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Chapter 1
Digital Geometry in Image-Based Metrology

Alfred M. Bruckstein

Abstract Interesting issues in digital geometry arise due to the need to perform
accurate automated measurements on objects that are “seen through the eyes” of
modern imaging devices. These devices are typically regular arrays of light sensors
and they yield matrices of quantized probings of the objects being looked at. In this
setting, the natural questions that may be posed are: how can we locate and recog-
nize instances from classes of possible objects, and how precisely can we measure
various geometric properties of the objects of interest, how accurately can we locate
them given the limitations imposed upon us by the geometry of the sensor lattices
and the quantization and noise omnipresent in the sensing process. Another inter-
esting area of investigation is the design of classes of objects that enable optimal
exploitation of the imaging device capabilities, in the sense of yielding the most
accurate measurements possible.

1.1 Introduction

Scanned character recognition systems are by now working quite well, several com-
panies emerged based on the need to do image based inspection for quality control
in the semiconductor industry and, in general, automated visual inspection systems
are by now widely used in many areas of manufacturing. In these important applica-
tions one often needs to perform precise geometric measurements based on images
of various types of planar objects or shapes. Images of these shapes are provided
by sensors with limited capabilities. These sensors are spatially arranged in regular
planar arrays providing matrices of quantized pixel-values that need to be processed
by automated metrology systems to extract information on the location, identity,
size and orientation, texture and color of the objects being looked at. The geome-
try, spatial resolution and sensitivity of the sensor array are crucial factors in the
measurement performances that are possible. When sensor arrays are regular planar
grids, we have to deal with a wealth of issues involving geometry on the integer grid,
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Fig. 1.1 Image digitization
by point sampling on the unit
grid Z

2

hence digital geometry problems enter the picture in industrial metrology tasks in
very fundamental ways.

1.2 The Digitization Model and the Metrology Tasks

We assume that planar shapes, the objects we are interested to locate, measure and
recognize are binary (black on a white background) and live in the real plane, R2.
Hence their full description can be given via an indicator function ξ(x, y) which
is 1 (black) if (x, y) is inside the shape and 0 (white) if (x, y) is in the background.
The digitization process assumed will be point sampling on the integer grid, Z2,
hence the result of digitization will be a discrete indicator function on the integer
grid: a discrete binary image, or a zero/one matrix of picture elements, or pixels, see
Fig. 1.1. The “generic problem” we deal with is: given the discretized shape, i.e.,

ξD(i, j) =
{

1 if ξD(i, j) = 1

0 if ξD(i, j) = 0

recover as much information as possible on the “pre-image”, i.e., on the original
binary shape that lives on the continuous real plane. The information on the pre-
image shape that one needs might be its location and orientation, area, perimeter,
etc. In order to solve the particular problem at hand we shall also need to exploit
whatever prior information we may have on the continuous pre-images. This prior
information sometimes defines the objects or shapes we digitize as members of
parameterized sets of possible pre-images. For example, we might know that the
shapes we are called upon to measure are circular with varying locations and sizes.
In this case the parameter defining the particular object instance being analyzed
from its digitization is a vector comprising three numbers: two coordinates pointing
out the center of the disk and a positive number providing its radius. The digitized
shape ξD(i, j) then provides some information on the center and radius of the disk
and we may ask how good an estimate can we get for these quantities given the
data.
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1.3 Self Similarity of Digital Lines

Digital lines result from point-sampling half-plane pre-images. More is known about
the jagged boundaries obtained in this process topic than anyone can possibly know,
but the basic facts are both simple and beautiful. Half-planes are not very interest-
ing or practically useful objects, however they already pose the following metrology
problem: given the digital image of a half-plane, locate it (i.e., its boundary line) as
precisely as possible. Of course, we must ask ourselves whether and how our loca-
tion estimation improves as we see more and more of the digitized boundary. We
can think about the location estimation problem as a problem of determining the
half-plane pre-images that satisfy all the constraints that the digitized image pro-
vides. Indeed every grid-point pixel that is 0 (white) will tell us that the half-plane
does not cover that location while every black (1) pixel will indicate that the half-
plane covers its position. It should come as no surprise that the boundary pixels, i.e.,
the locations where white pixels are neighboring black ones, carry all the informa-
tion. The constraint that a certain location in the plane belongs, or does not belong
to the half-plane that is being probed translates into a condition that the boundary
line has a slope and intercept pair in a half-plane defined in the dual representation
space (which is called in pattern recognition circles the Hough parameter plane).
Therefore, as we collect progressively more data in the “image-plane” we have to
intersect more and more half-planes in the Hough plane to get the so called “locale”,
or the uncertainty region in parameter space where the boundary line parameters lie,
see [12, 18, 25]. Looking at the grid geometry and analyzing the lines that corre-
spond to grid-points in the dual plane one quickly realizes that only the boundary
points contribute to setting the limits of the locale of interest, and a careful anal-
ysis reveals that, due to the regularity of the sampling grid, the locales are always
polygons of at most four sides, see [12, 25]. Hence as more and more consecutive
boundary points are added to the pool of information on the digitized half plane, we
have to perform half-plane intersections with at most four sided polygonal locales
to update them. Clearly the locales generally strictly decrease in size as the num-
ber of points increases, and we can get exact estimates on the uncertainty behavior
as the jagged boundary is progressively revealed. This idea, combining the geome-
try of locales for digital straight lines with the process of successively performing
the half-plane intersections for each new data point while walking along the jagged
digitized boundary, led to the simplest, and only recursive O(length) algorithm for
detecting straight edge segments. A complete description of this algorithm is the
subject of the next section of this paper.

The jagged edges that result from discretizing half-planes have a beautiful, self-
similar structure, intimately related to the continued fraction representation of the
real number that defines the slope of their boundary line. It is clear that at various
sampling resolutions the boundary maintains its jaggedness in a fractal manner, but
here we mean a different type of self-similarity, inherent in the jagged boundaries
at any given resolution! A wealth of interesting and beautiful properties that were
described over many years of research on digital straight lines follow from a very
simple unifying principle: invariance of the linear separability property under re-
encoding with respect to regular grids embedded into the integer lattice. Not only
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does this principle help in re-discovering and proving in a very straightforward man-
ner digital straight edge properties that were often arrived at and proved in sinuous
ways, but it also points out all the self-similarity type properties that are possible,
making nice connections to number-theoretic issues that arise in this context and
the general linear group GL(2,Z) that describes all integer lattice isomorphisms.
Following [6], we next present the basic self-similarity results.

A digitized straight line is defined as the boundary of a linearly separable di-
chotomy of the set of points with integer coordinates, Z2 = {(i, j)|i, j ∈ Z}, in the
plane. The boundary points of the dichotomy induced by a line with slope m and
intercept n, y = mx + n, are

L(m,n) = {
(i, hi)|i ∈ Z, hi = �mi + n�}.

Without loss of generality let us assume that m > 0, so that the sequence hi is a
nondecreasing sequence of integers. Associate to the set of boundary points L(m,n)

a string of two symbols, 0 and 1, coding the sequence of differences hi+1 − hi , as
follows

C(m,n) = · · ·C−2C−1C0C1C2 · · · =
∏
i

Cj (m,n)

where

Ci(m,n) =
{

0, if hi+1 − hi = 0,

01k, if hi+1 − hi = k,

and 1k means 1 1 · · · 1 with k 1’s. C(m,n) is called the chain-code of the line
L(m,n). Note that the sequence C(m,n) can be uniquely parsed into its components
Ci(m,n), since a separator must precede every 01 string and follow every run of 1’s
and each of the remaining 0’s must be a single component, as well. Clearly, given
some hi0 -value and C(m,n), the entire sequence hi can be recovered. The graphical
meaning of the chain-code associated to L(m,n) is depicted in Fig. 1.2.

The set of points L(m,n) uniquely determines the slope of the line m. Indeed,
L(m,n) ≡ L(m′, n′) implies m = m′, since otherwise the vertical distance between
y = mx + n and y = m′x + n′ would become unbounded at x → ±∞, and their
hi sequences would differ starting at some large enough i. Furthermore, if m is
irrational we have, by a classical result, that the vertical intercepts of y = mx + n

modulo 1 are dense in [0,1]. For every ε > 0 there exist i0 and j0 such that

mi0 + n − �mi0 + n� < ε,

mj0 + n − �mj0 + n� > 1 − ε,

and changing n by ε would result in a change in L(m,n). Therefore for irrational m,
L(m,n) uniquely determines both m and n. If m is rational there exist only a finite
set of distinct vertical intercepts of y = mx +n modulo 1, therefore n is determined
only up to an interval and the length of the worst interval of uncertainly for n de-
pends on the minimal p/q representation of m. This also proves that the chain-code
C(m,n) determines m uniquely, and if m is irrational, n is also determined by it
modulo 1, since we clearly have C(m,n) ≡ C(m,n + 1).
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Fig. 1.2 Chain-codes of
L(m,n) for m < 1 and m̃ > 1

From the definition of chain-codes C(m,n) we obtain several immediate and
basic properties a sequences of zeros and ones must have in order to be the chain-
code of a straight edge. In the case of m < 1, the difference

hi+1 − hi = ⌊
m(i + 1) + n

⌋− �mi + n� (1.1)

can only be either 0 or 1. In this case the chain-code of a digitized line has runs
of 0’s separated by single 1’s, and the 0’s occur in runs with length determined by
the number on integer coordinates that fall within the intervals determined on the
x-axis by the points defined by

mxi + n = i ∈ Z, i.e., xi = i

m
+ n

m
. (1.2)

The intervals [xi, xi+1) have a constant length of 1/m and therefore the number
of integer coordinates covered can be (see Fig. 1.3a) either ρi = �1/m� or ρi =
�1/m� + 1. Therefore, if m < 1, C(m,n) is of the form

C(m,n) = · · ·10ρ110ρ210ρ31 · · · (1.3)

where ρ ∈ {�1/m�, �1/m� + 1}. For the case m > 1, the difference hi + 1 − hi =
�m(i + 1) + n� − �mi + n� is always greater than 1, and therefore the chain-code
C(m,n) has runs of 1’s separated by single 0’s. Since �m + mi + n� − �mi + n�
equals the number of integer coordinates between the values m(i+1)+n and mi+n

the run of 1’s has length determined by the number of integral values in consecutive
intervals of length m, see Fig. 1.3b. This shows that the run-lengths ρi in this case,
will be either ρ = �m� or �m� + 1. Therefore if m > 1, the chain-code C(m,n) has
the form

C(m,n) = · · ·01ρ101ρ201ρ30 · · · (1.4)

with ρ ∈ {�m�, �m� + 1}.
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Fig. 1.3 Basic properties of
chain-codes

The question that immediately arises is the following: is there any order or
pattern in the appearance of the two values for the run length of the symbols 0 or 1,
i.e., in the sequences {ρi} that arise from “chain coding” digitized straight lines?
The classical results on digital straight edges are focused on “uniformity proper-
ties” of the appearance of the separator symbol in the chain-codes sequences, see
[14, 20]. We here briefly present a very high level and general uniformity result via
self-similarity, as was first defined in [6].

Suppose we are given the chain-code of a digitized straight boundary C(m,n).
We know that C(m,n) is a sequence composed of two symbols, 0 and 1, and that it
looks either like (1.3) or (1.4), thus it has the general form

· · ·Δ�ρi Δ�ρi+1Δ�ρi+2Δ · · · (1.5)

where ρi ∈ {p,p + 1}, p ∈ Z, and Δ, � stand for either 0, 1 or 1, 0, respectively.
We can define several transformation rules on two symbol, or Δ/�, sequences

of the type (1.5), transformations that yield new Δ/� sequences.

RULE X. Interchange the symbols Δ and � (i.e., Δ →� and �→ Δ).
Application of X to a chain-code C(m,n) yields a new sequence of symbols,
with 0’s replacing the 1’s and 1’s replacing the 0’s of the original sequence.
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RULE S. Replace every �Δ sequence by Δ.
Application of the S-transformation to a chain-code of the form (1.5) yields a
sequence of the same type with the run length ρi replaced by ρi − 1. Applying
Rule S, p times yields the next transformation rule.

RULE Sp . Replace �pΔ by Δ and �p+1Δ by �Δ.
Notice that, in contrast to the transformation rules X and S, this rule depends on
the {ρi} sequence, i.e., it is adapted to the given pattern (1.5). Indeed we can
apply the S-transformation successively at most p times where p is the minimal
value of ρi ’s. After that, we need to do an X transformation in order to bring the
sequence of symbols to the form (1.5).

RULE R. Replace �pΔ by Δ and �p+1Δ by �.
We may view the action of R as a result of applying Sp first, then replacing �Δ

by �. This rule is also adapted to the sequence on which it operates.
The next transformation rule is somewhat different, since it replaces symbols in
a way that depends on the neighborhood or the “context”.

RULE T. Replace �Δ by � and the �’s followed by a � by �Δ.
Application of rule T has the effect of putting a Δ between every consecutive pair
of �’s and removing all the Δ’s appearing in the original sequence. For example
the sequence

· · ·�Δ����Δ���Δ���Δ� · · ·
will be mapped under T, to

· · ·��Δ�Δ�Δ��Δ�Δ��Δ�Δ�� · · ·
Up to this point the transformation rules were completely specified by rather sim-
ple local symbol replacement rules. The next two classes of transformation rules,
require the setting of an initial position and a bilateral parsing for the generation of
the transformed sequences.

V-RULES. Given the sequence of Δ�, choose a Δ symbol as an initial position,
then to the right and to the left of the chosen Δ delete batches of Q − 1 consec-
utive Δ’s.
This transformation has the effect of joining together (from the starting position)
Q consecutive �-runs. The sequence

Δ�ρi−Q · · ·Δ�ρi−1Δ↑�ρi Δ�ρi−1Δ · · ·�ρi+Q−1Δ

will be mapped to

· · ·Δ�ρi−Q+···+ρi−1Δ�ρi+ρi+1+···+ρi+Q−1Δ · · ·
if the Δ preceding �ρi is chosen as the initial position. Therefore if a Δ/�-chain-
code sequence of type (1.5) is specified by the �-run length sequence {ρi}i∈N a
V-transformation as defined above will produce a sequence of type (1.5) speci-
fied by {ρi0+nQ + ρi0+nQ+1 + · · · + ρi0+(n+1)Q−1}n∈N for a given i0 and a given
integer Q ≥ 1.
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H-RULES. Given the sequence of Δ� symbols, choose a starting point between
two consecutive symbols and parse the sequence to the right and left of the start-
ing point, counting the number of �’s seen. After seeing P �’s, replace the
subsequence by one � followed by the number of Δ’s encountered while accu-
mulating the P �’s. In counting the Δ’s encountered, apply the following rules:
(1) when parsing to the right: if the P -th � symbol is followed by a Δ count
this Δ as well and start accumulating the next batch of P symbols after it and
(2) when parsing to the left: if the P -th � symbol is preceded by Δ do not count
this Δ and start accumulating the next batch of P �’s immediately.
As an example, consider applying an H-transformation to the sequence below,
with the indicated initial position,

· · ·�Δ���Δ���Δ ↑����Δ���Δ���Δ���Δ� · · ·
and parameter P = 7. We obtain the parsing

· · · ↑�Δ���Δ���Δ ↑����Δ���Δ ↑���Δ���Δ� ↑ · · ·
that yields the output

· · · ↑�ΔΔΔ ↑�ΔΔ ↑�ΔΔ ↑ · · ·
The same initial conditions with parameter P = 3 provide the parsing

· · ·�Δ ↑���Δ ↑���|Δ ↑��� ↑�Δ�� ↑�Δ�� ↑�Δ�� ↑�Δ� · · ·
and an output sequence

· · · ↑�Δ ↑�Δ ↑� ↑�Δ ↑�Δ ↑�Δ ↑ · · ·
So far we have defined seven rules for transforming Δ/� sequences into new Δ/�
sequences. The first five of them are uniquely specified in terms of local string re-
placement rules, the last two being classes of transformations that require the choice
of an initial positions for parsing and are further specified by an arbitrarily chosen
integer (Q or P ). The main self similarity results are, [6]:

The Self-similarity Theorem

1. Given a Δ� sequence of type (1.5), the new sequence produced by applying to
it any of the transformations X, S, Sp , R, or T, is the chain-code of a digitized
straight line if and only if the original sequence was the chain-code of a digitized
straight line.

2. If a Δ� sequence is the chain-code of a digitized straight line, then the sequences
obtained from it by applying any transformation according to the H-rules, or
V-rules, are also chain-codes of digitized straight lines.

Note that, for the X-, S-, Sp-, R-, or T-transformation rules we have stronger
claims than for the classes of H- and R-rules. The reason for this will become ob-
vious from the proof. The digital line properties stated above are self-similarity re-
sults since what we have is that a given chain-code pattern generates, under repeated
applications of various transformation rules, new patterns in the same class: chain-
codes of digitized straight lines.
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Proof We argue that the chain-code transformations defined above are simply re-
encodings of digitized straight lines on regular lattices of points, embedded into
the integer lattice Z

2. This observation, combined with the fact that the embedded
lattices are generated by affine coordinate transformations, readily yield the results
claimed. Indeed, choose any two linearly independent basis vectors B1 and B2 with
integer entries and a lattice point (i0, j0) for the origin Ω0. Define a regular embed-
ded lattice of points as follows

E2 = {
(i0, j0) + iB1 + jB2|(i, j) ∈ Z

2}.
A given straight line y = mx + n defines a dichotomy of the points of Z2, but

also of the points of E2 ⊂ Z
2! If B1 and B2 are basis vectors, there exists an affine

transformation that maps lattice E2 the embedding back into Z
2, i.e., the point

(i0, j0) + iB1 + jB2 ∈ E2 into (i, j) ∈ Z
2, and the same transformation maps the

line y = mx + n into some new line Y = MX + N , on the transformed plane. The
points (i0, j0)+ iB1 + jB2 from the original (x, y)-plane map into (i, j), hence the
transformation from (X,Y ) into (x, y) is(

x

y

)
=
(

i0

j0

)
+ [

BT
1 BT

2

](X

Y

)

and therefore the inverse mapping from (x, y) to (X,Y ) is(
X

Y

)
= [

BT
1 BT

2

]−1
[(

x

y

)
−
(

i0

j0

)]
= M

(
i0

j0

)
. (1.6)

From these transformations the mapping of the line parameters (m,n) into
(M,N) can also be readily obtained in terms of B1B2 and Ω0.

After performing the transformation (1.6) the line Y = MX + N can be chain-
coded with respect to the lattice Z2 (which is now the image of E2) and the resulting
chain-code will somehow be related to the chain-code of y = mx +n defined on the
original grid Z

2. The key observation, proving the results stated, is that the transfor-
mations introduced in the previous section represent straightforward re-encodings of
digitized lines with respect to suitably chosen embedded lattices E2. The choices of
basis vectors that lead to each of the sequence transformations we are concentrating
on are shown in Fig. 1.4 and are analyzed in detail below:

1. The X transformation rule, the interchange of Δ and � symbols, is clearly
accomplished by the coordinate-change mapping that takes (i, j) into (j, i).
Here B1 = [0,1] and B2 = [1,0] and we have that y = mx + n maps into
Y = (1/m)X − (n/m) under the transformation matrix MX = [ 0 1

1 0

]
.

2. The S-rule which reduces every integer of the {ρi} sequence by 1 is induced by
the mapping that considers a � step as a step in the B1 = [1,0] direction, but a
combined �Δ-step as the unit step in the B2 = [1,1]-direction (see Fig. 1.4a).
Therefore, the S-transformation matrix is

MS =
[

1 1
0 1

]−1

=
[

1 −1
0 1

]

and y = mx + n maps into Y = Xm/(1 − m) + n/(1 − m).
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Fig. 1.4 The S, Sp , R, T, V and H transformations

3. The adaptive Sp-transformation rule which replaces �pΔ by Δ, and �p+1Δ by
�Δ, corresponds to choosing B1 = [1,0] and B2 = [p,1] (see Fig. 1.4b). The
transformation matrix is

MSp =
[

1 p

0 1

]−1

=
([

1 1
0 1

]
· · ·
[

1 1
0 1

])−1

=
[

1 −p

0 1

]
.

The line y = mx + n is transformed into Y = Xm/(1 − pm) + n/(1 − pm).
Note that, if m < 1, p = �1/m� and we denote the fractional part of 1/m by
α(= 1/m − �1/m�), we have m/(1 − mp) = 1/α > 1. This shows that one Sp-
transformation, that is adapted to the run-length of the �-symbols replaces the
slope m with (1/m − �1/m�)−1. Therefore, repeated application of this adapted
transformation followed by an X-transformation will produce a sequence of
slopes recursively given by mk = 1/mk−1 − �1/mk−1�, m0 = m. Hence, the se-
quence of adapted “exponents” of the corresponding Sp-transformations pk =
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�1/mk�, is the sequence of integers of the continued fraction representation
of m0,

m0 = 1

p0 + 1
p1+ 1

p2+ 1···

4. The transformation rule R maps �pΔ into Δ and �p+1Δ into �. Therefore
B1 = [p + 1,1] and B2 = [p,1] (Fig. 1.4c). The transformation matrix is

MR =
[
p + 1 p

1 1

]−1

=
[

1 −p

−1 p + 1

]

and an original line y = mx+n is mapped into Y = X[(p+1)m−1]/(1−pm)+
m/(1 − pm). Note here that in terms of α = 1/m − �1/m� the new slope is
(1 − α)/α, when m < 1.

5. The last of this class of transformations, Rule T, replaces �Δ by �’s, and �’s
followed by a � by �Δ’s. We may view this transformation as a sequence
of two maps: the first one replacing �p+1Δ by �, and �pΔ by Δ by the
adapted rule R, the second replacing � by �Δ�Δ · · ·Δ� with (p + 1)�’s,
and Δ by �Δ�Δ · · ·Δ� with p�’s. This would imply that we first do an
R-transformation via the matrix

MRT =
[
p + 1 p

p p − 1

]
.

Concatenating the two transformations we obtain

MT = MRTMR =
[

1 0
1 −1

]
,

which is not surprising. Indeed, �Δ is mapped by B1 = [1 1] into one � step,
but a � followed by another � will have to be mapped into a sequence of two
steps, B2B1, the first one being B2 = [0,−1] (see Fig. 1.4d). We readily see from
the MT transformation that y = mx +n maps into Y = (1−m)X −n. Therefore
the slopes of the two lines add to 1. Indeed, “summing up” the two sequences
in the sense of placing a Δ whenever there exists a Δ in either the original, or
the T-transformed chain-code, we get the sequence · · ·�Δ�Δ�Δ� · · ·, which
represents the lines of the type y = x + n.

Up to this point, all the transformation matrices, whether adapted to the chain-
code parameter p or not, were matrices with integer entries and had the property
that det(M) = ±1. This implied that the matrices had inverses with integer en-
tries and, as a consequence, the embedded lattice E2 was simply a “reorgani-
zation” or “relabeling” of the entire integer lattice Z

2. In mathematical terms,
unimodular lattice transformations are isomorphisms of the two dimensional lat-
tice. The 2 × 2 integer matrices with determinant ±1 (called unimodular matri-
ces) form a well known group called GL(2,Z) and this group is finitely gener-
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ated by the matrices
[ 0 1
+1 0

][ 1 1
0 1

][−1 0
0 1

]
. For all such transformations (that are

invertible within GL(2,Z)) the corresponding chain-code modification rules will
yield chain-codes of linearly separable dichotomies, simply because the trans-
formed line Y = MX + N induces a linearly separable dichotomy of E2. There-
fore the self-similarity results may be regarded as two different ways of stating
that the points of the lattice Z2 are linearly separated by a given line y = mx +n.
The first class of results presented above becomes obvious in this setting. Fur-
thermore, from the fact that the group GL(2,Z) is finitely generated, it follows
that we have countably many sequence transformations, having the property that
they yield chain-codes of straight lines if and only if the original chain-code is
a digitized straight line, and they are expressible as products of sequences of
basic transformations of the type X, S, and, say T (or one other transforma-
tion).

The situation is somewhat different for the remaining classes of transformation
rules, the V and H-rules.

6. In the embedded lattice setting it is easy to see that a V-rule implies choosing
some origin point Ω0 and basis vectors of the form B1 = [1,0], B2 = [0,Q] (see
Fig. 1.4e). In this case, the set E2 is properly contained in Z

2, i.e., E2 ⊂ Z
2 and

the mapping of Eq. (1.6) has fractional entries. Since V-rules imply a decimation
of the horizontal grid lines, the fact that a chain-code of a digitized line provides
a new digitized line, is obvious. However, due to the proper embedding of E2

into Z
2 these results are not “if and only if” results any more. Indeed, we could

start with a sequence like

· · ·Δ�Δ�pΔ�Δ�pΔ�Δ · · ·
and any V-transformation with Q = 2 will provide the transformed sequence

Δ�p+1Δ�p+1Δ�p+1 · · ·
This sequence is obviously a digitized straight line while the original one is ob-
viously not, for any p > 2. Hence, the proper embedding of E2 in Z

2 implies
that digital lines, but not only digital lines, map into digital lines. Note also that
for a V-rule determined by an integer Q, the line y = mx + n is mapped into a
line with slope m/Q.

7. The H-rules defined imply choosing some origin point Ω0 and decimating this
time the vertical grid lines, by removing batches of P consecutive vertical lines.
The basis vectors are in this case B1 = [P,0] and B2 = [0,1] (see Fig. 1.4f).
In this case too E2 is properly contained in Z

2 and again the mapping (1.6) has
fractional entries, the determinant of [B1B2] being P . Clearly applying an H-rule
to the chain-code of a digital straight line will yield the chain-code of a new line
with slope mP , however this too is only an one-directional implication, not an
“if and only if” result.

We can clearly combine V and H-transformations to yield new and more com-
plicated sequence mapping rules. For example, applying a V and an H-trans-
formation with the same parameter, i.e., P = Q is equivalent to re-encoding
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the digitized straight line at a reduced resolution. Note that if the line passes
through the origin, i.e., we have y = mx, and we apply a chain-code transfor-
mation rule that has the effect of reducing resolution with any P = Q, we must
always obtain exactly the same chain-code since the new slope will be the same,
(m · P)/Q = m. This is a rather nice invariance property of chain-codes of lines
passing through the origin and it is not entirely obvious in a nongeometric con-
text. �

The fact that a digitized straight line has the above discussed series of invariance,
or “self-similarity” properties, has many immediate consequences.

The result that an R-transformation on a sequence of symbols yields the chain-
code of digitized straight line if and only if the original sequence was itself a straight
line, constrains the run patterns of the symbol occurring in runs. We may have runs
of equal-length runs but one of the run-length must always occur in isolation (oth-
erwise the R-transformation would yield a sequence in which both symbols occur
in runs longer than 1). Furthermore, this must also be the case at further levels of
run-length encoding of the run-length sequences.

Consider the chain-code of a digitized straight line C(m,n). Performing an S-
transformation on it we get a new chain-code with the property that every symbol
in the new sequence of symbols corresponds to, or “contains”, exactly one � sym-
bol from the original chain-code. Therefore parsing the S-transformed code into
subsequences of equal length is equivalent to performing an H-transformation on
the original chain-code. This shows that in any two equal length subsequences of a
straight line chain-code the number of Δ’s (and consequently also �’s) may differ
by at most 1. This property shows that self-similarity is in fact a description of uni-
formity in the distribution of the separator symbols (Δ) in the chain-code sequence.
Indeed the slope of the line m sets the density of these symbols, and the digitization
process ensures that this density will be achieved with a distortion as uniform as
possible. This interpretation of digital straight lines, as well as their connections to
Euclid’s division algorithm (via continued fraction representations) and to a wealth
of other areas as diverse as music [16], billiard trajectories [4], abstract sequence
analysis [3], combinatorics on words [24], and quasicrystals [30, 32], make this
area of research essentially inexhaustible.

From among many interesting consequences of the self-similarity results we have
chosen to mention the above two properties because such results have been obtained
before, using different proofs, in the context of testing whether a finite sequence
of two symbols could be the chain-code of a digitized straight line segment, see,
e.g., [20].

What we have in fact shown is that one can obtain chain-code transformation
rules that characterize linearity, via the group GL(2,Z) of unimodular lattice trans-
formations. As a consequence we can readily “produce” countably many interesting
and new self-similarity properties of linear chain-code patterns.

Using the properties of digital straight lines, we can not only solve the some-
what theoretical issue of locating a half-plane object of infinite extent but we
can also address some very practical issues like measuring the perimeters of gen-
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eral planar shapes from their versions digitized on regular grids of pixels. In-
deed, analyzing the properties of digitized lines made possible the rational de-
sign of some very simple and accurate perimeter estimators, based on classifica-
tions of the boundary pixels into different classes according to the jaggedness of
their neighborhoods. Building upon earlier work of Proffit and Rosen [31], Ko-
plowitz and Bruckstein proposed a general methodology for the design of sim-
ple and accurate perimeter estimation algorithms that are based on minimizing
the maximum error that would be incurred for infinitely long digitized straight
edges over all orientations [21]. This methodology enables predictions of the ex-
pected performance for shapes having arbitrary, but bounded curvature bound-
aries.

1.4 Digital Straight Segments: Their Characterization and
Recognition

The previous section focused on the properties of digitized half planes of infinite
extent but we often discretize polygonal shapes that have finite length straight seg-
ments as boundaries. Such shapes which will yield finite sequences of chain-code
symbols that will be called Digitally Straight Segments (DSS’s). In general it is
of interest to describe a general discretized boundary by partitioning it into a se-
quence of digital straight segments, effectively producing a “polygonal pre-image”
of the boundary on which a variety of measurements can be performed. In order to
describe a very efficient and easy to grasp algorithm for partitioning a chain-code
sequence into discrete straight portions we need to formalize the Hough-domain,
or dual-space “pre-image” concept. It is well known that a point in the plane de-
fines a pencil of lines that pass through it, i.e., (x0, y0) ∈R

2 corresponds to the lines
y = mx + n that obey y0 = mx0 + n, and this is an equation defining a line in the
Hough-space where the coordinates are (m,n). When a straight Black/White bound-
ary is digitized by point sampling, the grid points that are on the border between the
black region (ξD(i, j) = 1) and the white one (ξD(k, l) = 0) correspond to lines in
the Hough-plane that delineate the (m,n) domain to which the straight line of the
boundary belongs. Considering Fig. 1.5 we have that the lines corresponding to a
vertical border of the discretized line, i.e., the pixels (i, j), (i, j + 1) for which:
{ξD(i, j) = 1, ξD(i, j + 1) = 0} are the parallel lines in the (m,n)-plane defined
by {

(i + j) = mi + n ⇒ n = −im + (j + 1)

j = mi + n ⇒ n = −im + j

Similarly, the next vertical pair of border pixels for which {ξD(i + 1, j) = 1,

ξD(i + 1, j + 1) = 0} correspond to the (m,n)-plane lines given by the parallel
lines: {

(j + 1) = m(i + 1) + n ⇒ n = −(i + 1)m + (j + 1)

j = m(i + 1) + n ⇒ n = −(i + 1)m + j
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Fig. 1.5 Chain-code step and the corresponding Hough-plane geometry

Since clearly the pre-image border line intersects the segments [(i, j), (i, j + 1)],
and [(i + 1, j), (i + 1, j + 1)] the (m,n) parameters of the pre-image line belong
to the intersection of the bands defined by the two pairs of parallels corresponding
to the border pixels. The “locale” for the pre-image has been therefore restricted
to a parallelogram by the discrete data that corresponds to one step of the digitized
boundary’s chain-code. Since this process can be repeated for each chain-code sym-
bol in the description of the discretized boundary, we have that each new chain-code
symbol requires the intersection of the previously delineated “locale” for the “pre-
image line” with a pair of parallel lines in the (m,n)-plane. We therefore have the
following recursive algorithm for determining the “pre-image line locale”, which is
also, in fact, a process for determining digital straight segment portions of a chain-
code:

Digital Straight Segment Detection Process

1. For each symbol of the 4-directional chain-code intersect the uncertainty region
or locale in the (m,n)-plane with the corresponding band in the Hough(dual)-
plane.

2. While the result is not empty there exists a linear-pre-image for the chain-coded
portion of the boundary, hence the chain-code portion is a digital straight seg-
ment.

A careful analysis of how the intersections of chain-code bands look in the Hough
plane reveals a miraculous fact: the locales are always regions defined by at most 4
boundary lines. This is a marvelous result due to Leo Dorst [12], which was given
a simple proof by Douglas McIlroy in [25]. The result is indeed marvelous because
it means that the recursive intersection process that the above described algorithm
for detecting digital straight segment will only take O(1)-time, requiring the inter-
section of a four-sided polygon with two parallel lines. And the situation is even
better: the points defining the locale polygon have rational coordinates hence the
DSS detection process involves updating 8 integers for each chain-code symbol
parsed, see [23]. Therefore we have a beautifully simple O(1)/(chain-code-step)
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recursive digital straight segment detection process. Furthermore, starting the al-
gorithm on an arbitrary chain-coded border we can very efficiently parse it into
DSS-segments. Hence, given a shape digitized on Z

2, we can determine a polyg-
onal approximation for the shape by parsing the digitized boundary into DSS seg-
ments, and for each of these we have position and slope estimates readily provided
by their Hough-plane [(m,n)-plane] “locales”. In particular the recursive O(1)-
per boundary pixel algorithm for detecting digital straightness described above,
due to Lindenbaum and Bruckstein [23], enables parsing general, curved object
boundaries into digitally straight segments in order to estimate the pre-image ob-
ject’s perimeter as a sum of the lengths of the line-segments so-detected. In terms
of the methodology discussed in [21] this algorithm yields zero error for digital
straight edges of infinite extent at all orientations, and hence should be the best
perimeter estimator ever, if the criterion would be performance on straight bound-
aries.

1.5 Digital Disks, Convex and Star-Shaped Objects

From the realm of half-plane objects and digital straight lines we could move to
either infinite extent regions that have more complex boundaries (say parabolas, hy-
perbolas or some periodic functions along a principal direction) or to the analysis
of finite extent objects like polygons, disks and other interesting shapes. Some work
has indeed been done on detecting polygonal preimages from their digitized ver-
sions, and, as we have seen, a good algorithm for parsing a jagged boundary into
digital straight segments turns out to be a crucial ingredient in solving various issues
regarding the metrology of such objects.

Suppose next that we have the prior information that the objects discretized are
disks of various locations and sizes. Then the metrology question arising naturally
is: how precisely can we determine the location of a disk and its radius. Considering
the digitization by point sampling, as discussed above, given a digitized image of
black and white pixels, we know that if a certain point in the plane is the center of a
disk of unknown radius, this point will necessarily be closer to all black grid points
than to any white grid point. Hence the locus of all possible points in the plane closer
to all black points than to any white points is the locale of possible disk centers, and
its size will quantify our uncertainty in locating the object in the preimage plane. It
is interesting to note that this locale can be found without knowledge on the radius,
which will still need to be estimated. It turns out that the locale as defined above is
a well-known concept in computational geometry, and it is known that it is a convex
region in the plane. Efrat and Gotsman have done a careful analysis of the problem
and produced an O(R logR) algorithm to determine the locale, where R is the ra-
dius of the disk. We refer the interested reader to the paper [13] for details. Note
again that the locale we are talking about is independent of the radius parameter.
Had we prior knowledge on the exact radius, the location of the disk center could be
determined by intersecting all disks of radius R around the black grid points with
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all the complements of disks or radius R around the white (uncovered) grid points.
The resulting intersection locale is generally not a convex shape, due to the precise
knowledge of the radius.

For general convex shapes the question of determining the location, area and
perimeter cannot be addressed in any generality. The digitized version of a convex
shape is a set of black grid points on a background of white ones. As a union of
square pixels the digitized shape will not be convex. Hence much work was done
addressing the question whether there is a good definition of convexity for discrete
objects [20, 37]. A variety of proposals were made and can be found in the liter-
ature. The metrology questions however, in all cases remain: determine with best
precision the location (first order moments), orientation (second order moments)
and other metric properties, like area (zeroth order moment) and perimeter of the
shape. These questions, too have received some attention. It turns out that comput-
ing the moments of the black grid points yields good estimates for the correspond-
ing continuous quantities, and more refined, boundary estimation procedures (say,
based on polygonalization of the jagged boundary via an efficient digital straight
segment detection, as discussed above) do indeed provide improved estimates but
the improvement needs to be carefully weighed against the increased complexity
involved.

Among the many procedures that propose polygonal approximations to pre-
images based on the discrete grid points that were covered by the shape, and also
based on the ones that were not covered, one stands out in elegance and usefulness:
the minimum perimeter polygon that is enclosing all black (covered) points and ex-
cludes all white (uncovered) ones. This minimum perimeter polygon turns out to be
the relative convex hull of the connected graph of sampled black points with respect
to the white ones. Here we assume that sampling is dense enough so that a con-
nected preimage shape ensures that the black pixels form a 4-connected shape! The
relative convex hull can be computed easily and may serve as a good approximation
for preimages for all metrology purposes.

So far we talked about disks and convex objects. The next level of complexity in
planar shapes are the so called star-shaped objects. These are defined as the shapes
that have a “kernel region” inside them so that from any point in the kernel the
entire boundary of the shape can be “seen”, i.e., a line from the chosen point to any
boundary point will lie entirely inside the shape. It is easy to see that this definition
generalizes convexity in a rather natural way and that the kernels must be convex
regions. Determining star-shapedness of a planar shape is not a too difficult task
for polygons and for spline-gons, and the algorithms for doing this rely on locating
and using the inflection points on the boundary, and intersecting the regions in the
plane from where the convex boundary regions are seen, see [5]. As with the notion
of convexity, determining digital star-shapedness posed a series of special problems
that needed careful analysis. This was the topic of a paper by Shaked, Koplowitz
and Bruckstein, and there it was shown that the relative convex hull, or minimal
perimeter polygon of the grid points covered by the shape with respect to the ones
that remained uncovered, provides a convenient computational way to define and
algorithmically determine digital star-shapedness, see [33].
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1.6 Shape Designs for Good Metrology

Up to this point we have discussed ways to analyze and measure planar shapes when
seen through the looking glass of grid probing, or point-sampling discretization. The
classes of shapes were assumed given in some, perhaps parameterized form, and we
dealt with questions about recovering their various features and parameters, or about
measuring their size and perimeter and determining their location with the highest
precision possible.

When considering such issues, a further question that can be posed is the fol-
lowing: design planar shapes or collections of shapes that will interact with the
discretization process in such a way that the quantities we need to measure will be
very easily read out in the discretized images we get. Could we design an object in
the plane (that can be a union of continuous binary shapes), so that digitization of
this object translated to various locations, will yield black and white patterns on the
(discretization) grid that clearly exhibit, say in a binary representation, the X and Y

translation values up to a certain desired precision?
Interestingly, recently a pen-like device was invented and advertised, that has the

following feature: it automatically computes with very high precision the location
of its tip on any of the pages of a paper pad by looking at a faint pattern of dots that
is printed on these sheets of paper. The pattern of these dots is so designed that the
image obtained on any small region as seen by the pen near it’s tip (with the help of
a tiny light detector array) uniquely and easily locates the pen-tip’s position on any
of the pages of the pad, see [1].

This example shows that it is good practice to think about designing shapes to
have such “self-advertising” properties and this approach could provide us surpris-
ingly efficient and precise metrology devices. This problem was posed by Bruck-
stein, O’Gorman, and Orlitsky, at Bell Laboratories, already in 1989, with the aim
of designing planar patterns that will serve as location marks, or fiducials on printed
circuit boards. The need for location or registration fiducials in printing circuit
boards and in processing VLSI devices is quite obvious. When layers of printing
and processing are needed in the manufacturing operation, the precision in perform-
ing the desired processes in perfect registration with previously processed layers is
indeed imperative. The work described in [7] proves that there exists an information
theoretic bound that limits the location precision for any shape that has an spatial
extent of say A × A in pixel-size. Such a shape, when digitized will provide for us
about A2 meaningful bits of information, via the pattern of black and white pix-
els in the digitized image. This number of bits can only effectively encode 2A2−1

different locales, and hence the precision to which we can refine a region one pixel-
square in size has a maximal area that must exceed 1/(2A2−1). If we want balanced
X and Y axis precision, we can only locate the pattern to a subpixel precision of
1/[2(A2−1)/2]. This is the best precision possible assuming optimal exploitation of
the real estate of an A × A area, assigned to the location mark. The important is-
sue that was further settled in [7] is the existence of a fiducial pattern that indeed
achieves this precision. The pattern is so cute that we exhibit it in Fig. 1.6.
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Fig. 1.6 An optimal 2D
fiducial of area 3 × 3 pixels

Looking at this fiducial pattern it becomes obvious what it does. It is indeed a
continuous 2D (analog) input that employs the point sampling discretization pro-
cess to compute its X and Y displacement by providing a binary read-out of the
subpixel location of the fiducial within the one pixel to which it can readily be lo-
cated using the left lowest grid-point (the “rough location” mark) covered by the
shape. This leftmost bit of information is also the reason we can only use A2 − 1
bits for subpixel precision, i.e., for cutting the one pixel precision (provided by the
“rough location” bit) into locale slices. This process turns the fiducial and the dis-
cretization process into a nice “analog computer” that yields the displacements in
the X and Y direction easily, and achieves the highest precision in this task that is
possible based on the available data. The analysis provided in [7] goes even fur-
ther. The optimal fiducials turn out to require highly precise etchings on the VLSI
or circuit board devices and hence might be difficult to realize in practice. Hence
there is a need to analyze other types of fiducial shapes that achieve suboptimal ex-
ploitation of the area, however can provide good location accuracies. For rotational
invariance, circularly symmetric shapes turn out to be necessary, and therefore bull-
eye fiducials were also proposed in [7] and further analyzed in [13, 34]. The main
message of the theoretical analysis provided in [7] was that a self location fiducial
should have lots of edges that carry information on their location when seen through
a digitization camera. Recently, the semiconductor industry used this insight in re-
designing the standard registration fiducials. This was the result of a detailed study
of novel, robust grating mark fiducials, which greatly increased precision and re-
peatability. The study, done by us in conjunction with a team of design engineers at
KLA-Tencor, a leading manufacturer of vision based process inspection machines
for semiconductor industry, proposed fiducial marks as shown in Fig. 1.7b to re-
place the traditional box in a box mark shown in Fig. 1.7a. The traditional fiducial
was clearly not optimal in terms of exploiting the wafer area allocated to it. For a
detailed description of the optimized overlay metrology marks that were adopted by
industry and the theoretical analysis that led to their design, see [2].

The most interesting question that remains to be addressed here is the following:
can we invent shapes that provide other metrological measures as easily as the above
discussed example advertised its location?
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Fig. 1.7 Overlay metrology fiducials (from [2])

1.7 The Importance of Being Gray

So far we have discussed the case of binary continuous images being point-sampled
into matrices of zeros and ones, or Black and White pixels. However the real world
is far richer in possibilities and complications.

First of all, point sampling is not a good model of the imaging process as per-
formed by real life cameras. Those carry out, at each sensor level, a weighted in-
tegration of the incoming light from the continuous input pattern. This integration
happens around each grid point, and the pixel influence region may be assumed cir-
cular. The integration yields, at each grid point, values that continuously vary from
a lowest value for white (no object) input over the pixel influence region to highest
value that corresponds to having the input object cover the entire area of integration.
The result of this integration is then transformed into a discrete value encoded by
several bits, via quantization. Therefore even for binary preimages, we get at each
grid point a pixel value that is the quantization of a continuous variable proportional
to the fraction of the pixel influence region that is covered by the input object.

Furthermore we may also consider the advantages of using non-binary, gray-
scale of color pre-images. The combination or more realistic sampling and quanti-
zation processes with the use of gray levels in preimages open for us a great variety
of further possibilities. As an example, Kiryati and Bruckstein have analyzed, fol-
lowing a question posed by Theo Pavlidis, the trade-off between spatial resolution
and number of gray levels when the aim is to get as much information as possible on
a class of binary pre-images that comprise polygonal shapes. The conclusion of this
research was that “Gray Levels Can Improve the Performance of Binary Image Dig-
itizers”, see [19]. The paper introduces a measure of digitization-induced ambiguity
in recovering the binary preimage, hence it is quite relevant to metrology under such
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sampling conditions. It is then proved that, if the sampling grid is sufficiently dense
(i.e., the sampling rate is high!) and if the pixels would provide us exact gray-levels
rather than quantized values, error-free reconstruction of the binary pre-image is
possible. This is not too surprising, however, when the total bit budget for the dig-
itized image representation is limited (i.e., the sampling rate and the quantization
depth are related, both being finite) the bit allocation problem that arises shows that
the best resource allocation policy is to increase the gray level quantization accu-
racy as much as possible, once a sufficiently dense spatial sampling resolution has
been reached. Therefore once we have a grid dense enough to ensure that all lin-
ear borders of the binary input image polygonal shapes can adequately be “seen”
in the sampled image, all the remaining bit resources should go towards finer gray
level quantization. The question, which prompted this research asked to explain why
gray-level fax machines at low resolution yield nicer images than fax machines at
higher resolution, even for binary document images. It was clear that some sort of
anti-aliasing effect is in place, however [19] proved quantitatively that even in terms
of a well-defined metrology error measure, the gray-levels help considerably more
than increased spatial resolution.

Imagine next that we allow gray level input images too. In this case we shall cer-
tainly have, in conjunction with multilevel quantizations at each pixel much more
information for location and various other measurements. A gradual boundary in the
input image, or equivalently an area integration sensor providing a quantized multi-
level pixel value at each grid-point, will transform the issue of locating a half plane
into a problem of locating precisely several parallel digital straight edges, when they
are simultaneously sampled. Such richness of detail will certainly dramatically re-
duce the size of the uncertainty locales, and enable us to design a wealth of improved
location and orientation fiducials in the future.

The conclusion therefore is that gray levels matter, they are good for us! And the
last word on these issues certainly has not been said yet. For some very nice recent
work along these lines see [35].

1.8 Some Further Open Questions

As was mentioned in the previous sections, there are still many interesting and open
digital geometry and metrology problems. Although digital straight edges did re-
ceive a lot of attention from digital geometry researchers we still expect to see
complete theories pertaining to the sampling and quantization of linear non-step
borders in gray level preimages. If a straight border with sigmoidal gray level pro-
file is sampled by some type of area sampling (with pixels with circularly symmetric
integration regions) the result will be a border-line with quantized gray levels that
will look like a nicely anti-aliased line produced by a computer graphics algorithm.
There are interesting digital line properties of the type we discussed in Sect. 1.3 em-
bedded in the resulting image and these will surely be carefully studied sometime
in the future.
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Along these lines one could also study a class of location fiducials based on
shapes with multiple parallel edges, or edges with an a priori known pattern. Such
robust fiducials should enable “the design” of desired uncertainly locales for high
precision registration, may even be insensitive to pixel size variations.

Another interesting question on self-location that may be subject to further re-
search is the design of binary self-location patterns in the plane. This problem was
partially addressed in the paper [15], the pattern proposed being a separable bit-
pattern that is generated as the outer (binary) product of two one-dimensional de
Bruijn sequences [28] that have the one-dimensional self-location property. Such a
pattern can be shown to be robust to some read-out errors but clearly it has a bit too
much redundancy built into it. The planar pattern used by the Anoto pen we men-
tioned before, [1], is an “analog” point pattern that is based on encoding location in
geometric constellations of points near grid locations that carry the information on
the absolute coordinates of the grid point. It seems that a binary array version of the
problem has not been discussed before the work reported in [15].

The problem of length estimation of discretized boundaries was the subject of
many papers, as seen in [21, 35] and the references therein. However even this topic
was not yet completely exhausted. It is an interesting challenge to design perime-
ter estimators that will work in conjunction with corner detectors and curvature
estimators, perhaps based on digital circle detectors [10], to yield more and more
precise length measurements. The design here should not be aimed to get precise
results on digital straight lines but rather on various types of continuous curves with
breakpoints and corners, and the ranges of curvatures that are expected to appear in
practice.

As we discussed in the previous section, subject of bit allocation tradeoff’s be-
tween resolution and quantization has only been superficially touched upon so far
[17, 19, 35]. Although the initial conclusions are that multilevel quantization pro-
vides quite a lot of information in binary preimage digitization, a similar study
should be made for the case of gray level shape boundaries and gray level images
of various types. In this context one might even ask what should be the design of
the gray-scale profile of planar shape edges to enhance the edge location and length
estimation performance.

We have not discussed in this paper important questions of shape comparison
and recognition, of shape decompositions and isoperimetric inequities for digitized
shapes. These topics all rise very interesting research questions that are recently
beginning to be addressed, see, e.g., [8, 36]. Therefore we may expect the area of
digital geometry to remain an active and exciting subject of research in the future.

1.9 Concluding Remarks

This paper surveys research that dealt with digital geometry and metrology issues.
As is clear form the topics discussed above and the list of references below, metrol-
ogy tasks require deep and interesting excursions into discrete geometry, motivating
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the study of the pixelized world and importing from it important insights and re-
sults. More on the vast subject of discrete geometry can be found in several books
[9, 11, 20, 22, 26, 27, 29].
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