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Abstract--In this paper we discuss the following question: what can be said on the movement and shape of 
a planar rigid object from sparse samplings of edge crossing measurements. It is shown that if the object 
moves in translation over an array ofdetectors, providing local edge crossing information, one can determine 
the translation velocity and use a backprojection process to obtain an equivalent sampling of the object along 
a set of parallel lines. Furthermore, if information from several such passes (with different translation 
velocities) over detector arrays is available one can combine the corresponding backprojected data-sets to 
determine classes of objects that are consistent with all the data. Such an array of detectors is shown to be 
a useful alternative way of acquiring information on dynamic scenes when the tasks are limited to 
positioning, velocity measurement and shape recognition of rigid two-dimensional objects moving on a 
contrasting background. 

I. I N T R O D U C T I O N  

The task of detecting moving objects in a dynamic 
scene and extracting information about their move- 
ment and shape can be performed by sampling the time 
varying image at short intervals and analysing 
sequences of static images. ") This approach gives the 
possibility to develop sophisticated algorithms to 
evaluate motion in space, to determine object shapes 
and to deal with scenes involving multiple moving 
objects. 12) However, if high resolution images are to be 
processed, this method is prohibitively expensive 
computationally. Furthermore, this approach is based 
on the notion that the basic element in the 
interpretation of a dynamic scene are static images. 
Motion analysis therefore relies here on detecting 
differences or similarities between successive static 
images, assuming these were already analysed. This 
"static is basic" approach is most probably not the one 
implemented in biological systems as can be learned, 
for example, from the human visual system, which 
can sometimes distinguish an object from its back- 
ground by motion alone, and may even sense 
movement without any ability to point out where, 
precisely in the field of sight it happened. 12'31 

A popular alternative approach postulates that the 
input to a system that analyses dynamic imagery is the 
so-called optical flow. u's) This approach, which 
assumes that there exists a wired in processor capable 
of providing the optical flow directly, is yet equally 
expensive to implement since no efficient way to get the 
optical flow has been discovered. 

However, movement and shape analysis could also 
be based on the analysis of results of some local 

spatio-temporal processing. Such local processing 
may yield any function of the space or time derivative 
of gray levels in some neighborhood, as is for example 
the locally measured velocity field. Since only 
neighborhood and parallel preprocessing is involved, 
this approach is biologically feasible and may be 
computationally efficient. A considerable simplifica- 
tion is possible when making some assumptions about 
objects in the image and their motion. For example, 
Ref. (9) describes a method which assumes a moving 
rigid body, looks for time varying corners in the image 
(where velocity can be uniquely detected) and proceeds 
using this information as a constraint for determining 
velocities along adjacent edges. If some restricted tasks 
are to be performed, it may be possible to extract 
enough information on motion from local spatio- 
temporal processing done only at a sparse set of points. 
It may even be possible to extract shape characteristics 
of the moving object from this data. 

One biological example is the visual system of 
insects in which, at higher levels of processing, there 
exists a group of relatively few neurons responding 
proportionally to movement in specific directions 
occurring in specific areas of the visual field. <4~ Other 
examples are simple tactile and visual systems used to 
sense objects on a conveyor belt. By placing above the 
belt an array of sensors that can merely detect the 
presence of an object passing under them, it is 
sometimes possible to identify the shape and orienta- 
tion of objects on it, (Here the type of motion is of 
course known in advance, as is the class of object 
shapes expected to appear.) 

In this paper we discuss a method for extracting 
motion and structure information from the outputs of 
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sparse arrays performing local spatio-temporal 
processing on a dynamic imagery. As pointed out 
earlier, physiologists have determined that the fly's 
visual system has giant neurons whose response 
measures motion in specific areas and directions. 
However, very little is known about the higher level 
processing of this information. The system we deal 
with is based on a simplified model of the measure- 
ments carried by the giant neurons, where the 
simplification is the assumption that the measurement 
is done in very small regions of the input image. 
Furthermore, we also assume that these measurements 
are all the information available for higher level 
processing. As this method derives information about 
the shape of an object it can be included in the so called 
"shape from motion" class of problems. However it is 
very different from the classical approaches as it 
postulates for input neither a series of static images nor 
a dense optical flow field, but a very sparse spatial 
sampling of the locally measured velocity field. We 
shall see that, under the assumption that the dynamic 
scene is a rigid two-dimensional shape moving in 
translation, these relatively few measurements are 
enough to estimate position and velocity, to recognize 
a shape from a predetermined set of shapes and also to 
find an approximation of an arbitrary object. 

This paper is organized as follows. First the problem 
formulation is given, followed by the description of a 
method to determine motion parameters and gather 
some basic information about the shape of the object. 
Then we present a way to improve the quality of shape 
evaluation by integrating information from several 
sets of independent measurements. We conclude with a 
discussion which shows the close relation between the 
proposed scheme and a known method for shape 
recognition and also point out directions to relax some 
of the limitations imposed on the image and 
measurement model, 

2. THE PROBLEM AND SOME PRELIMINARY 
DISCUSSIONS 

Let us assume that a binary dynamic image contains 
a rigid "black" object moving in translation at 
constant speed and direction upon a "white" back- 
ground. Suppose we place local velocity detectors at M 
fixed places in the image field, each of them 
characterized by the following operation: at the 
moment an edge crosses the detector, the detector 
measures the slope of the edge and the component of 
the velocity normal to it (Fig. 1). Therefore passage of 
the object boundary on a certain detector yields a 
quadruple (i, T, ~b, V,), where we denoted by: 

i the label of the particular detector; 

T the time the passage of the edge happened; 

~b the slope of the edge at the time and place of 
passage; 

V, the velocity component normal to the edge; 

VELOCITY 
DETECTORS ~ _ _  ~. ,-. ~\ 

J _ X  x '°,°'_ ', J - °  ) J  
\ .oy 

MOVING OBJECT 

Fig. 1. An object moving in translation over a detector array. 

and of course 1 < i < M, 0 < ~b < 2n, II, > 0. (A brief 
discussion of the properties and limitations of motion 
measurement with local spatio-temporal processing of 
dynamic images is found in the Appendix). 

Suppose that after the object has swept through the 
image all the information we have is the even number 
of quadruples (since each white to black change 
implies a corresponding black to white one except for 
singularities), as described above, together with the 
positions of the detectors. Given this information, we 
ask what can be inferred about the shape of the object 
and its velocity. 

Another related and more interesting question that 
arises is then the following one: suppose the same 
object (in the same orientation) moves in translation, 
with different speed and direction and passes elsewhere 
on another set of detectors (or alternatively it moves 
over the same detector array again). Given the above 
described edge crossing information for several 
passages, generated with different velocity directions, 
what can now be inferred on the shape of the object? 
We shall therefore ask whether and how such further 
information reduces the class of objects that could 
have produced all the measurements. (In the discuss- 
ion we provide suggestions on how to relax the 
limitations on the object and its motion model and we 
also show the usefulness of such detector array for 
shape recognition tasks.) 

Let us first discuss certain limitations on the size and 
position of the moving object, under which we shall 
consider the above presented shape evaluation 
problems. The input is assumed to be a continuous 
binary image with theoretically infinite spatial 
resolution. (Therefore, no discretization will be implied 
in our solution too; however, the particular imple- 
mentation of the shape reconstruction procedure will 
of course be limited in resolution due to the finite word 
length of the computer.) We clearly have to insure that 
the whole object passes within a certain monitored 
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flame for some time, otherwise only partial informa- 
tion becomes available. For  normalization purposes, 
and with no loss of generality, we shall assume that 
every point of the object passes at some time through 
a circle of radius 1 and a fixed center-point designated 
as (0,0) in the image field. This means that, the entire 
object is at all times, included in an infinite strip 
extending in a direction parallel to the motion velocity, 
whose axis passes through the point (0,0) and whose 
width is 2 (Fig. 1). By assumption, the M motion 
detectors are placed within this "monitored" flame 
and as the object sweeps through, we get the 
quadruples, (i, T, ~b, V,) as defined above. The number 
of quadruples, even with a small M, is generally 
unlimited. Some artificial objects might even give rise 
to an infinity of edge crossings. However, for most 
"nonpathologicar '  objects, given the number of 
detectors M, the number of data quadruples will be a 
small multiple of it. In convex objects, for example, the 
maximum number is 2M but for complex shape like 
the one in Fig. 2 the number of data quadruples with 
an array of three detectors, is 16. 

Finally, in all our discussion on shape evaluation 
from such partial information, we shall never question 
the consistency of the data, i.e. it will always be 
assumed that a particular connected object did indeed 
elicit the detector readings provided to us. 

3. VELOCITY AND SHAPE EVALUATION PROCEDURES 

3.1. Determination of velocity 
The determination of the true object velocity 

(magnitude and direction) is straightforward. Each 
data quadruple (i, T, ~b, V,) constrains the velocity to a 
line in the (Vx, Vy) velocity plane. By taking two such 
nonparallel lines in the velocity plane and finding their 
intersection we have the velocity of the rigid object 
(Fig. 3). The minimum number of detectors required to 
uniquely fix the velocity can be as small as one (which 
of course has to meet at least two edges with different 
slopes), but it is also possible that the velocity cannot 
be determined from any number of detectors. An 
example could be the case of a parallelogram-shaped 
object moving in a direction parallel to one of its sides. 
This later case is obviously pathological and we will 
assume that it happens very rarely. The above 
discussion also assumes that no noise or quantization 
affect the measurements. If this is the case, the velocity 
can be determined from any two "non parallel" 
measurements quadruples, i.e. having different &s, the 
information from the other quadruples being redun- 

Fig. 2. Example of boundary intersection for a complicated 
shape. 
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Fig. 3. Velocity determination from two edge crossing data 
quadruples. 

dant. If noise or quantization do affect the data we can 
obtain a velocity estimate by using the relation: 

v.= V.cos 4 , -~-0  

which has to hold for all data points, (V and q~ being 
the polar coordinate of the object velocity, as in Fig. 3). 
Fitting the best cosine curve to all the available (V,, 4~) 
pairs will yield the estimate of V and 0. 

3.2. Shape information from one pass 
Once the object velocity is determined we may 

proceed to extract information on the shape of the 
moving object. The following argument can be made: 
the meaning of a measurement (i, T, q~, V,) is that a 
point on the edge of the object was at the specific time 
T in the place of detector i, (which is the detector that 
"created" the quadruple). Therefore at time t = 0 this 
point was in the position ?i - ~'T, where the vector r~ 
denoted the position of detector i. 

This "backprojection" applied to all data quad- 
ruples will yield a set of points known to be on the 
boundary of the object at t = 0. Thus for the 
backprojected points we know the precise relative 
position and the corresponding slope (Fig. 4). We 
further know that some segments between edge points 
"created" by the same detector consist only of interior 
points of the shape. Indeed, if we order the quadruples 
generated by a certain detector with increasing T, the 
interior segments are between the first and second, 
third and fourth, etc. backprojected points. (These 
interior segments will be called "black segments".) The 
other segments on the same line, including two half 
infinite segments (or one infinite segment in the case 
there was no interception of the detectors) are known 
to belong to the exterior of the shape (and will be 
denoted as "white segments"), as shown in Fig. 4. 
Apart from these points and segments our basic 
assumptions impose further restrictions that require 
the connected shape to be completely included in a 
strip which is in the direction of motion and has a 
width of 2 (Fig. 1). Detectors that create no quadruple 
will of course limit the range even more. For example, 
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Fig. 4. Back-projected edge points. 
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Fig. 5a. Two different shapes satisfying the same measure- 
ments and the same ordering of edge points. 
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Fig. 5b. Two different shapes satisfying the same measure- 
ments with different ordering of edge points. 

let us assume that detector i was not intercepted, then 
line ~i + ~'t (t - parameter) is an infinite "white" 
segment, whose points belong to the exterior of the 
object and the connected object will lie on one of its 
sides. 

In case the object is known to be convex, or, more 
generally, if no detector yields more than two 
quadruples, we can proceed by trying to approximate 
the shape invoking additional assumptions. For 
example, we can model the object to be a polygon, or 
try to approximate its boundary with polynomial 
curves (using the measured slopes at the edge points). 
These approximations are by no means guaranteed to 
give a reconstructed object which resembles the 
original one. For  example, Fig. 5a shows two different 
shapes which both satisfy the same measurements. If, 
however, the above condition is not satisfied, we 
cannot do even this much, since we do not know how 
to determine the ordering of the points along the object 
boundary. We have in this case several possible 
orderings corresponding to radically different solu- 
tions (as for example in Fig. 5b) and we sometimes may 
be able to pick one of them based on some prior 
information about the shape. 

Let us now address two particular cases. The first 
one is the case in which the object is not intercepted by 
any of the detectors, but is known to have passed 
through the image field. In this case the width (the 
maximal dimension of the object in the direction 
perpendicular to the motion direction) is limited to be 
smaller than L = max {d(i, dp) - d(j ,  q~)} where d(i, (0)is 

• j , ~ , .  
defined as the projection of the placement of detector i 
on an axis whose slope is ~b and i,j are neighbors in this 
projection. 

The second case is when the object is a priori known 
to have a convex shape. Then, not only do we know 
points on its edge, and their order, but also the 

tangents in these points create a convex polygon in 
which the object has to be included. Furthermore, this 
bounding polygon can be created even without 
determining the backprojeeted points on the object 
boundary! This is so since the data in each quadruple, 
although it does not independently define the tangency 
point on the boundary, is enough to define the position 
of the tangent line at t = 0, (~b defines its slope and the 
component of the object velocity, perpendicular to the 
tangent, can be used, together with T to back project 
the entire line, see Fig. 6). 

3.3. Integrating information f rom two passes 
Consider the situation when an object moves over a 

large detector system composed of several arrays 
(which may have some degree of overlapping in space), 
in nonconstant translation, or that the object passes 
the same array several times and in different directions. 
The situation is also similar to the one in which a static 
object is actively scanned with a detector array in 

...o 
/ 

Fig. 6. Generation of convex enclosing polygon. 
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various directions. Assume that the time of every 
passage over each array is short enough so that the 
velocity can be considered to be constant for all the 
edge crossing times by detectors in the array. The 
passes may be in different directions and velocities but 
recall that the object is assumed to be in the same 
orientation in all of them. The question that arises is 
how to integrate different sets of edge data (which 
follow from different passes), to find an approximation 
of the object shape that is better than the one obtained 
from a single pass. We start by considering the case of 
two sets of edge points and the results will serve as the 
basis for the treatment of the general situation when 
data from many passes is available. 

In fact, what we have to do is to determine the 
relative positions of the sets of backprojected edge 
points generated by the two independent passes so that 
all of them will belong to the true object boundary. 
Making this placement is not straightforward since 
from each pass we only know the relative position of a 
set of boundary points, and we do not know anything 
about their situation relative to the points recovered 
from the other pass. Assignment of one coordinate 
system to points of pass i, and another to the points of 
pass j, such that the points of every pass have fixed 
places in their own "master" coordinate system, 
reduces the problem to the following one: find the 
place for the origin of coordinate system j, in 
coordinate system i, such that all points fall on the true 
edge of the object. 

Since no data is available about the position of 
points created in one pass relative to the ones created 
in another, this problem is unsolvable in general. We 
will therefore address the following easier problem: 
find the locus of places for the origin of coordinate 
system j, in the coordinate system i, such that there 
exists a connected object that could have generated the 
correspondingly merged data. We expect the merging 
process to be in many cases sufficiently constrained to 
effectively "reduce" the range of the objects that could 
have generated the combined data, so that each of 
them can serve as a practical approximation to the 
solution of the original and unsolvable question. 

The criteria for finding a legal relative placement are 
the following. 

(a) Extent criterion: the union of points from the 
two passes can be on the object boundary only if they 
belong to the interior of a parallelogram resulting from 
the intersection of two infinite strips of width 2, with 
directions corresponding to the velocities of the two 
passes. 

(b) Intersection criterion: since "black" segments 
contain only interior points and "white" segments only 
exterior points, there can be no intersection between 
"black" and "white" segments in a legal placement. (If 
there is one, the intersection point would be both an 
exterior and interior point to the object.) 

Addressing the problem in a more formal way, let us 
denote by {Sk} = {(XI, Yl)kl l = 1, '" ,Nk} the set of Sk 
edge points of pass k, where k is either i or j, measured 

in its own "master" coordinate system. Further define 
by {Sk+rk} the set {(X~,Yt)k+rkll=l,2, '",Nk} 
where rk denotes the placement of the set of points Sk in 
an arbitrarily chosen, world coordinate system. It is 
required to determine the two vectors ri and rj so that 
the resulting set of points {Si + r~}u{Sj + rj} may 
belong to the boundary of a connected two-dimen- 
sional shape. As the world coordinate system is 
arbitrary, it can be chosen to coincide with the system 
of pass i, i.e. r~ = 0. Hence the problem reduces to 
finding the vector rj only. 

We shall call the set of all "legal" rTs, which is the 
range of placements for the origin of coordinate system 
of pass j relative to the coordinate system of pass i, 
while satisfying the two criterions, the basic placement 
range of j w.r.t, i or Rh[jli]. Clearly Rb[jli] = 
--Rh[ilj]. 

To understand the implications of the placement 
criteria described above let us examine a simple 
example: each set of edge points consist of only two 
points (one "black" segment, Fig. 7a). Using only the 
intersection criterion, nine "topologically" distinct 
regions for placing j ' s  origin of coordinates on i are 
created. Five of them are "legal" and four are not. Note 
that each region is characterized by the fact that for all 
rj in it, the same segments intersect. Hence the points of 
these regions are equivalent with regard to intersection 
(see Figs 7b and c for a map of the regions and for 
representative examples). If the origin of pass j is 
placed at a point in region No. 1, there is an 
intersection between two black segments and the 
intersection criterion is satisfied. If the origin of j is 
placed at a point in one of regions denoted Nos 2, 3, 4 
or 5 there is an intersection between two white 
segments and the intersection criterion is again 
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Fig. 7. Ranges and placements for a simple example. 
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satisfied. If, however, the origin ofj  is placed in a point 
in one of regions No. 6 or 8 there is an intersection 
between a white segment of i and a black segment of j, 
and the intersection condition is violated. Also if the 
origin ofj  is placed in a point in one of regions No. 7 or 
9 there will be an intersection between white segment 
of j and black segment of i, and the intersection 
condition is again violated. 

As can be seen the legal placement regions are 
parallelograms or infinite "open parallelograms". If we 
impose the extent criterion too, the resulting legal 
regions would be the intersection of the five legal 
regions with the legal placement area resulting from 
only the first criterion. In this process all placement 
regions will necessarily become of finite extent and 
some of them may disappear. 

In the more general case where every group of edge 
points consists more than two points, we determine 
legal placement regions with similar rules. The results 
are usually much smaller areas due to the multitude of 
conditions (between every black and every white 
segment) that must be fulfilled. Note that the basic 
placement range will always be a collection of 
parallelogram shaped regions. This is so since a 
multitude of intersection conditions imply that the 
legal placement area is the intersection of many 
"elementary" parallelogram-shaped regions whose 
edges are in the same directions. 

Once the entire legal range has been determined, any 
point in it will provide a"correct" relative placement of 
the data from the two passes, and for any such 
placement it is possible to find an object such that the 
merged edge points from both passes lie on its 
boundary. We may then want to choose from the 
infinity of such correct placements the ones that 
provide boundary reconstructions which meet further 
criteria (like smoothness of the boundary curve). 

3.4. Shape information from more than two passes 
Let us next address the more complicated problem 

of integrating information from more than two 
independently collected edge crossing measurements. 

Suppose we are given P groups of edge points 
resulting from P different passes. Let us denote by 
{Sk} = { (Xi, Yl)k [ l = 1,'" ", Nk} the set of N k points of 
pass k, measured in their own "master" coordinate 
system. Further define by {Sk+rk} the set 
{(Xl, Y l ) k + r g l l = l , ' " , N k }  where rk denotes the 
placement of the set Sk in an arbitrarily chosen world 
coordinate system. It is required to determine a set of 
placement vectors { r k l k = l , - ' , P }  so that the 

e 
resulting set of points w {Sk + rk} may belong to the 

k = l  

boundary of a connected two dimensional object, 
under the two criteria stated in the previous section. 
We can choose the world coordinate system to 
coincide with the "master" coordinate system of, say, 
the first pass (k = 1), since only the relative displace- 
ment of the sets of points matters. 

Our problem is then stated as follows: given the 

basic relative placement range Rb [j} i] (=  -- Rb [i I J])  
for all pairs of passes i,j, determine a placement of P 
points (origins of the master coordinate systems of the 
P data sets) in the plane via the set of vectors 
{rk]k = 1 , ' " , P )  with rl = 0, so that rj - rjeRb [ j [ i ] ,  
for all i,j. 

To get insight on the interaction between the 
constraints, we first examine the case of three passes. 
We show that information from a third pass further 
restricts the relative placement of points resulting from 
the first two passes. Assume that the origin of pass 3 
was placed at a particular point r 3 and the origin of 
pass 2 was placed at another point r2, in a world 
coordinate system which coincides with the "master" 
coordinate system of pass 1 (r~ = 0). The placement of 
edge points of the three passes satisfy the extent and 
intersection criteria provided the following relations 
hold: 

r3 ~Rb[3l 13 

r2 ~Rb[2 J 1] 

r2 -- r3 • Rb [2 [ 33 

where recall that Rh[j[ i] is the basic legal range of 
placing points from pass j  in the coordinate system of 
pass i. These relations mean that r2, besides the 
requirement of belonging to its basic range Rb(2 [ 1) is 
further restricted to be in: 

r2e{r [r = r' + r"; r ' eRb[3[1]  r" eRb[2[3] )  = 

{eb3[ l}*{Rb213} 
where * denotes the set convolution operation. 
(Therefore r2 e {Rb [211] n {Rb [213-1 • R~ [3113 }}, which 
shows that, the range for placing the origin of pass 2 
will be smaller than the one implied by the interaction 
between pass No. 1 and pass No. 2 alone. See Fig. 8 for 
an illustration of the above argument.) 

A method for finding a placement that fulfills the 
placement constraints was found. It is based on a linear 
programming algorithm whose variables are the 
coordinates of all master coordinate systems origins, 
(which make a total of 2P variables). 

C..- Rb[213] 

D 

Fig. 8. Restriction of a placement range Rb[2 [ 1] due to 
information from a third pass. 
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Suppose that each Rh[ j l i ]  consists only of one 
convex region. (Later we shall discuss the case in which 
the range is a union of more convex regions.) Since the 
boundary of Rb [jli] is a convex polygon (in our 
particular case a parallelogram), the region is the 
intersection of (four) half planes. The inclusion of a 
point in a half plane corresponds to a linear inequality 
constraint on its coordinates x and y. Therefore the 
region inside a parallelogram is described by a set of 
four inequalities. In consequence the constraint 
r ; - - r i ~ R b [ j [ i  ] may be rewritten as a set of four 
inequalities in the vector variables rj and r~. So the 2P 
variables of the problem will be constrained by 
2P(P - l) inequalities. 

Linear programming procedures accept inequalities 
as constraints, and introduce an additional variable 
for each of them. "2) Recall that besides the above 
constraints, we also have two equality constraints 

anchoring the origin of pass 1 to some reference point. 
The total number of variables therefore becomes 
2P + 2P(P - 1) and the total number of constraints is 
2P(P - 1) + 2 (besides the usual requirement to have 
all variables positive). 

Since all information on relative displacement 
resides in the constraints, no further restriction is 
imposed on the cost function. Every linear cost 
function will produce an acceptable solution, which 
lies on the boundary of the feasible solution space (a 
convex region). In fact linear programming is used here 
only as a method to determine a feasible solution for a 
given system of linear inequalities. Therefore we can 
determine more feasible placements via convex 
combinations of different feasible solutions, corres- 
ponding to various choices of the cost function. An 
object model, if available, could in principle direct the 
choice of the cost function, although it is not obvious 
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Fig. 9a. Simple shape and backprojected inner segments derived from it with four passes. 
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Fig. 9b. More complicated shape and backprojected inner segments derived from it with four passes. 

how to incorporate such information. 
The complete algorithm determining a feasible 

solution is the following. 
Step 1. Between every pair i,j of different passes find 

the basic range Rb[ j l i ] .  (Each basic range consists of 
one or more convex regions.) 

Step 2. From each range choose one convex region 
(which is bounded by a parallelogram). 

Step 3. Using these regions, determine constraints 
for linear programming problem and try to solve it. 

Step 4. If a feasible solution was found this will 
necessarily be a solution of the original problem. If not, 
it means that no solution exists for the particular 
combination of convex regions chosen in Step 2. Then 
proceed to Step 2 and choose a different combination 
of sub-regions. 

In at least one of the chosen combinations a solution 
will be found, otherwise there would be no solution to 

the original problem, a case we excluded by assump- 
tion. After fixing all places of origins relative to pass 
one (which serves as the world coordinate system), all 
edge points are fixed. It is then possible to find an 
object having all the given points on its boundary. 

4. SIMULATION RESULTS 

To demonstrate the above discussed shape recon- 
struction procedure we have chosen to run simulations 
on objects with arbitrary shape. It was assumed that 
the objects pass in translation over a detector arrays 
having five elements. We assumed that for each pass 
the detectors are arranged with equal spacing in a 
linear array whose direction is perpendicular to the 
velocity. Figure 9 shows the two objects on which the 
simulations were performed, the four translation 
directions assumed for four independent passes and 
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the backprojected data provided by the edge detectors 
arrays. 

Using this data, the basic placement ranges Rb [ j l i ]  
for i,j = 1, 2, 3, 4 i < j were determined. This was done 
by invoking a program that computes the permitted 
ranges for the placement of every black and white 
segment of the projection resulting from pass j on the 
corresponding segments of pass i, and intersects them. 
The six basic ranges are shown in Fig. 10. 

Arbitrary placements taken in these basic ranges 
will yield placement of the data from two passes which 
satisfy both intersection and range criteria. Choosing, 
for example, the point L P  indicated in Rb[2[1] in 
the case of the two objects will yield the placements of 
Fig. 1 la  which are legal. If however, the points are 
chosen outside the basic ranges like the point IP  
indicated in Rb[2l l  ] it will result in an illegal 
placement (Fig. 1 lb). 

Note that some of the basic ranges consist of several 
convex subranges bounded by parallelograms. Such 
split ranges are typical and from a computational 
point of view this means that determining a combined 
legal placement of the data from all passes will 
necessitate analyzing all combinations of such sub- 
ranges, in the worst case. This is so since application of 
the linear programming procedure requires all basic 
ranges to be convex. 

In our examples all combinations of basic subranges 
were checked. In those combinations in which a legal 
placement was found the linear programming 
algorithm was applied with a sequence of different cost 
functions, requiring maximization of the additional 
variables one after the other (which forced departure 
from the corresponding boundary). Note that all the 
solutions obtained in this way are topologically 
equivalent in the sense discussed in the previous 

-t. 

-0.82 -x-  -0.70 
0.66 -y -  0.74 Rt,211 

| I 

-0.30-x- 0.00 
-0.66 -y -  -0.56 Rb411 

0.50-x- 0.70 
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'l/ 
u 

i t I I 

-0.50-x- 0.130 
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0.44-x- 0.52 
-0.30 -y -  0.00 Rb 312 

--0.05 -x-  0.20 
-I.14 -y -  -1.02 Rb2t 1 

Fig. 10a. Basic ranges obtained for the first example. 
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0.I0-x-  0.30 
-1.05 -y -  --0.90 Rb211 

Fig. lOb. Basic ranges obtained for the second example. 

section, i.e. the same black and white segments 
intersect. Figure 12 shows superimposed all the 
solutions obtained for a specific combination of 
subranges (the biggest area subranges for each 
Rb [jl i]) in order to give an idea of the variability of 
solutions within a topologically equivalent set. For the 
first object analysed, the simpler one, there were 36 
possible subrange combinations and feasible solutions 
were found for 10 of them. For  the more complicated 
object only two subrange combinations out of 128 
possible combinations yielded feasible solutions. 
Figure 13 shows that, for the two objects analysed, the 
placement obtained by averaging topologically equiv- 
alent solutions for several combinations of subranges 
which yielded feasible solutions. 

To enable the evaluation of the scatter of 
topologically nonequivalent solutions, Fig. 14 shows 
such topologically different solutions superimposed, 

one for each subrange combination. We see here that, 
in the case of the more complicated example the scatter 
in placement is smaller. This is somewhat expected, 
since a more complicated object will impose more 
restrictions on the relative placement. 

From these simulations we may conclude that the 
variability of solutions is not very big, and good eye 
evaluations of the shape may be obtained from any 
solutions picked at random. In fact, for some simple 
shapes a good evaluation can be obtained from only 
two passes (or with less detectors), as can be seen in 
Fig. 11. 

5. DISCUSSION 

In this paper we discussed a method for learning 
about the shape of moving objects from data supplied 
by sparse arrays of motion detectors. It was shown 
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Fig. 11, Legal and illegal placements of inner segments from two passes. 
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Fig. 12. Different topologically equivalent solutions superimposed. 
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how to approximate the shape of two-dimensional 
objects moving in translation, given relatively small 
numbers of edge crossing measurements that provide 
the edge direction and the velocity perpendicular to it. 
An algorithm that combines information from 
independent sets of measurements, in order to find 
constraints on classes of shapes that are consistent 
with all the available data was also developed. 

First, we showed that the object velocity can 
(usually) be determined for every sweep of the object 
over the detector array. A backprojection algorithm 
was used in order to position a set of points on the 
contour of the object. This information is supplemen- 
ted by edge slope information at those points and a set 
of line segments which are known to belong to the 
interior of the object. If data from only one passage of 
the object on the detector array is available, then only 
these sets of points, the corresponding edge slopes and 
"included" segments (parallel to the direction of 
velocity) are determined and they are known to sample 
the true boundary and interior of the object. In fact, if 
many detectors would be densely packed over the area 
through which the object sweeps, they would sample 
the object at very small spacing and the shape 
reconstruction from one pass would consequently be 
very good. We however assumed a sparse sampling 
during every passage over detector arrays and 
analysed ways to combine information from multiple 
passes in order to improve the shape estimate. 

In many cases perceiving an arbitrary shape is not as 
important as the identification of patterns from a given 
library of objects. One example can be instincts which 
have influence on the behavior of animals. It seems 
that they are "wired in" and are not subject to easy 
modifications by learning, and also, do not require a 
complete, fully identified stimulus for triggering. 
Another example is computerized inspection systems 
in manufacturing processes which have the prior 
information on the expected shapes from the design 
stage. The scheme described in this paper is suitable for 
this task since the known points on the edge together 
with their corresponding edge slopes can be used as a 
direct input to the generalized Hough transform 
method proposed by Ballard in Ref. (10). In principle 
this method works as follows: for every shape, in the 
learning stage, an arbitrary point is chosen as an 
origin. A Table containing directions and distances to 
edge points from this origin, together with the 
corresponding edge slopes serve as a representation of 
the shape. This knowledge can be based either on 
external knowledge or on a learning stage using the 
shape approximation from many passes. In the 
recognition stage every edge measurement yields votes 
for possible origin positions and the votes are 
accumulated in a two dimensional array. This process 
is done separately for every assumption, i.e. for every 
different possible shape from the library, and in a 
cumulative way for every edge point. After the process 
is finished the shape with the greatest number of votes 
for some bin is selected. The shape is thus identified 

and so is its placement with no need for the whole 
shape acquisition. This technique may also be adjusted 
to identify an object rotated w.r.t, its representation. 

Some generalizations of this work can readily be 
thought of. For example, the restriction of constant 
speed object translation can easily be removed and 
more general models can be assumed at the expense of 
increased number of measurements and more calcula- 
tions. For example, assume that the movement is 
translation by the velocity: V = ~'0 + VI" t + ~'2 t2 + 
. . . +  ~'N't N. With this assumption the velocity 
determination requires 2N measurements and the 
solution of a linear system of 2N equations. Another 
motion model comprising constant translation added 
to object rotation at a constant rate requires the 
solution of nonlinear equations but is analytically 
tractable. In these cases, approximation of shape from 
multiple passes cannot be done with the method 
proposed above. However, the tasks of finding points 
on the boundary, fitting convex extent polygons and 
shape recognition using Hough transform remain 
feasible. These generalizations, as well as others, like 
dealing with grey level images and with multiple 
objects are currently under investigation. 

Some other works use data similar to the type we use 
but in a different way (see Ref. (11) for an example). In 
these works the intersection of the shape with a set of 
straight lines is checked and statistical properties like 
average length of chord, chord count etc. are computed 
and are shown to have a direct relation with simple 
shape parameters like area and perimeter. No 
statistical analysis was made in our work and the 
measurements were used directly to determine a 
non-parametric shape approximation. 

The main problem that arose when integrating data 
from several passes was the determination of legal 
relative placement of points known to be on the object 
boundary within their own master coordinate system 
(corresponding to information from one pass). This led 
to the interesting and general mathematical problem 
of placing P points so as to have their relative position 
vectors belong to predetermined sets. This problem 
was solved for the particular case of convex polygonal 
regions as constraint sets via linear programming. We 
note however that the general placement problem 
seems to be quite difficult. In fact, if the constraint sets 
Rh[jli] comprise a discrete number of vectors, the 
problem becomes a difficult combinatorial one. (It is at 
least as difficult as NP-complete, as can be shown via 
reduction of a special case to set partitioning. ~6~) 

After determining a legal set of edge point locations, 
the reconstruction of the object shape is not yet 
complete, since also the order of those points along the 
boundary has to be determined. This process is crucial 
to the next stage which will be the approximation of 
the boundary with some curve, taking into account the 
slope information. A solution to the edge point 
ordering problem can be based on the following idea: 
The lines on which the interior segments are placed 
(the backprojection rays), divide the plane into 
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BOUNDARY 
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A BOUNDARY CELL 
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IN THEIR ORDER 
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A BOUNDARY CELL WITH 
TWO EDGE POINTS fit 
NO AMBIGUITY 

Fig. 15. Different types of regions on which ordering of edge points can be based. 

polygonal regions. These regions can be classified into 
three categories. "Interior" regions are ones which are 
bounded only by black segments, "exterior" regions 
are ones which are bounded only by white segments 
and "boundary" regions are the rest (see Fig. 15). The 
object contour curve passes through the boundary 
regions, and in order to cross the border between two 
adjacent "cells" it must pass on a boundary  point. 
When only two edge points are on a boundary  of a cell 
one must follow the other in the sequence of points 
along the boundary, but when there are four or more 
there is an ambiguity in the determination of order. 
However, all the possible orderings of passage can 
readily be listed and analysed. 

Another interesting problem we did not  discuss yet 
is the determination of optimal placement for the local 
velocity detectors. The optimality criterion may be a 
requirement that the maximal spacing between 
detectors in directions perpendicular to the object 
velocity will be minimal over all the possible directions 
of object velocities. 

In conclusion, we presented here a new way for 
acquisition of information on dynamic scenes, dif- 
ferent from the traditional ones. We have shown that 
such a system can analyse motion, find position, and 
recognize a known pattern through a small number  of 
measurements. The system can in principle also learn 
about  new objects, i.e. make approximation for their 
shapes, although the computational burden for doing 
this is quite large. 
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APPENDIX 

IMPLEMENTATION OF LOCAL VELOCITY 
MEASUREMENT 

Optical flow is a general way to describe motion in an 
image. It is a vector field related to the dynamic image, the 
field value at every point being the local velocity vector of the 
same point in the original image. The optical flow can 
sometimes be obtained from a series of successive static 
images, which are time samplings of the dynamic image, using 
methods that are classified into token matching techniques vs 
intensity based ones? 2~ 

The methods of the first class identify feature points in one 
static image, and search for them in the following images 
using some assumptions about the nature of motion. Then the 
relative displacement of points and the time interval between 
frames provide the velocity. This method usually yields the 
best results but is clearly neither local nor computationally 
efficient. 

The alternative methods are based on local processing, 
however, locality implies that it is not possible to determine 
the true velocity vector at each point but only its component 
in the direction of intensity gradient. (This problem is known 
as the aperture problem and is inherent to local processes. 
For example, any edge, when observed locally, is seen as a 
straight one and as such the velocity component tangent to its 
direction is impossible to detect.) We shall call this data the 
"locally measurable" velocity field. It constrains the true local 
velocity to a lin~ in the velocity space. If the optical flow is to 
be determined a further problematic processing must follow 
in which the true velocity field is determined from the locally 
measurable velocities by assumptions on the motion in the 
dynamic imagery. ~81 

Our method is based on the locally observable velocity 
field, therefore we shall briefly mention two ways of 
implementing local velocity detectors. 

Gradient based schemes rely on the equation 

dl/dt = Ix.  V~ + ly.  V~. 

relating the time derivative of the intensity at the point in the 
image, to components of the true velocity (V~, Vy), via the 
intensity gradient in the x, y direction (Ix, ly). Given dl/dt, Ix, 
ly, the above relation becomes an equation of a line in V x V~. 
plane, to which the true velocity is constrained. (Note that in 
order to determine Ix and Iy it is also required to have access 
to a static image). 

Correlation methods are more adequate for our problem 
since the gradient of a binary image is undefined at edges and 
also there is no need for static images. Such detectors 
provided a successful model for processing of visual 
information by insects, as measured with experiments on their 
optomotor reflexes. ~5) A typical one dimensional detector of 
this sort is illustrated in Fig. Ala. In Fig. Ala, p~ and P2 are 
intensity detectors; an image moving in the direction from P2 
to p~ at such a velocity that the signal at pt will be equal to the 
signal from P2 after the delay will provide full correlation 
between the readings of the two detectors and therefore 
maximum output. For example if the input signal is a short 

PI Pz P; Pz 

o b 

Fig. A1. Correlation detector. 

0 b ¢ 

Fig. A2. Local detector for straight edge velocity measure- 
ment. 

pulse and we will integrate the output of the multiplier the 
result will be maximum only at the "correct" particular speed 
and deviations from this speed may be inferred from the 
output. 

This scheme has some drawbacks, like the limited range of 
velocities that can be detected and an inherent ambiguity in 
the determination of the velocity for periodic signals. These 
faults can be cured by using detectors with several different 
time delays instead of one. For our purpose what is important 
to observe is that this detector basically measures the time 
elapsed between the appearance of the signal in P2 and its 
appearance in Pr From now on, we assume that such a 
detector only gives the time between two such events, and we 
shall not be concerned with the particular implementation of 
this function (Fig. Alb). 

It is not difficult to see that two such detectors provide the 
edge crossing information mentioned in the formulation of 
the problem (Section 2), i.e. the component of velocity normal 
to the edge, the slope of the edge and, of course, the time of 
passage (which is trivially just the time one of the intensity 
detectors changes its output). Suppose a straight edge is 
moving with velocity V and direction 0 (Fig. A2a). If the edge 
passes a horizontal detector (Fig. A2b) th/e detector x~ll sense 

a passage time of Th =a.sin(gp)/V'cos~gP--2--O).  Simi- 

lady a vertical detector (Fig. A2c) will sense a passage time of 
/ x 

cos 0 .y  ivi ,n  we 
\ 2  ] 
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can get the slope of the edge - ~, and then we, can find the 

normal component of the velocity V = V. cos~ dP _ 2 _ O ) 

Clearly, we shall not be able to find V and 0 separately, no 
matter how many detectors, in different directions we will 
place on the image (the aperture problem). A double detector 
(one horizontal and one vertical) with dimension mueh 

smaller than the minimal radius of curvature of the object, can 
indeed provide the information we need. Note that an array 
of three intensity detectors P~,P2,P3 with time of passage 
monitoring, arranged on the vertices of a right angled 
triangle, are equivalent to having two such correlation 
detectors. In fact it is true that any triangular array of 
intensity sensors will d o .  (7) 


