accurate perimeter estimation 
is possible, even for objects that are small relative to pixel size. 

Index Terms-Binary images, digitized planar shapes, estimation of 
perimeter, line drawings, perimeter measurement of quantized ob- 
jects. 

I. INTRODUCTION 
EASUREMENT of areas, perimeters, centroids, di- M rectional diameters, and other shape-related param- 

eters is an important task of industrial computerized vi- 
sion systems. Such systems perform the shape analysis on 
digitized images resulting from sampling of planar shapes 
of interest on a rectangular or square grid of picture ele- 
ments, pixels [1]-[4]. The sampling grid is determined by 
the particular image sensing array and its resolution is 
generally beyond the control of the designer. If the digi- 
tization resolution is high, i.e., the pixel size is small 
compared to the details of objects of interest, the digitized 
representation of their shapes is accurate and so will be 
the measurements of various shape parameters. However, 
it is also important to have measurement procedures that 
yield accurate and consistent estimates of shape parame- 
ters for objects that are small compared to the pixel size 
as well. 

For simplicity, we assume that objects whose shapes 
are to be measured are placed on a contrasting background 
and their outlines are smooth curves. The usual point 
sampling image-digitization procedure is assumed, i.e.,  
the objects are projected on the square grid of pixels (cor- 
responding to the sensor array), generating a binary image 
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according to whether the pixel center belongs to the object 
or not [2], [4], [5]. The resulting binary image is the input 
for various shape measurement algorithms. In this paper, 
we discuss a method for the design of algorithms to eval- 
uate the perimeter of the original 2-D shape from its bi- 
nary image. Note that the contour of objects in their dig- 
itized representations is a stepwise boundary comprising 
the horizontal and vertical links corresponding to pixel 
outlines (Fig. 1). This contour may be represented using 
a four-directional chain code [6], [7], yielding what is 
usually called the “crack code” of the digitized object 
boundary [ 11. The length of this boundary is considerably 
longer than the perimeter of the original 2-D shape in most 
cases. The problem of finding efficient and accurate pe- 
rimeter estimation algorithms therefore arises naturally 
and has been addressed by several researchers. 

The approaches to perimeter estimation can be based 
either on some contour reconstruction method and sub- 
sequent measurement of the length of the reconstructed 
boundary or on counting the links of the “crack code” 
which all have the same length (equal to pixel size) and 
performing adjustments (say, based on the number of cor- 
ners) that have the equivalent effect of smoothing the step- 
wise boundary. A contour reconstruction approach first 
produces an approximation of the true object boundary, 
for example, by determining straight edges of maximal 
length that are consistent with the digitized image. The 
perimeter estimate is then defined as the length of the re- 
sulting, in this case polygonal, approximation of the 
boundary; see, e.g., [9], [5]. The second type of perim- 
eter estimation algorithms, considerably simpler and 
faster, are based on counting the links or the grid points 
encountered on traversing the perimeter. If the perimeter 
estimate is chosen to simply equal the number of links in 
the crack code times the pixel size, large errors would be 
incurred since, for example a convex 2-D shape will al- 
ways yield a boundary length equal to the perimeter of its 
extent rectangle [see Fig. l(b)]. To alleviate this problem, 
one can multiply the length of the digitized boundary by 
a factor that would yield zero expected error between the 
true and estimated length of straight boundaries. The av- 
erage is taken over straight edge boundaries with uni- 
formly distributed orientation. The resulting perimeter es- 
timator, although unbiased, has a large variability in the 
induced estimation error. To reduce this variability, Prof- 
fitt and Rosen [lo] proposed a perimeter estimation pro- 
cedure which uses two parameters corresponding to the 
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Fig. 1 .  Digitization by point sampling 

quantities immediately in evidence, the number of links 
and of comer points in the crack code. Clearly, comers 
contribute to overestimating the length of the boundary; 
therefore, the contribution to the perimeter of links meet- 
ing at comer points should be made less than a pixel 
length. This suggested that the perimeter should be mea- 
sured using a formula of the form 

(1.1) 
where N,, is the number of noncomer points and N ,  is the 
number of comer points in the chain code of the bound- 
ary. The weighting factors S I ,  S, or, equivalently, $,, and 
$,, should be determined to meet some criteria, say, un- 
biasedness and minimal errors for straight lines of uni- 
formly distributed directions. 

Proffitt and Rosen show that for a straight line at arbi- 
trary angle 0 ,  the counts N,, and N ,  can easily be deter- 
mined. Neglecting end effects, a line of length L has dig- 
itized length L cos 8 + L sin 0 ,  the sum of its vertical and 
horizontal increments. For an angle 0 I 8 I 7r/4, the 
number of comer points is just twice the number of ver- 
tical links. Thus, per unit length of line, we have 

,!, = &(#links) - S,(#comers) = $,,Nn + $,N, 

s,,(e) + s,(e) = COS 8 + sin e 
(1.2) i ?,(e)  = 2 sin 0 

where sn ( e )  and 7,. ( e )  denote the density of noncomer 
and comer points per unit length of a straight edge of ori- 
entation 0 ,  assuming a unit grid size. The coefficients $,, 
and $, (or S, = $,,, S, = $,, - $,) were then determined 
so as to give zero average error and minimal mean-square 
error (MSE) for straight lines uniformly distributed over 
all orientations. The optimal coefficients (in the MSE 
sense) are $, = n ( h  + 1) /8  and $, = 7 r ( &  + 2) /8 ,  
yielding an error standard deviation of 2.3 percent. The 
same performance can also be obtained by cutting cor- 
ners, i.e., replacing adjacent perpendicular links with a 
diagonal link to transform the four-directional crack code 
into an eight-directional chain code. Multiplying the dig- 
itized perimeter by the factor ( & - 1 ) 8/7r then yields 

zero expected error [ 5 ] ,  [11]-[13]. Note that the comer 
cutting implied by passing to the eight-directional chain 
code performs an effective smoothing of the digitized 
boundary. 

In [14], and independently in [15], yet another simple 
perimeter estimation procedure was proposed that intro- 
duces correction terms for runs of links having identical 
direction, provided they correspond to simple concavities 
in the digitized boundary as depicted in Fig. 2. The cor- 
rection terms implicitly define the perimeter as the length 
of a polygonal approximation of the discrete outline. Note 
that this approach too smoothes out concavities of the dig- 
itized object outline. The paper of Wechsler [ 151 reports 
experimental tests on the performance of the proposed al- 
gorithm on a set of examples, obtaining estimation errors 
between - 1 and + 3  percent on circles with diameters of 
at least 20 times the pixel size and on rectangles and tri- 
angles of comparable sizes. 

In this paper, we discuss a general methodology for de- 
signing accurate and simple perimeter estimation proce- 
dures. The systematic way of deriving a perimeter esti- 
mation algorithm is based on analyzing digitizations of 
straight edges with arbitrary orientations. As in the pro- 
cedure of [ lo], we wish to obtain simple length estimators 
which are uniformly good on lines of all orientations. The 
perimeter estimators should not be based on good orien- 
tation estimators for long straight lines. Rather, the esti- 
mators should be local in nature in order to also accom- 
modate possible high curvature portions of the object 
boundaries. 

Although it may not be evident which additional local 
properties may be helpful, the classification of points into 
two classes, comer and noncomer, can be extended to 
many classes. Consider classification procedures which 
depend only on a local neighborhood containing the point. 
The ergodic theorem [16] states that the frequency of oc- 
currence of a particular class on a single arbitrarily long 
line equals the probability of that class for a random line 
segment with the same slope and uniformly distributed 
intercept. If the boundary curve can be assumed to be 
straight over the classification distance, i.e., the span of 
the local neighborhood, then the perimeter estimator per- 
formance is determined solely by the distribution of the 
boundary tangent. Thus, by the ergodic theorem, the ex- 
pected performance is the same as that of a set of arbi- 
trarily long lines having the same tangent distribution. 

After presenting the general methodology for perimeter 
estimator design, we extend the Proffitt-Rosen procedure 
to derive an estimator based on a more refined classifica- 
tion of the points in the chain code of the boundary with 
only a slight increase in the classification distance. This 
method achieves a maximal error of 0.6 percent for 
straight edges, and its performance on randomly thrown 
circles of even very small radii is excellent. Subse- 
quently, we propose and analyze a perimeter estimation 
procedure which may be regarded as a generalized and 
improved version of the method presented in [15]. We 
show that the two methods discussed are, in fact, very 
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Fig. 2.  Smoothing edges by (a) passing to an eight-directional chain code 
and (b) closing simple concavities (see [15]). 

similar despite the differences at a superficial considera- 
tion. They both may be regarded as facets of the same 
general perimeter estimation process. 

The paper is organized as follows. The next section in- 
troduces a general methodology for deriving accurate pe- 
rimeter estimators. Various factors affecting the perfor- 
mance of the estimations are discussed. It is argued that 
for the estimator to be insensitive to orientation, the best 
criterion to minimize is the maximal percentage error for 
straight edges of all orientations. Using this evaluation 
criterion, we derive, in Section 111, two new, simple, and 
accurate perimeter estimation methods and test their per- 
formance on randomly thrown circles of varying radii. 

The last section discusses the results of Section 111, 
showing that they can be used to predict the estimation 
performance on general shapes with continuous curva- 
ture. Also, several possible extensions are discussed. 

11. A DESIGN METHODOLOGY FOR PERIMETER 
ESTIMATORS 

To any point P of the chain code, we can associate a 
list of properties {prop P } .  We define a general length 
estimator as 

i =  all points C P, rc/{proppi). (2.1) 

Therefore, the length estimate of a chain coded contour 
will be the sum of some function of the local properties 
of the points Pi. Both the trivial perimeter evaluation pro- 
cedure of link (or point) counting and the Proffitt-Rosen 
estimator immediately fit this general description. In the 
first case, $ is a constant, and in the second, 

L,, 

L,, 

if P is a comer point 

if P is a noncomer point. 
(2.2) * (P roPp)  = 

Suppose the properties of a point P are used to classify it 
to one of D disjoint classes CI,  C2, * . . , CD and rl, { prop 
[PI } = rl, { Ci } , i.e., the weight of point P in the esti- 
mator is a function of its class. Then, the estimator (2.1) 

may be rewritten as 
D 

i = C N ( C ; )  qc,) 
i =  1 

(2.3) 

where we denoted by N (  Ci) the number of points of class 
Ci in the chain code. The relative estimation error is de- 
fined as 

E = ( L  - i)/L = 1 - i/L. (2.4) 
Suppose a straight edge of orientation 8 is digitized. Let 

v (  Ci, 8)  be the density of points of class Ci per unit 
length. Then 

( 2 . 5 )  

and $ ( Ci ) should be chosen so as to make (2.5) as close 
to 1 as possible, uniformly over all 8. The Appendix sum- 
marizes some basic results concerning the properties of 
digitized straight edges, results that may be used to obtain 
the densities 77 ( Ci, 8 )  for various point classifications. 

The expression 
. r r I 4  I E 1 

(2.6) 

measures the bias of the length estimator. For long bound- 
aries with a fairly uniform distribution of tangent angle, 
one wishes to have unbiased length estimators, i.e., B = 
0, and this immediately leads to 

. D  

a linear relation between the rl, ( Ci)’s. If unbiasedness is 
a requirement, this relation should be considered as a con- 
straint on the design parameters rl, ( Ci ) .  

Good estimators should have relative error as small as 
possible over the range of all orientations. Several global 
error measures can be considered for digitizations of 
straight edges, under the assumption that 8 is uniform over 
[O,  .rr/4]. The mean-square error (MSE) of an estimator 
is defined as 

4 r/4 2 

- a 1 9 = 0  (1 -‘$(e)) de = MSE (2 .8)  

and the mean absolute deviation (mean AD) is given by 
4 9/4 

- 11 - yl de = mean AD. (2 .9)  
a e = o  

One can choose the coefficients $( C , )  to minimize the 
MSE or the mean AD for either biased or unbiased esti- 
mators. The resulting performance is dictated by the 
choice of classes of points Ci and their relative frequency 
functions 71 ( C , ,  8). Therefore, good estimators are ob- 
tained for point classifications Ci that enable the above 
measures to be small. For many object boundaries, par- 
ticularly polygonal shapes such as triangles or rectangles, 
certain tangent angles may be dominant. In this case, it is 
important for the estimator to be insensitive to the orien- 
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tation of the object relative to the grid. This leads to the 
maximum absolute deviation (max AD) as an alternative 
measure of performance, the minimization of which is, in 
our opinion, better suited for designing robust length es- 
timators for arbitrary boundaries. Therefore, our perfor- 
mance measure will be 

max AD = max 1 - . (2.10) 
e €  IO, ~ / 4  ) I L l  

Clearly, if we minimize the maximum absolute deviation 
over all 0 ,  and denote the achieved minimum by m,  we 
then also have 

mean AD 5 max 1 1 - “’1 - I m. (2.11b) 
B E  I O (  a/4) 1 

While it is generally possible to obtain estimators with 
lower MSE or mean AD than the estimator minimizing 
the max AD, such estimators will incur higher error at 
certain angles 0 and their performance may not be uni- 
formly good. Let us also point out that in some applica- 
tions such as for mechanical drawings, we might wish to 
have highly accurate length estimators for boundaries of 
certain “preferred” orientations { O k ,  k = 1, 2, * , K 1, 
which may appear particularly often. We could then de- 
sign the length estimators so as to force zero error at the 
specified orientations, provided, of course there are 
enough “free” paramenters to do so. Indeed, if in (2.5) we 
set 0 = ek and require L ( O k ) / L  to be equal to one, then a 
set of linear equations is obtained for 11, ( C ; ) .  This set will 
be solvable provided the set of classes of points is “rich” 
enough. 

The general point classification and mini-max AD 
methodology described above will first be applied to the 
case when points of the chain code are divided into two 
classes, corner and noncorner points, as done by Proffitt 
and Rosen. The complexity of the algorithm will then be 
increased slightly by also classifying the points according 
to the properties of their immediate neighbors in the chain 
code. Subsequently, we discuss perimeter estimation 
based on points classified according to the length of the 
runs of horizontal or vertical links in the chain code to 
which they belong. 

111. NEW, FAST, AND ACCURATE PERIMETER 
ESTIMATORS 

Max AD Criterion for the Profitt-Rosen Estimator 
We have defined in (2.3) a general perimeter estimator 

which requires the classification of points of a chain code 
into disjoint sets according to their local properties. An 
immediate classification is into corner ( c )  and noncorner 
( n )  points, and according to (1.2) (also see the Appen- 
dix), we have 

(3. l a )  V ( C ,  0 )  = 2 sin 8 

q ( n ,  e )  = COS 0 - sin 8. (3. l b )  

The Proffitt and Rosen method assigns to the noncorner 
and comer points different weights $ ( c )  = $, and II, ( n )  
= $,, so as to make the length estimator unbiased and of 
minimal MSE. In this case, (2.7) and (2.8) together with 
(3.1) yield 

$c = n ( h  + 2) /8  and II,,, = 7 r ( &  + 1) /8  

( 3 4  
leading to an unbiased estimator with standard deviation 
(=E) ofJ.3 percent. 

The ratio L / L  as a function of 0 in the interval 0 E [0 ,  
n / 4 ]  can be expressed as 

- -  ‘(e) - 2$= sin e + $,(cos e - sin e)  
L 

= (-$,, + 2$c) sin 8 + $, cos 0 

=  cos (e - s ) .  (3.3) 
The error function is 

€ ( e )  = 1 - = 1 - Fcos  ( 0  - {) .  (3.4) L 

Any two constraints on E ( e )  will determine F and {. We 
can design the estimator to minimize the maximum ab- 
solute deviation of € ( e ) .  When minimized, the maximum 
AD occurs at the middle and end points of the interval 0 
I 0 5 7r/4. This requires that { = n / 8 ,  and F is deter- 
mined by 

F - 1 = 1 - FCOS (0 - ~ / 8 )  

= 1 - Fcos  (7r/4 - n / 8 )  = max AD (3.5a) 

which yields a maximum absolute deviation of 

- 1  
2 

1 + cos ( n / 8 )  
F - l =  

1 - COS ( ~ / 8 )  
- - = 0.0396 (3.5b) 

1 + cos ( n / 8 )  

compared to 0.05194 for the Proffitt-Rosen estimator. The 
weights corresponding to (3.5) are 

h cos (7r/8) 
(3.6) 

2 cos ( ~ / 8 )  
“ 1 + COS ( ~ / 8 ) ’  “ = 1 + COS ( ~ / 8 ) ’  

Finally, we point out that the weights $c and $, could also 
be chosen to force zero error at two arbitrarily chosen an- 
gles e l  and &. 

Design of a New Accurate Perimeter Estimator 
To improve the performance of the perimeter estimator 

discussed above, let us increase the number of classes of 
points. To do so, we can, for example, classify the non- 
corner points according to the length of the chain code 
runs of horizontal or vertical links to which they belong. 
This, however, leads to a countably infinite number of 
classes. Let us reduce the number of classes by first clas- 
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+(c)2  sin e + $(nn)(cos e - sin e ) ,  
8 E [0, tan-' 1/31 

$(c)2 sin 8 + $(n) (3  sin e - cos e)  
+ +(nn)2(cos e - 2 sin e ) ,  

0 E [tan-' 1/3, tan' 1/21 

$(c)2  sin 8 + $(n)(cos 8 - sin e ) ,  
8 E [tan-' 1/2, ~ / 4 ] .  

sifying the noncorner points according to whether they 
connect two links of a run of length two or whether they 
belong to longer runs. Denote the two classes so defined 
by n and nn, respectively. From the results of the Appen- 
dix (also see Fig. 3), it is readily seen that in the interval 
0 E [0, tan-' 1 / 3 ]  where all the runs are of length three 
or more, only comer points (of class c)  and points of 
class nn can occur. For a straight edge of orientation 8 E 
[tan-' 1/3,  tan-' 1/21, which upon digitization pro- 
duces runs of length two and three, points of class c ,  nn, 
and n occur. For 8 E [tan-' 1 /2,  .lr/4], inducing runs of 
length one and two, only points of class n and c occur. 

A very simple analysis yields the densities of points in 
each class for the three regions defined above. (We could 
also use the results of the Appendix; however, a straight- 
forward analysis is possible here.) From the general re- 
sults on comer and noncorner points, (3. l ) ,  we have that 

q ( c )  = 2 sin 0 ,  e E LO, T/41 (3.7) 
q(nn)  = cos 8 - sin 8 ,  

~ ( n )  = cos 8 - sin 8 ,  

0 E [0, tan-' 1/31 

8 E [tan-] 1/2, ~ / 4 ] .  
(3.8) 

(3.9) 

For 6J E [tan-' 1/3,  tan-' 1/21, it is necessary to deter- 
mine the proportion of noncorner points of class n versus 
those of class nn. Since in this interval nn points always 
belong to runs of 3 (see Fig. 3), we have 

~ ( n n )  + 217(n) = ~ ( c )  = 2 sin 0 (3.10) 

which together with (3. lb), 7 ( n n )  + 17 ( n )  = cos 0 - sin 
8 ,  yields 

~ ( n n )  = 2 COS 8 - 4 sin 8 

~ ( n )  = 3 sin 0 - cos 8. 
(3.11) 

C 
9 

c n  c-.d" 

1 ;n n; y i2Ly2cL' 
Fig. 3. Types of points for straight edge digitizations (see Appendix). 
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Fig. 4. (a) Performance evaluation curve. (b) The optimal design with c, 
ccc, n, and nn types of points. 

s",) curves independently. If, using $ ( c )  and $ ( n ,  n ) ,  we 
set the curve F1 cos ( e  - {') in the interval [0, tan-' 
1 / 3 ]  to an optimal position according to the max AD cri- 
terion (or any other criterion), only one parameter $( n ) 
is left to optimize the estimator performance over the two 
remaining domains. Therefore, we do not have enough 
freedom to optimize the estimator performance over the 
three domains which are implicitly defined by the chosen 
point classification rule. While better performance can be 
obtained than with the immediate cornerhoncomer point 
clas$fication, we would like to have more freedom to tune 
the L ( B ) / L  curve. 

To achieve this, note that we can also refine the clas- 
sification of the comer points. A comer point will be 
called a point of class ccc if its two neighbors are also 
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comer points. Otherwise, it will be a c point. Clearly, ccc 
points occur only in the domain where runs of length 1 
exist, i.e., in the interval 8 E [tan-' 1 /2 ,  n / 2 ] .  From 
(3.7), we have that 

q ( c )  + ~ ( C C C )  = 2 sin 8 (3.13) 

and from Fig. 3 ,  it is seen that the number of c points will 
be twice the number of n points, i.e.,, 

r l ( 4  = W n ) .  (3.14) 

This, together with (3.9), yields 

V ( C )  =  COS 8 - sin e )  
~ ( C C C )  = 2(2  sin e - cos e ) .  (3.15) 

Thus, by refining the comer point classification, (3.12) is 
modified to 

$(c)2 sin e + $(nn)(cos e - sin e )  
0 E [0 ,  tan-' 1/31 

$(c)2 sin e + $ ( n ) ( 3  sin t9 - cos e )  
+ $(nn)2(cos  8 - 2 sin e )  

8 e [tan-' 1 /3, tan-' 1 /2] 

$ ( c ) ~ ( c o s  e - sin e )  + $(ccc)2 
L 

( 2  sin e - cos e )  
+ $(n)(cos 0 - sin e )  

Now, using $ (c) and $ ( n n ) ,  we can freely set the F ,  cos 
( e  - curve over e E [o, tan-' I / 3 ] .  Similarly, using 
$ ( c c c )  and $ ( n ) ,  we can independently set F3 cos ( e  - 
3; )  over e E [tan-' 1 /2 ,  n / 4 ] .  

With this classification, we have four parameters im- 
plicitly defining three intervals in the rangeAof 8. The pa- 
rameters may be tuned to set the values of L ( 8 ) / L at the 
four breakpoints 8 ,  = 0, O2 = tan-' 1 /3,  e3 = tan-' 1 /2, 
O4 = n / 4 .  This enables us to exploit all the freedom im- 
plied by the &range division since the values at the break- 
points can speci:y any continuous, piecewise sinusoidal 
function for the L ( e ) / L curve. 

In each of the three intervals, e ( e ) / L  consists of a si- 
nusoid segment with period 2n. As with expression (3.4), 
the max AD, when minimized, occurs at the middle and 
end points of the largest interval. In this case, the middle 
interval, of length e3 - 02, is the smallest. Its center is at 
n / 8  since it can be shown that 

(tan-' 1/3 + tan-' 1 /2) /2  = n/8 .  (3.17a) 

From (3.17a), it follows that the first and third intervals 
have identical lengths &,,, = ( a / 4  - 6,) = e2 = tan-] 
1 / 3  since 

(04 - 03) - (62 - 81) 

= n/4 - tan-' 1 /2  - tan-' 1 /3  = 0. (3.17b) 

Thus, with two largest intervals, the max AD occurs at 
all the breakpoints e; ,  i = 1, 2, 3, 4,  and at e 2 / 2  and 
( n / 4  - 03)/2, as shown in Fig. 4(b). With a computa- 
tion identical to that of (3.4), ( 3 3 ,  the max AD is given 
by 

where, in this case, &,,, A= tan-' 1 /3. 
Thus, optimization of L (  O ) / L  with respect to the max 

AD criteria, yielding the function of Fig. 4(b), results in 
a max AD over all 8 of 0.650 percent, almost an order of 
magnitude better than for corner/noncomer point classi- 
fication. The weights for the optimum L ( O ) / L  of Fig. 
4(b) can be determined by first using (3.16) to obtain the 
weights corresponding to breakpoint values of l? ( e , )  / L  = 
1, i = 1, 2, 3 ,  4. Multiplying these weights by the factor 
1 - a ,  a = max AD, determines the optimum weights 

Il/(nn) = 1 - CY = 0.99350 

$(ccc) = (&/2) (1  - a) = 0.70251 

$ ( n )  = (2 + A - f i ) ( l  - a )  = 1.06681 

$ ( c )  = ($10/2 - 1)(1  - a )  = 0.57736. 
(3.19) 

To determine class nn points, it is necessary to check 
for sequences of three horizontal or vertical links. For 
class ccc points, it is necessary to check for sequences of 
four alternating links. In either case, the Euclidean dis- 
tance between the end points of the link sequences is not 
greater than three pixel units. Thus, if the boundary curve 
can be assumed to be straight over three pixel utits, the 
estimator performance will be determined by the L (8 ) / L  
curve and the distribution of the tangent angle of the 
boundary. 

This first estimator was implemented and tested on dig- 
itized boundaries of randomly placed disks. Two sets of 
experiments were run. First, 100 circular shapes for each 
of the integer value radii RE { 2, 3, * . , 9, 10, 20, 30, 
50, loo} were thrown on the grid, with center location 
uniformly and independently distributed in a square pixel 
area. The shapes were digitized and their perimeter was 
estimated by 

i = N c $ ( c )  + Nccc$(ccc) + N n $ ( n )  + N,,,$(nn) 

(3.20) 

where the optimized $ parameters given above were used. 
This estimate was then compared to the true perimeter and 
the percentage error was computed. At each radius, the 
average error as well as the maximal, minimal error, and 
average absolute error or deviation (AAD) were deter- 
mined over the ensemble of 100 runs. To eliminate any 
possible anomalies due to integer value radii, the experi- 
ment was repeated for randomly chosen radii, uniformly 
distributed over the intervals ( R  - 0.5, R + 0.5) ,  for R 
E { 2, 3, * * , 9, 10, 20, 30, 50, 100 1. For brevity, only 
these results are presented in Fig. 5 and displayed in Ta- 
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Fig. 5 .  (a) The average error percentage (bias) for the two algorithms im- 
plemented. (b) The minimum (MIN), maximum (MAX), and average 
absolute deviations (AAD) for method 1 (the four-class method). (c) The 
minimum (MIN), maximum (MAX), and average absolute deviations 
(AAD) for method 2 (the comer smoothing method). 

ble I. As seen in the lower curve of Fig. 5(a), the average 
error quickly reaches the bias value of the i ( d ) / L  curve 
(2.6), indicating that, for long boundaries, curvature radii 
of more than five pixel units will have negligible effect on 
the length estimator. The experimental results displayed 
in Fig. 5(b) also show that a high degree of accuracy may 
also be possible for estimating the perimeter of small ob- 
jects. For circles of radii greater than five pixel units, both 
the minimal and maximal percentage deviations are al- 
ready within 2.5 percent and the average absolute error is 
less than 1 percent. 

The performance at integer radii was found to be some- 
what better than at radii slightly above or below the in- 
teger values, particularly for the maximal and minimal 
error. This is due to the fact that with an integer value 
radius, the number of links in the digitized perimeter is 
constant, and thus insensitive to center point location. 

Determination of Breakpoints for i ( 0 )  / L  
In the above design, the classification of chain code 

points implicitly defined a division of the [ 0, ~ / 4 ]  inter- 
val into three disjoint regions { 8; ) characterized accord- 
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TABLE I 
SIMULATION RESULTS SUMMARIZING 100 RUNS OF PLACING CIRCLES WITH 

RANDOM CENTER POINT AND UNIFORMLY DISTRIBUTED RADII BETWEEN 
R - 0.5 AND R t 0.5 

ESTIMATOR 1 
(c,ccc,n.nn) 

2 
3 
4 
5 
6 
7 
8 
9 
IO 
20 
30 
50 
100 

-9.23 14.67 3.71 
-6.98 7.78 2.45 
4.43 5.13 1.51 
-2.82 4.95 0.90 
-1.83 1.93 0.64 
-2.37 2.13 0.66 
-1.44 1.44 0.54 
-1.58 1.44 0.40 
-1.88 0.95 0.36 
-0.72 0.54 0.22 
-0.45 0.23 0.14 
-0.38 0.15 0.10 
-0.19 0.M 0.09 

1.58 
0.75 
0.32 
0.19 
0.20 
0.15 

-0.01 
-0.02 
-0.05 
-0.07 
-0.09 
-0.09 
-0.09 - 

ESTIMATOR 2 
(edge-smoothing) 

min - mlnimum ofi!L - I over the 100 runs. 
max - maximum of LIL - 1 over the 100 runs 
A.A.D. - average absolute deviation (error). 
A.D. - average deviation (error). 

Note: all errors are relative and measured in percentages. 

mm max A.A.D. A.D. 

-9.81 26.08 6.03 4.51 
4.64 10.48 2.92 2.15 
-3.22 5.89 1.82 1.20 
-3.14 7.60 1.38 0.84 
-1.81 3.31 0.92 0.50 
-2.53 2.42 0.82 0.37 
-1.78 2.33 0.71 0.32 
-1.61 1.81 0.57 0.23 
-1.57 1.95 0.51 0.23 
-0.63 0.70 0.22 0.M 
-0.41 0.44 0.11 -0.04 
-0.30 0.14 0.07 -0.06 
-0.14 0.02 0.06 -0.06 

ing to the types of points that occur in digitized straight 
edges having orientations 0 E @. Clearly, if we refine the 
point classifications, we expect a corresponding refine- 
ment of the division of the 8 range. 

We saw, however, that there exist situations in which 
an increase in the number of classes of points does not 
lead to a refinement of the &range division. In our case, 
the definition of the ccc class of points did not alter the 8- 
range division at all. However, it provided an additional 
parameter that enabled the further improvement of the es- 
timator by allowingJhe independent placement of the four 
breakpoints of the L ( O ) / L  function. Note that we could 
have also defined other classes of points, such as the class 
of comer points that have no comer-point neighbors (de- 
noted, say, by ncn) or the class of noncorner points hav- 
ing only noncorner neighbors, denoted by nnn (letting nn 
be the class of points with only one noncorner neighbor). 

The latter class of points obviously appears only for 
straight edges of orientation 8 < tan-' 1 /3. Using rl, ( c ) ,  
rl, ( n ) ,  rl, ( n n ) ,  and rl, (nnn ) would also enable us to tune 
the L ( e )  / L  curve with maximum possible freedom by al- 
lowing arbitrary values at the same four breakpoints. 
There is no advantage, however, to define$ve classes of 
points such as c,  ccc, n ,  nn, and nnn. The additional pa- 
rameter does not further subdivide the 8 range, and hence 
cannot improve the i ( t l ) / L  function since it remains a 
continuous function composed of th;ee sinusoidal por- 
tions. As an aside, we note that the L (  e ) / L  curve has a 
piecewise sinusoidal shape only if the classification of 
chain chode points is such that the density functions 77 ( Ci, 
0 )  are of the form Xi cos 0 + Y, sin 8 for all the &range 
intervals. In our examples, this is clearly the case; how- 
ever, one might invent classifications based on local chain 
code properties for which the density functions are not 
piecewise sinusoidal. 

Assume that r](Ci,  e ) ,  i = 1, 2, * * * , D are all either 
0 or sinusoidal over the K intervals of the 0 range induced 
by the classification CI, C,, , C,. Then we have 
rl, ( C1 ) * rl, ( C,) as D free parameters !o design a pe- 
rimeter estimator with performance curve L (  B ) / L ,  a con- 
tinuous function made of K sinusoidal portions with K + 
1 breakpoints. If D = K + 1 and we can independently 
set the values of i( O ) / L  at the K + 1 breakpoints using 
the #(Ci), i = 1, 2, - * , D parameters, then we call 
the design complete since all the freedom due to the in- 
duced &range division can be exploited. If D < K + 1, 
then it may be possible, by adding parameters and without 
increasing K ,  to obtain a complete design. On the other 
hand, if D > K + 1, we then have parameters that cannot 
contribute to the shaping of the i ( e )  / L  curve, and hence 
the design is overparameterized (and consequently, un- 
necessarily complex). 

We have seen that the original Proffitt-Rosen design is 
complete. Our first step of improvement, which was based 
on defining three classes of points c,  n ,  and nn and yielded 
(3.12), was recognized to be underparameterized, but 
adding one more class of points, the design leading to 
(3.16) became complete. The example given above, with 
five classes of points, is an overparametrized design. In 
general, the value of refining the classification of the chain 
points should be judged according to its potential of yield- 
ing an improvement in performance. Thus, a classifica- 
tion refinement that increases the number of induced in- 
tervals of the 0 range is always useful, but we should 
always seek to use the &range division maximally via 
complete designs. 

* 

Design of Another Accurate Perimeter Estimator 

The foregoing discussion showed that we can improve 
the accuracy of a perimeter estimation algorithm by refin- 
ing the division of the orientation range [0, n/4]  by in- 
creasing the number of classes of chain points. 

In analyzing straight edge digitizations (see the Appen- 
dix), we realize that within the orientation intervals 0 E 
[tan-* 1 /( j + 1 ), tan-' 1 / j  1, there are only horizontal 
runs of lengthj a n d j  + 1 alternating with vertical runs of 
length 1. This fact provides the idea for the following pe- 
rimeter estimator. Classify the points of the boundary 
chain code according to the length of the longest run they 
belong to. Thus, noncorner points will be classified ac- 
cording to the run they belong to, and the comer points, 
which by definition belong to two runs, will be classified 
according to the longer of the two runs. Therefore, let C, 
be the class of points that belong to (longest) runs of length 
i. If a straight line of orientation 8 E E [ 1 /( j + 1 ), 1 / j  ] 
is digitized, we only have runs of lengthj a n d j  + 1, and 
thus points of class Cj and Cj+ !. Their density was found 
to be (see (A.8) in the Appendix) 

(3.21a) q ( C j )  = ( j  + l ) [ ( j  + 1)  sin 0 - cos e ]  

T ( C ~ + ~ )  = ( j  + 2)(cos e - j  sin e ) .  (3.21b) 
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Thus, the performance function of the general perimeter 
estimator (2.5) over 8 E [tan-' 1 / < j  + 11, tan-' l / j  1 is 
given by 

+ $ ( C j  + 1)( j + 2)[cos 8 - j  sin 81 

= FJ  cos (8 - s ; ) .  (3.22) 

In particular, for 8 E [tan-' 1 /2,  n / 4 ] ,  we obtain 

io = = + ( c 1 ) 2 [ 2  sin 8 - cos e ]  
L 

+ $(C2)3[cos 8 - sin 81 (3.23) 

which shows that over this interval, we can do only as 
well as in the previous estimator discussed. We can make 
the performance curves coincide over this interval by 
choosing identical breakpoint values at the end points of 
the interval [tan-' 1 /2,  7r/4]. However, over the inter- 
val 8 E [0, tan-' 1 / 3 ] ,  we have here a very fine division 
of the straight-edge orientation into disjoint regions, hav- 
ing breakpoints at all 8, = tan-' 1 / j .  The performance of 
this estimator for edge orientations in this interval can 
therefore be made much better than the performance of 
the estimator presented in the previous section. If all ori- 
entations are uniformly present in the contour of the dig- 
itized object, the expected performance will always be 
better with the second design. This estimator is also im- 
portant because it generalizes the following ad hoc esti- 
mator, based on a natural comer smoothing idea. 

Consider the following perimeter estimation procedure. 
Choose a starting point Po on the chain of the digitized 
object boundary and a direction of traversal. From the 
starting point Po, follow the links of the chain code to a 
point P ,  to which two runs of links are formed with at 
least one of them being of length one. [It may happen that 
the immediate neighbor of the starting point in the tra- 
versal direction is a comer point; then the first run is of 
unit length and PI will be the next comer point, or it may 
happen that first a longer run occurs and then PI will be 
the point following the first comer point encountered; see 
Fig. 6(a).] Increment the perimeter estimate by the Eu- 
clidean distance d ( P o P l  ) and set Pi to be the next starting 
point. Proceed with this until from some point, the initial 
starting point Po is encountered. Note that the perimeter 
estimate obtained by this procedure is simply the length 
of a polygonal approximation of the chain coded contour, 
and this polygonal approximation is dependent on the ini- 
tial point Po that is chosen. This feature of the above pro- 
cedure will clearly add some variability to the length es- 
timates, especially for small objects. However, we expect 
its performance to be quite good since a rather clever cor- 
ner smoothing is implicit in the algorithm. Let us see how 
we can analyze the performance of this method. 

Referring to Fig. 6(b), we see that, for straight edge 
digitizations, a run of length j will contribute to 

(a1 

PO 

4-=SGT--- -  
5 5 5 5 5  

j.5 (b) 

Fig. 6 .  The comer smoothing perimeter estimation process. Note (a) the 
initial point dependence. (b) shows the weight of points of class j in the 
point classification equivalent of the corner smoothing method. 

the perimeter estimate. Therefore, if we attempt to re- 
phrase the above algorithm in the general framework of 
classifying chain code points, the assigned weight to the 
various classes of points must be such that t he j  + 1 points 
of a j  run should have a total weight of m; hence, 
$( C,) = ( j  + 1 )- ' m. It is evident that with such 
a weight allocation, the point classification algorithm dis- 
cussed before and the perimeter estimation procedure 
considered above on a heuristic basis have the same per- 
formance on straight edge digitizations. Furthermore, it 
can be readily checked that with the latter algorithm, we 
have i ( O ) / L  I 1, with equality at all the breakpoints, 8, 
= tan-' l / j ,  j E N .  This implies that for 8 E [tan-' i, 
a / 4 ] ,  the comer smoothing algorithm has a worse max 
AD performance than the one proposed in the previous 
section. Indeed, the plot of i ( O ) / L  shows that 
i ( 8 ) / L I , , , A D  = i [ + ( t a n - '  1 /2  + 7r/4)]/L = 
1.01308, i.e., an error percentage of 1.3 percent. The 
performance of the comer smoothing algorithm can, how- 
ever, easily be made as good as in the previous case by 
appro riately lowering the i ( e ) / L  curve in the interval 
[tan-' 1/2,  7r/4]. This is accomplished by modifying 
$ ( C I )  and $ ( G )  to 

$(Cl )  = h ( 1  - 0.00650)/2, 

$(C2) = h ( 1  - 0.00650)/3. (3.24) 

Such a choice for the weights reduces the max AD over 
this interval to 0.65 percent, thereby making the corner 
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smoothing algorithm identical in performance (with the 
max AD measure) to the one proposed in the previous 
section. 

We have shown that the run-length classification algo- 
rithm may be made identical to an ad hoc algorithm based 
on measuring Euclidean distances of straight segments 
smoothing out the comers of the chain code. This smooth- 
ing algorithm is similar in spirit to the one proposed in 
[I51 and in [14]. Note, however, that they are not iden- 
tical, except in the case of straight edge digitizations. 
Therefore, the foregoing performance analysis also holds 
for the algorithm of Wechsler and of Grant and Reid on 
straight edges. 

As pointed out previously, both the comer smoothing 
or the run-length classification procedures cannot improve 
the theoretical max AD performance. Such algorithms are, 
however, expected to yield better results for continuous 
boundaries in which all directions appear since they pro- 
vide a very fine division of the interval [0, tan-' 1 /3]. 
To test the performance of such an algorithm and compare 
it to the four-class algorithm introduced previously, we 
have also implemented the comer smoothing procedure, 
and tested it on digitized boundaries of randomly placed 
disks. The algorithm chose an arbitrary starting point and 
weighted the runs according to .\/cl+J'i, except in the 
cases of runs of length one and two, for which the weights 
were chosen according to (3.24). It was expected that this 
algorithm will have very similar performance to the pre- 
viously tested one, being somewhat better for circular 
shapes of large radii. 

The same set of experiments was run as with the pre- 
vious algorithm. The results with randomly chosen radii, 
uniformly distributed over the intervals ( R  - 0.5, R + 
0.5) for R E { 2, 3 ,  - * , 9, 10, 20, 30, 50, loo},  are 
presented in Fig. 5(a) and (c) and displayed in Table I 
together with the previous experimental results. 

Comparing the results of the comer smoothing algo- 
rithm to the four-class algorithm tested before, we realize 
that for low values of the radii, i.e., high curvatures, the 
four-case algorithm is better, whereas for large radii, as 
predicted, the comer smoothing algorithm has an advan- 
tage. However, both algorithms are seen to give low er- 
rors, even for circles of very small radii compared to the 
pixel size. This experimental result is quite surprising, 
and indicates that good performance should be expected, 
even for small perimeters. 

In conclusion, we have seen that classifying the points 
according to the (longest) run length to which they belong 
leads to an improved estimator, but only in the sense that 
the i( 0 )  / L  ratio is better for 0 < tan-' 1 / 3 .  The range 
[tan-' 1/2, ~ / 4 ]  is not subdivided, and this implies that 
such designs can only be as accurate, in the max AD 
sense, as the previously discussed one. The design we 
presented has an infinite subdivision of the 8 range and is 
complete in the sense discussed previously. Note that we 
could also define a finite number of classes of points as 
those belonging to runs of length 1 ,  2, * * , D - 1 ,  and 
a class C,D of those belonging to runs of length D or 

longer. This would be equivalent to assigning identical 
. Over the inter- weight to points of class C,, CD + I ,  - - * 

vale E [ O ,  tan-' 1 /D], we have only points of class C Z D ,  
the density of points being sin 6 + cos 6 .  This does not 
give full freedom to arbitrarily set the breakpoints at that 
interval. We would consequently have a finite 0-range 
subdivision but an incomplete design ( D  parameters and 
D regions). 

Finally, we point out again that several different algo- 
rithms may have the same straight edge performance, and 
it is only on the basis of simulations or other additional 
performance measures that one can decide which algo- 
rithm is better suited for particular purposes. 

IV. DISCUSSION 
We have presented a methodology for designing perim- 

eter (or length) estimators for digitized boundaries. The 
discussion was in terms of four-directional chain coded 
boundaries; however, the identical methodology can be 
used for eight- or six-directional codes as well. There is 
an immediate improvement in performance with higher 
directional codes due to their greater precision in repre- 
senting the boundary. In fact, in the literature, there often 
appear comparisons for four-directional codes and their 
eight-directional counterparts showing that the eight-di- 
rectional codes are better. Vossepoel and Smeulders [ 1 I], 
for example, show that using the Proffitt-Rosen perimeter 
estimate for eight-directional codes leads to an immediate 
improvement in performance. A four-directional code can 
be changed to an eight-directional code by replacing ad- 
jacent perpendicular links with a diagonal link. Thus, the 
methodology presented here makes it easy to recognize 
that a Proffitt-Rosen type approach on an eight-direc- 
tional code (in which we differentiate between diagonal 
links and horizontal or vertical ones) is, in fact, equiva- 
lent to defining more classes of points for the four-direc- 
tional code. Suppose the comer smoothing or run classi- 
fication algorithm is applied on an eight-directional code. 
Classify the points according to the length of the run they 
belong to and whether the run is horizontal, vertical, or 
diagonal. The effect of this classification is to divide the 
0 range of [0, ~ / 4 ]  into intervals delimited by break- 
points at bi = tan-' l / i ,  i > 1 ,  as well as at e: = tan-' 
( i  - 1 )/i, i > 2. This yields a complete design with the 
i ( d ) / L  curve in each interval being a sinusoid deter- 
mined by two $ parameters which set the breakpoint val- 
ues. The dominant error here is in the longest &range in- 
terval (tan-' 1/2, tan-' 2/3) ,  and the optimal max AD 
estimator yields an extremely low error or 0.12 percent 
over the entire range of straight edge orientations. 

We have seen that a relatively simple design method- 
ology yields good and simple length estimators, their per- 
formance being optimized over all the orientations of 
straight edge digitizations. It is interesting to ask how 
these estimators perform on arbitrary curves. If the curves 
are long, have moderate curvature everywhere (relative to 
the pixel size), and the tangent directions are uniformly 
distributed over [ O ,  2r] ,  we can, of course, expect to 
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have an average error roughly proportional to the bias or 
average of the [i( 8 ) / L  - 1 ] curve. If the directions have 
arbitrary distribution, we can still expect a maximal over- 
all error less than the max AD of the estimator. 

Experimental results show that the bias is insensitive to 
moderate curvature and only slightly affected at high cur- 
vatures. From the experimental graph of bias versus cur- 
vature, the length estimator performance can be roughly 
predicted for long boundaries based on either a priori in- 
formation or estimates of the curvature distribution. The 
experimental results also show that the mean absolute de- 
viation, the maximal, and minimal deviation for digitized 
disks are surprisingly good at high curvatures. This indi- 
cates that accurate perimeter estimation is possible for 
small objects as well. 

APPENDIX 
DIGITIZED STRAIGHT EDGES AND THEIR PROPERTIES 
This section briefly derives some facts on crack codes 

of straight edge digitizations. Suppose the object digitized 
on a square grid of size one is the half plane defined by 

y 5 f (x)  = mx + n. ( A . 1 )  
Without loss of generality, assume that the line orienta- 
tion 8 = tan-' m is between 0 and 45" ( n / 4 ) .  Recalling 
the definition of point sampling image digitization, we re- 
alize that for x = k E N ,  the black pixels are those with 
centers having y 5 [ mk + U ] ,  y E N .  This shows that the 
crack code of the straight boundary digitization has runs 
of horizontal links separated by single vertical links. The 
horizontal runs correspond to the pixels whose y coordi- 
nate is some L E N and x coordinates satisfy x E [xL 
xL + ) where 

mxL + n = L and mxL+' + n = L + 1, V L E N .  

( A . 2  1 
Since xL+ - xL = 1 /m = cos 8/sin 8, it is immediate 
that the horizontal runs can only have [ 1 /m] or [ 1 /m] 
+ 1 links. Furthermore, the proportion of runs of length 
[ 1 /m] and [ 1 /m] + 1 can readily be determined. In- 
deed, the runs of the boundary chain code are determined 
by the number of integer coordinates that fall into con- 
secutive segments of length 1 /m on the x axis; see Fig. 
7 .  Suppose that one of the segments of length l / m  starts 
at some point K + E .  If 1 /m is rational, i.e., 1 /m = U /  V 
for U,  V E N ,  U and V being relatively prime [ ( U ,  V )  = 
1 1, then after placing V successive horizontal segments, 
we shall be at ( U  + K )  + E ,  i.e., at the same starting 
point modulo an integer. Therefore, the pattern of runs of 
length [ 1 /m] and [ l / m ]  + 1 will be repeated periodi- 
cally with period V. The proportion of runs of length 
[ 1 /m], a[l /rnl  can readily be determined from 

yielding 

( A . 4 )  

Lxtn . . 0 ; .  . . .I. . . 

~ * ~ = ~ ;:-;-t . . . . .  . . . .  
Fig. 7 .  Geometry of straight edge digitization. 

If l / m  is not rational, we can find two sequences of ra- 
tionals that approach l / m  from above and below, and 
thereby prove that, although the patterns of runs are not 
periodic, the proportion of runs of length [ l / m ]  is still 
given by (A.4) ,  in general. 

With (A.3) and (A.4) ,  we have the statistics of runs for 
any orientation 8 = tan-' m if the edge is straight and of 
infinite extent. It is easy to realize that if E is chosen ran- 
domly with uniform distribution over [ 0, 1 ] and the start- 
ing point of a segment of length 1 /m is K + €, then (A.4) 
also gives the probability of having a run of length [ 1 /m], 
i.e., of having exactly [ 1 /m] integers in the interval [ K 
+ E ,  K + E + l / m ] .  

From the statistics of runs, we can easily obtain the 
statistics of corner and noncorner points of the boundary 
chain code. The basic relations are illustrated in Fig. 7. 
To a run of length p ,  we have ( p  - 1 ) noncorner points 
and two comer points. Suppose a straight edge of orien- 
tation 8 is digitized, and the resulting chain code has runs 
of length [ l / m ]  and [ l/m] + 1 where m = tan 8. Con- 
sider a very long portion of this edge of length L.  Let QL 

denote the total number of runs. Then the horizontal dis- 
tance L cos 8 will be covered by Q L ( Y [ ~ / ~ ]  runs of length 
[ l / m ]  and Q L (  1 - runs of length [ l /m]  + 1 .  
Therefore, we have 
L cos e 

= Q ~ . { a [ ~ / r n l [ l / m I  + ( 1  - a [ ~ / r n l ) ( [ l / m I  + 1 ) )  

1 COS e 
= Q L ;  = a-- sin 8 ' 

This shows (again) that Q L  = L sin 8. For each run, we 
have two corner points, and therefore the number of cor- 
ner points per unit length is 

N ,  = 2 sin 8. ( A 4  
The number of noncorner points/unit length is found sim- 
ilarly, yielding 

= sin 8 - - t 1 = cos e - 1 
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Note that we could classify the points (or the links) of the 
boundary into more refined classes according to the prop- 
erties of their neighbors too. To any point of the chain 
code, we can associate a list of properties {prop P }  such 
as whether the point is a corner point or not, if it is a 
comer point the length of the link runs it joins, if it is not 
a comer point the length of the run it belongs to, etc. 

If we classify the points according to such properties, 
the above-presented analysis can easily tell us the fre- 
quencies of points of each class per unit length as a func- 
tion of straight edge orientation. For example, classify the 
points of the chain code according to the length of the 
longest run they belong to. Thus, noncorner points will 
be classified according to the run they belong to, and the 
corner points, which by definition belong to two runs, will 
be classified according to the longer of the two runs. 
Therefore, let C, be the class of points that belong to 
(longest) runs of length j .  If a straight line of orientation 
6’ = tan-’ rn is digitized and rn E [ 1 /(  j + 1 ), 1 / j  1, then 
we have runs of length j and j + 1. In a run o f j ,  we have 
j + 1 points of class C,, and in a run o f j  + 1, j + 2 
points of class C, + , . Over the interval 6’ E [tan-’ 1 /(  j + 
2) ,  1 / j  1, we have sin 6’ runs per unit length and a, = j 
+ 2 - cos 6’/sin 6’ of them are of lengthj. Therefore, we 
readily obtain 

(A.8a) 

(A.8b) 

v(C,) = ( j  + l ) ( ( j  + 1)  sin0 - cos6’) 

v(C,+,) = ( j  + 2)(cos 0 - j  sin e ) .  
REFERENCES 

[ I ]  A. Rosenfeld and A. C. Kak, Digital Picture Processing. New York: 
Academic, 1976. 

[2] T. Pavlidis, Algorithms for  Graphics and Image Processing. Rock- 
ville, MD: Computer Science, 1982. 

[3] C A .  Ho, “Precision of digital vision systems,” IEEE Trcins. Pat- 
tern Anal. Machine Intell., vol. PAMI-5, pp. 593-601, 1983. 

141 M. Rink, “A computerized quantitative image analysis procedure for 
investigating features and an adapted image process,” J .  Microscopy, 
vol. 107, pp. 267-286, 1976. 

[SI Z. Kulpa, “Area and perimeter measurement of blobs in  discrete bi- 
nary pictures,” Cornput. Graphics Image Processing, vol. 6 ,  pp. 434- 
451, 1977. 

161 H. Freeman, “Computer processing of line drawing images,” Com- 
put .  Surveys, vol. 6 ,  pp. 57-97, 1974. 

[7] -, “Boundary encoding and processing,” in Picture Processing 
und Physhopictorics, B .  Stipkin and A. Rosenfeld, Eds. New York: 
Academic, 1970, pp. 241-263. 

[8] Z .  Kulpa, “More about areas and perimeters of quantized objects,” 
Cornput. Vision, Graphics, Image Processing, vol. 22, pp. 268-276. 
1983. 

191 U. Montanari, “A note on minimal length polygonal approximation 
to a digitized contour,” Commun. ACM,  vol. 13. pp. 41-46, 1970. 

[IO] D. Proffitt and D. Rosen, “Metrication errors and coding efficiency 
of chain coding schemes for the representation of lines and edges.” 
Cnnprt. Gruphirs Image Processing. vol. 10, pp. 3 18-332, 1979. 

[ 1 I ]  A. M. Vossepoel and A. W.  M. Smeulders. “Vector code probability 
and metrication error in the representation of straight lines of finite 
length,“ Cornput. Graphics Image Processing, vol. 20, pp. 347-364, 
1982. 

[I21 J. Koplowitz and G. T. Toussaint. “A unified theory of coding 
schemes for the efficient transmission of line drawings,” in Proc. 
Canadian Con$ Commun. Power, Oct. 1976. 

[I31 J. Koplowitz, “On the performance of chain codes for quantization 
of line drawings.” IEEE Trans. Pattern Anal. Machine Intell., vol. 

[14] G. Grant and A. F. Reid, “A fast and precise boundary tracing al- 
gorithm,” Mikroskopie, vol. 37, pp. 455-457, 1980. 

[ IS ]  H.  Wechsler. “A new and fast algorithm for estimating the perimeter 
of objects for industrial vision tasks,” Cornput. Graphics Image Pro- 
cessitrg, vol. 17, pp. 375-385, 1981. 

New 
York: Wiley. 1965. 

PAMI-3, pp. 180-185, 1981. 

1161 P. Billingsley, Ergodic T h e o n  and T h e o n  of Information. 

Jack Koplowitz (S’71-SM’79) received the 
B.E.E. degree from the City College of New 
York. New York, NY, in 1967, the M.E.E. de- 
gree from Stanford University, Stanford, CA, in 
1968, and the Ph.D. degree from the University 
of Colorado, Boulder, in 1973. 

From 1967 to 1970 he was a member of the 
Technical Staff at Bell Laboratories, Holmdel, NJ. 
working in the area of data communications. Since 
1973 he has been with the Department of Electri- 
cal and Computer Engineering at Clarkson Uni- 

versity, Potsdam, N Y .  He spent the 1986-1987 academic year as a Lady 
Davis Fellow at the Department of Electrical Engineering, Technion-ls- 
rael Institute of Technology, Haifa. His research interests are in pattern 
recognition. image processing, and statistical communications. 

Dr. Koplowitz served as Secretary of the Board of Governors of the 
IEEE Information Theory Group from 1981 to 1983. From 1984 to 1987 
he served as Associate Editor for Pattern Recognition of the IEEE TR.4Ns- 
ACTIONS ON INFORMATION THFORY.  

Alfred M. Bruckstein was born in Sighet, Tran- 
sylvania, Romania, on January 24, 1954. He re- 
ceived the B.Sc. and M.Sc. degrees in electrical 
engineering, from the Technion, Israel Institute of 
Technology, Haifa, in 1977 and 1980, respec- 
tively, and the Ph.D. degree in electrical engi- 
neering from Stanford University, Stanford, CA. 
in  1984. 

Since October 1984 he has been with the Fac- 
ulty of Electrical Engineering at the Technion. His 
research interests are in  estimation theory, signal 

and image processing, computer vision. algorithmic aspects of inverse 
scattering. point processes, and mathematical models in neurophysiology. 

Dr. Bruckstein is a member of SIAM and AMS. 


