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Blind Approximation of Planar Convex Sets 
Michael Lindenbaum and Alfred M. Bruckstein 

Abstract-The process of learning the shape of an unknown 
convex planar object through an adaptive process of simple 
measurements called Line probings, which reveal tangent lines 
to the object, is considered. A systematic probing strategy is 
suggested and an upper bound on the number of probings it 
requires for achieving an approximation with a pre-specified 
precision to the unknown object is derived. A lower bound on the 
number of probings required by any strategy for achieving such 
an approximation is also derived. showing that the gap between 
the number of probings required by our strategy and the number 
of probings required by the optimal strategy is a logarithmic 
factor in the worst case. The proposed approach overcomes 
deficiencies of the classical geometric probing approach which is 
based on the polygonality assumption, and thus is not applicable 
for real robotic tasks. 

1. INTRODUCTION 

N THIS PAPER we consider the process of leaming the I shape of an unknown convex planar object through an 
adaptive process of probing. A probing is done by choosing 
a direction on the plane, and moving a line perpendicular to 
this direction, from infinity until it touches the object. Each 
such line probing reveals a tangent line to the object (see 
Fig. 1). It is clear that, in general, it will not be possible 
to reconstruct the object precisely from a finite sequence of 
such measurements. Thus, it is required to find a systematic 
procedure which guarantees that, after a given number of 
probings, the best possible approximation to the unknown 
object may be generated. 

The problem is suggested as a simplified theoretic model 
for the robotic task of leaming about an object from tac- 
tile sensors. It is related to the class of geometric probing 
problems addressed in the literature, but, as we shall see, 
it is very different from theni. The interest in geometric 
probing problems was initiated by the work of Cole and Yap 
[4] who suggested to formulate the leaming process in an 
algorithmic setting. They assumed the unknown planar object 
to be a convex polygon with unknown number of vertices, 
1;'. The sensing process was modeled as a sequence of simple 
measurements called Finger pi-ohings each done by choosing 
a straight directed line, and moving a point on this line, 
from infinity, until it touches the object. The position of the 
detected boundary point is the data provided by this probing. 
The aim defined by Cole and Yap was to find an adaptive 
strategy for choosing the sequence of probings, that guarantees 
precise reconstruction of the polygon after a minimal number 

Manuscript received July 22, 1991: revised July 13. 1992. This research 
was supported in  part by a grant from the Israeli Ministry of Science and 
Technology. 

The authors are with the Computer Science Department. Technion-Israel 
Institute o f  Technology. Haifa 32000, Ihrael. 

IEEE Log Number 9400772. 

'S 
Fig. I .  Line probing. 

of probings. Cole and Yap suggested a strategy which, under 
certain assumptions, guarantees the reconstruction after no 
more than 3V probings. They also derived a lower bound of 
3V on the number of measurements required by any strategy 
for a guaranteed reconstruction, thus proving the optimality o f  
their strategy. 

Cole and Yap have coined the term gmmetric probing 
for any measurement that gives simple geometric data, and 
initiated an active field of research on algorithmic approaches 
to robotic sensing problems. Other problems that have been 
investigated include the use of different types of probings 
[ 5 ] ,  [ 7 ] ,  [9], [13], [ 2 2 ] ,  probing with uncertainty [ 5 ] ,  [191, 
extensions to higher dimensions [SI, using composite probes 
[ 131-1 151, and reconstructing nonconvex polyhedra [I]. Most 
of the above mentioned works addressed the same type of  
problem: the unknown object is a priori known to belong to a 
restricted class, such as polygons or polyhedra, a certain type 
of geometric probe is defined, and a reconstruction strategy 
is suggested and rigorously analyzed. The performance of the 
probing strategy is measured by the number of probings which 
guarantees exact reconstruction. This number is a function of 
the object complexity ( V ) ,  and is usually compared with a 
proven lower bound on the number of probings required by 
any strategy. 

In particular, it is worth mentioning the work of Li [13], 
who considered the reconstruction of convex polygon using 
line probings identical to the ones we inveztigate here. I,i 
improved earlier results [ 5 ] ,  [9] and suggested a probing 
strategy which guarantees complete reconstruction after no 
more than 3V + 1 probings. He also derived a lower bound 
of 3V + I on the number of measurements required by any 
strategy for a guaranteed reconstruction, thereby proving the 
optimality of his strategy. 
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Although the geometric probing approach discussed above 
provides a rigorous computational method for treating learning 
problems in robotics, it seems to miss an important point: the 
world is not polygonal, and basing the approach on its polyg- 
onality yields methods that are not applicable for real robotic 
tasks. For example, if the object is smooth in some small part 
of the boundary, then using the optimal strategies with line 
or finger probing will cause the information gathering process 
to concentrate on trying to get better locally while possibly 
failing to provide even approximate information on the rest 
of the boundary. This deficiency results from the insistence 
on perfect reconstruction. Such a demand does not have an 
engineering basis and obviously causes the reconstruction to 
be unnecessarily costly. Even if the object is a polygon with I/ 
vertices, reconstructing it exactly using line or finger probing 
requires about 3V measurements, which may be considered 
too high, particularly if V is large, and often an approximate 
reconstruction would suffice. 

The approach discussed in this paper overcomes these 
deficiencies by considering the accuracy of the desired re- 
construction as a parameter and by not restricting the objects 
considered to be polygonal. The exact reconstruction problem 
is modified into an approximation problem while maintaining 
the classical structure of geometric probing. An adaptive 
strategy for approximate reconstruction is sought for, and its 
figure of merit is defined as the number of probings it requires, 
in the worst case, in order to achieve a certain “certified 
approximate reconstruction.” An upper bound on this figure 
of merit is proved in a rigorous way, and compared to a lower 
bound on the number of probings required by any strategy for 
achieving an approximation with the same precision. 

The goal is to obtain enough information that would let us 
infer the shape of another object whose Hausdorff distance 
from the unknown one does not exceed a certain prespecified 
value. The Hausdorff distance was chosen since it seems to 
convey the intuitive notion of distance between two objects, 
and is also the most severe measure. 

The two approaches to the reconstruction problem are 
analogous to the quantification of information, as done in 
information theory [17]. There, if the source of signals is 
discrete, the uncertainty in any signal can be measured by 
the Entropy function, and every signal can be stored (or 
transmitted) by a finite number of bits which may approach the 
entropy as close as we wish. On the other hand, if the source is 
a continuous one, then its Entropy is infinite, and every signal 
can be stored with a finite number of bits only when certain 
distortion is allowed, according to the Rate distortion theory 
[17] or the €-entropy theory [24]. Analogously, in geometric 
probing problems, an object with a finite number of vertices 
(polygon), can be reconstructed precisely using a finite number 
of probings, while any non-polygonal object can be only 
reconstructed approximately with a finite number of probings. 
(One should not take this analogy to far. Note that the class 
of convex polygons is not discrete but a continuous one, and 
that the decrease in uncertainty caused by each probing is 
generally more than one bit.) 

This probing problem may be looked upon as an approxi- 
mation problem. Usually, one considers the situations where 

a given object (or function) is given, and another object 
(function) which approximates it, according to some metric, 
is sought for. If only partial information is known about the 
object, and an approximating object is desired then the distance 
between the object and any suggested approximation cannot be 
evaluated directly but rather inferred from the partial data and 
the assumptions on the object. This is similar to the situation 
where one looks for approximation to a function given only a 
discrete set of samples [20]. In fact, this is exactly the problem 
we have here as the probing results may be considered to be 
samples of the support function [6]. The question discussed 
in this paper is even more complicated as the partial data 
is collected dynamically and actively, and the strategy for 
collecting the data is to be considered too. This task may be 
called blind approximation as the approximation is inferred 
and evaluated without seeing (knowing) the object, and using 
only the partial data obtained through a sequence of probings. 

The paper is organized as follows. We first look briefly on 
the problem of approximating convex shapes with polygons, a 
question which has attracted much attention in the mathemat- 
ical literature. Before trying to suggest a blind approximation 
strategy, we start by showing a necessary and sufficient 
condition for being able to specify an approximation with a 
certain accuracy from probing results. Then, a lower bound on 
the number of probings required to specify the approximation 
is derived. In the next section a strategy is suggested and an 
upper bound on the number of probings it requires for proving 
a certain approximation follows. Finally, we discuss some 
open problems connected with this new direction in geometric 
probing and approximating theory. 

11. APPROXIMATING CONVEX SETS WITH POLYGONS 

The problem of approximating convex sets by polygons 
has attracted the interest of mathematicians for a long time. 
The problem may be approached using different metrics and 
different constraints on the approximating polygons. In this 
paper we restrict ourselves to the Hausdorff metric which 
defines the distance between two planar sets S and I ) ,  by 

where I . I is the Euclidean norm in R2. This distance is the 
largest Euclidean distance between a point in one set and the 
closest point on the other. 

Let P,’ be the set of all convex polygons which contains 
polygons S whose number of vertices does not exceed n. The 
distance between a convex set S and P,‘, depends on the metric 
h and is defined by 

b(S, P i )  = irif 6(S ,  Q). 
Q t p:, 

For the Hausdorff metric 5 H ,  the following bound was derived 
by Popov [lo] 

tan( :) 
271 

P ( S ,  P;) 5 L- for 71 = 3!4, ( 3 )  

where L is the perimeter of S. Other researchers have shown 
properties of the best approximating polygons [12], [26] and 
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Fig. 2. Building external polygon to S. in distance E .  

have investigated the asymptotic properties of the approxima- 
tion [8]. [18]. 

In this paper we have chosen to use a less quoted result [3] 
which provides a simple constructive method for building an 
approximating external polygon to a convex set S, such that 
the following relation is guaranteed 

(4) 

where E is the approximation error. 
To make the paper self-contained, the rest of this section 

is dedicated to presenting the proof of this result. It is based 
on the derivation of Bolour and Cover in their paper on the 
€-entropy of the set of convex shapes included in the unit 
square [3]. 

The approximating polygon P is constructed as follows. 
Choose its first vertex 5 0  as any point, external to S whose 
distance from its boundary is E .  Through this point, pass a 
tangent to S and extend it to the point 5 1  whose distance 
from the boundary of S is also E. Let 5 1  be the successive 
vertex. Repeat this process, each step obtaining a new vertex 
:xi and a new side :ri..lxi, as long as the curve :r:o: . . . ,:xi does 
not cut itself. To complete the approximating polygon, connect 
the last vertex x, and 50 by a line segment and let i t  be the 
last side (see Fig. 2) .  It is clear that the polygon 50,. . . 
is external and convex, and that its Hausdorff distance from S 
is exactly E .  The following result is due to Bolour and Cover. 

Theorem 1 [3]:  Every convex set S with perimeter L can 
be approximated by an external convex polygon, built by 
the method described above, whose number of vertices, 71, is 
bounded by 

Proofl The approximating polygon 20, . . . , .cTn, built by 
the above described method has ri = wi + 1 vertices. Consider 
the tangency point of the ith ( z  = 1 , 2 . .  . . , m) side of the 
polygon and the angles defined by this side, as shown in 
Fig. 3. It is clear that 

Fig. 3. One side of the external polygon. 

Another relation 
m 

follows since all the angles a , ~ ,   CY,^ are part of the external 
angles of the same convex polygon. Finally, the relation 

2(lz1 + 1,2) L L + 2TE (8) 

holds since the approximating polygon is trivially included in 
the set S @ 0, whose perimeter is L + 2 m  (where 0, is a 
circle of radius E and @ denotes direct sum operation) [251. 
From these relations and from the convexity (cup) of the 1/  sill 
function, it follows that 

1 = l  

(9) 

and thus 

and the theorem follows. 
Asymptotically, this result coincides with the result derived 

by Popov [lo] and by McClure and Wale  [18]. It will be 
used later in this paper. 

111. A FORMAL DEFINITION OF THE 
APPROXIMATE RECONSTRUCTION PROBLEM 

Let S be an unknown planar convex set on which data 
may be obtained only as a result of the following discrete 
measurement process. Before each measurement, a direction 
(denoted by the unit vector B,) may be arbitrarily specified. 
The result of the the measurement is a positive number 
satisfying the following relations. 

- 
3% E S S.t. 
vx E s 

B, . Z - p, = 0 
B, . x - p, 5 0. 

(12) 
(13) 

The clear geometrical interpretation is that each measurement 
is done by choosing a direction on the plane, and moving a line 
perpendicular to this direction, from infinity until it touches 
the object at distance p, from the origin. Thus, each such 
measurement, denoted line probing, which may be described 

1,1 L A, l z 2  2 A. (6) 
SlIl (Y,1 sin ( ~ ~ 2  
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by the pair ( B 3 , p 3 )  reveals a tangent line to the object (see 
Fig. 1). After some measurements are done, inference about 
the object shape may be carried. In particular, we are interested 
in the case that the data gathered by the measurements enable 
one to specify a set S' whose Hausdorff distance from the 
unknown set is guaranteed to be E or less. Such a set S' is 
called a certified approximation and is denoted CA,. If the 
certified approximation CA, is a polygon, then it is denoted 
CAP,. 

Define a probing strategy to be a rule for choosing the 
direction B,, that may depend adaptively on all previous 
probing results. A strategy is considered to be a better one if 
it requires, in the worst case, a smaller number of probings for 
achieving a certified approximation with a certain precision. 

First, let us make clear how one can infer a certified ap- 
proximation from the results of the probing process described 
above. The following notation will be very useful throughout 
the paper. 

Given a sequence of J measurements (B7,pt) ,  L = 
1 , 2 , .  . . . j ,  the set R 3 ,  which reveals nearly all the data 
obtained in the probing process may be defined 

Note that the unknown object S is included in Rj, and that the 
set Rj is included in Rj-1 and gets smaller with increasing 
number of measurements. It would be convenient if the set Rj 
describes all the first j measurements. However, if the object 
has corners, then it is possible that three of the tangent lines 
obtained by the probings, intersect in the same point, and thus 
one of them is not a side of Rj, and is not revealed when only 
the set Rj is known. This situation would make the description 
on the probing results and the derivation of the results in this 
paper much more cumbersome. 

To care for this inconvenience, we shall make a little 
deviation from the previous formal definition of the probing 
process and assume, only for notation purposes, that the object 
probed is not S but another object S,, identical to S except 
that all its comers are rounded to small infinite curvature 
arcs. Now, the set Rj describes all the results of the first j 
measurements, since each measurement yields a tangent line 
which corresponds to one of its sides. The difference between 
S and S,  is a collection of comers and their infinitesimal 
neiborhood, and any approximation to the set S,, is also close 
to these comers, and approximates S. Therefore the difference 
between S and S, is ignored. 

In the following lines we will provide a necessary and suffi- 
cient condition on the ability to infer a certified approximation 
CA, from the set Rj. We shall need the following definitions. 

Definition: Let P be a convex polygon with M vertices 
u1, . . . ~ 'U,, . Define h:, the generalized height of the vertex 'ut ,  
as the distance between u; and the closest point on the line 
segment 7ri-1ui+l. 

Definition: Let P be a convex polygon with M vertices 
w1, . . . ~ uv,. Define h:, the height of the vertex vi. as the 
distance between 'U; and the infinite line z1;-1u;+1. 

Note: Clearly, the generalized height of a vertex is never 
smaller than its height. 

Fig. 4. A convex polygon P and its central polygon P'.  

Defrnition: Let P be a convex polygon with M vertices 
u1, . . . , U,. We shall say that the (generalized) height of the 
polygon is h if hi 5 h ( hf 5 h) for all i. 

Definition: Let P be a convex polygon with M vertices 
211, . . . , i im.  Define its central polygon P', as the (convex) 
polygon whose vertices WE, . . . , w& are the centers of the sides 
of P.  See Fig. 4, in which a polygon P and its central polygon 
P' are described. 

Note that if the true set Rj includes a vertex in which three 
tangent lines intersect, then, by our assumptions, we treat this 
vertex as two infinitesimally close vertices whose heights (and 
generalized heights) are also infinitesimally small. 

Using these notations, the following condition can be 
proved. 

Theorem 2: Let Rj be a polygon created as the result of the 
probing process after j probings. Then Rj being of generalized 
height 2~ is a necessary and sufficient condition to inferring a 
certified approximation CA, to the unknown object S. If the 
condition holds, then the Hausdorff distance of R5, the central 
polygon of Rj, from the unknown object S does not exceed 
E ,  i.e., Ri is a CAPi. 

Proof: The proof is simple and geometric in nature. First, 
we prove the sufficiency of the condition. Clearly, if the 
generalized height of R3 is 2 ~ ,  then its height is not higher. 
Denote by tl, . . . , t j  the points in which S is tangent to the 
sides of Rj. (The point t i  is chosen arbitrarily as one of the 
points of S which are included in the side u i i j i + l  of Rj,  see 
Fig. 5.) Clearly, the distance of every point that lies inside 
one of the triangles wi-1zljui+l from the boundary of R; is 
E or less. Every point of the boundary of S lies inside Rj 
(or on its boundary) but outside the polygon t l ,  t z ,  . . . , t j  (or 
on its boundary), thus it must lie inside one of the triangles 
V ; - ~ V ~ V ~ + ~ .  It follows that for every point on the boundary of 
S, there is at least one point on the boundary of R," whose 
distance is E or less. 

(15) 

Consider now an arbitrary point on the side V : - ~ V ;  of R,". We 
shall show that there is a point in S, whose distance is less 
than E .  Define a rectangle abcd with side parallel to V F - ~ V ~ ,  
as shown in Fig. 5. The point considered may be included in 
one of the segments utPle, e f, and fv,' specified on V ~ - ~ U F  
by the lines w;uiP2 and uiiii+p. If the point lies inside the 
segment fo:, consider two cases. In the first one, where the 
tangency point ti lies in wfui+l, the segment t ,-lt ,  intersects 

sup inf Iz - yI < E. 
ZtSYER; 



LINDENBAUM AND BRUCKSTEIN: BLIND APPROXIMATION OF PLANAR CONVEX SETS 52 I 

Fig. 5 .  A part of the boundaries of S. R, and R5 

with the segment bc, and thus every point inside f t (  has a 
point in t,-& between itself and its nearest point on ab, or 
on cd ,  i.e., there is point on S whose distance is E or less. 
In the second case, the tangency point lies in v,u:. Then, for 
each point in f U:,  there is a point either in t,-lt, or in t,t,+l 
between itself and its nearest point on one of the lines ab or 
cd. It follows that there is a point on S whose distance is E 

or smaller. (This is the case described in Fig. 5.) Points that 
lie inside the segments vlp1e or e f  are considered by similar 
argumentation, and thus 

From the two inequalities proved, it follows that 

SH(S ,  R'j) 5 E (17) 

and thus, if the generalized height of RJ is 2~ or less, then it 
is a sufficient condition for RJ' being a CAP,. 

The necessity of the condition is derived by assuming 
that there is a certified approximation and showing that the 
generalized height of the RJ cannot be too high. Suppose 
h5 > 2~ and consider a circle of radius E around the vertex vi. 
If the approximating set S' does not have a point inside this 
circle, then its distance from vi is greater than E. The unknown 
object S may include the point vi and thus S' is not a CA, 
of S. If the approximating set S' has a point inside the circle, 
then the distance of this point from the segment v;-1w;+1 is 
greater than E .  Since the segment w;-lvi may be a part of the 
boundary of the unknown object S, it follows that S' is not 
a CAE of S. 

The theorem just proved provides us with a stopping rule, 
and a direct method for finding the required certified approx- 
imation from the given probing results. The notion of the 
generalized height is essential for providing the general suffi- 
cient condition for the existence of a certified approximation 
after arbitrary probing process. The angles at the vertices of 
Rj created by the strategy proposed in this paper, are never 
smaller than $, implying that the generalized height and the 
(simple) height are identical. Therefore, our stopping rule will 
examine the height of R,. Before a strategy is proposed, let us 
first investigate the performance achievable from any strategy 
by deriving a lower bound of the number of probings required 
for achieving a certified approximation. 

Iv. A LOWER BOUND ON THE NUMBER OF 
PROBINGS REQUIRED FOR ACHIEVING A 

CERTIFIED APPROXIMATION WITH PRECISION E 

Consider the following problem. A convex set S is given 
and a polygon P with the following properties is sought for. 
P should include S with every side of it being tangent to 
the boundary of S, its generalized height (as defined before) 
must not exceed the number 2~ and its number of vertices 
should be minimal. Such a polygon, from which the certified 
approximation to S (P") may be clearly inferred, could be 
thought as a result of an optimal probing strategy which gets 
correct information about S and needs only to produce a 
certified approximation. The number of sides of this polygon 
is a lower bound on the number of probings required to find a 
certified approximation using the best possible strategy, as the 
additional information about the shape of S, cannot deteriorate 
the performance of the probing strategy. 

Since we are looking for an optimal strategy with respect to 
the worst case, it follows that in order to show a limitation of 
any strategy, it suffices to treat a single case. Thus, we develop 
the lower bound on the number of sides of P for the case that 
S is a circle with radius R. 

Let m be a smallest number for which a regular polygon 
P,, with rn sides tangent to the circle, has a height of 2~ or 
less. The corresponding regular polygon P,-1 with m - 1 
sides has a height greater than 2~ and so is any other polygon 
with m - 1 sides whose sides are tangent to the circle. Note 
that for regular polygons, the height and the generalized height 
are the same. Consider a part of the Pm polygon described in 
Fig. 6. Simple trigonometry yields that 

h = 2R sin 0 tan 0 (18) 

and if the relations 

271 
h 5 2 ~ 0 = -  

2 m  

and 

are used then we get the following lower bound on the number 
of sides, m 

As argued before, the bound LB holds also for the number 
of probings required to find a certified approximation with a 
given precision E using any possible strategy. 

For small values of E / L  we may get the following tighter 
asymptotic bound inserting 0 as the limit of sin 0 and tan 8. 

These results will be used as reference to the performance of 
the strategy developed in the next section. 
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Fig. 6. A part of a regular polygon that circumscribes a circle. 

V. THE PROBING STRATEGY 

The proposed probing strategy is based on the following 
principles: The probing is done in stages such that, at each 
stage a unique probing is done for every vertex of R, 
created in the previous stage, whose height exceeds 2 ~ .  This 
probing deletes the corresponding vertex of Rj and creates 
two adjacent vertices instead of it. First, all the directions are 
sampled uniformly and coarsely, but after the height of some 
vertices becomes smaller than the threshold 2 ~ .  no further 
probing is done on them and all probing effort is concentrated 
in the places where the uncertainty is still higher than allowed. 
This hierarchical and adaptive nature allows the strategy to 
use much less probings than a strategy based on a uniform 
sampling method. 

In the rest of this section the strategy will be presented 
formally, and then in the following sections its performance 
will be evaluated. 

We shall use the following notations: Every probing is 
associated with a direction vector Bj or a tangent angle 0,. 
Probings with identical directions reveal the same information, 
and thus it is assumed that they are not done. It follows that a 
unique vertex 'cij of Rj-1 may be associated to the j th  probing. 
The height h, is defined as the height of 7 i j .  The set SI, is a 
uniform sampling of the [ 0 , 2 ~ ]  range, which gets finer with 
increasing parameter k 

The set Tk is defined by 

i=l 

Both are useful in defining the probing strategy. 

The Probing Strategy 
probe until the height of all vertices of Rj is 2~ or less. 
start from k = 1 and increase k in each stage 

stage k 
probe sequentially in all angles satisfying 

a. t), E Tk 
b. h,. > 2~ 

Fig. 7. A star diagram describing the probing process. 

Note that each stage usually consists of more than one 
probing. The set RJ and the value of h, : i = 1,2,. . . . j are 
determined after each probing (and not only after each stage). 
The strategy depends on the parameter 2~ and the probing 
process terminates only after the height of the polygon R, is 
2~ or less. 

Some insight can be gained by building a star diagram to 
represent the probing strategy. In this diagram, described in 
Fig. 7, every probing is represented by a ray whose direction 
is perpendicular to the corresponding side of R,. Each sector 
in the diagram corresponds to a unique vertex of R,. Some 
simple characteristics of the probing results can be inferred 
from this diagram. Since the set Tk contains one angle between 
any two adjacent angles in UFzfTZr it follows that, in the 
kth stage, there is a potential for making at least one probing 
in each of the sectors created by the probings done in the 
previous stages. Each of these probings is done if the height 
of the corresponding vertex is higher than the threshold 2 ~ .  
However, as the height of the vertex cannot increase due to 
probings done on adjacent vertices, it follows that if in some 
stage k ,  no probing is done in a certain sector, then no probing 
will be done in this sector in all subsequent stages. It further 
follows that any probing done in the lcth stage is done inside 
a sector created in the ( k  - 1)-stage, it is the only probing 
done in this sector and it divides the sector into two equal 
271. . 2-k parts. In other words, each new side added to R, by 
a probing done in the kth stage makes a 271. . 2Tk angle with 
its adjacent sides. 

Note that the angles at the vertices of RJ created by the 
proposed strategy, are never smaller than $, implying that the 
generalized height and the (simple) height are identical. 

VI. AN UPPER BOUND ON THE NUMBER OF 
PROBINGS REQUIRED TO FIND A CERTIFIED 
APPROXIMATION TO A CONVEX POLYGON 

In this section we make an initial step in evaluating the 
proposed probing strategy, and derive an upper bound on 
the number of probings required for achieving a certified 
approximation with precision E (CA,) to a convex polygon. 
The main reason for investigating this question is that it would 
serve as a preliminary step towards finding such a bound for 
general convex obiects. One mav also comuare the results 
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- rz 

=-, r, 

Fig. 8. 
and the type? of the vertices. 

A star diagram describing the probing process. the unknown object 

predicted by this bound to the results of the optimal probing 
strategy for polygons, already derived by Li, which guarantees 
exact reconstruction after no more than 3V+1 probings, where 
V denotes the number of vertices of the unknown polygon 
[ 131. Even if it may be assumed that the object is polygonal, 
a faster approximate reconstruction may be advantageous to 
the slower exact reconstruction suggested by the traditional 
method. 

The star diagram, introduced in the previous section, is used 
for describing and characterizing the probing process. The 
sides of the unknown polygon are represented by a new set of 
V rays, perpendicular to them. In contrast to the rays defined 
before, which correspond to the probings and are denoted by 
T ;  (Fig. 8), the new rays are denoted by T:.  

In the next lines we adopt the following terminology. The 
word sector- is used only for sectors between rays corre- 
sponding to probings. and the word ray is used only for rays 
corresponding to sides of the unknown object. 

It will be useful to divide the vertices of R j  and their 
corresponding sectors into three classes: 

(i) Vertices that are also vertices of the unknown set S. 
Such vertices are created from two probings which meet 
the same vertex of S and correspond to sectors which 
do not contain any rays (e.g.. the sector 7.11’2 in Fig. 8). 

(ii) Vertices created from two probings which meet adjacent 
vertices of S, and correspond to sectors which contain 
exactly one ray (e.g., the sector ~ 2 7 - 3  in Fig. 8). 

(iii) The rest of R.,’s vertices, each created from two 
probings which meet different vertices of S which 
are not adjacent. These vertices correspond to sectors 
which contain more than one ray each (e.g., the sector 
‘r’4~r5 in Fig. 8). 

Note that R,, cannot have more than V vertices which are 
type (ii) or type (ii i) .  The classification to classes is done only 
for the analysis, and there is. generally, no way to distinguish 
between vertices of different classes when only the set Rj is 
given. The following derivation of a bound on the number 
of probings required to find a certified approximation to a 
polygon is based on this classification. 

Theorem 3: Let S be a convex polygon with V vertices and 
perimeter L. Assume V I %. Then, probing according to 
the proposed strategy guarantees that after j =r V log, (F) 

probings, the height of Rj cannot exceed 2.5 and that RS is a 
certified approximation to S .  

Proof: Each probing bisects a certain sector of the star di- 
agram and corresponds to a certain vertex of Rj. The notation 
the probing is done on a vertex denotes this correspondence. 
The probings are counted according to the classification of the 
corresponding vertices described above. First only probings 
which are done on type (i) vertices are considered. Let t~ be 
a type (i) vertex of Rj. Such a vertex corresponds to a vertex 
of S, and if its height is greater than 2.5 then it is probed. 
After the probing, the vertex ZI is deleted and two vertices ‘ U (  

and 712 which are both type (i) and correspond to the same 
vertex of S, replace it. (This is the probing result according to 
the assumption made, that all vertices of S are substituted by 
small infinitesimal circular arcs. This assumption simplifies 
the derivation since it allows Rj to be a full representation 
of the first j probings.) No further probing will be done on 
these new vertices, as their heights are infinitesimally small 
(and certainly lower than 2 ~ ) .  Thus, for each vertex of the set 
S.  at most one probing is done on the corresponding type (i) 
vertices, and no more than V probings are done on type (i) 
vertices. 

Consider now a probing done on a type (ii) vertex. The 
corresponding sector contains exactly one ray, and a probing 
done exactly in this direction yields a tangent line which 
coincides with a side of S, deletes the type (ii) vertex and 
replaces it by two type (i) vertices. Probing in any other 
direction in the sector yields a tangent line which passes 
through a vertex of S, deletes the old type (ii) vertex and 
replaces it by one type (i) vertex and one type (ii) vertex. 
The corresponding sector is halved into two equal sectors of 
27r . 2 T k  angle, where IC is the stage in which the probing is 
done. Let l i  be the length of the chord ‘/1;-1?1<+1 in Rj S (see 
Fig. 9(a)). The angle between the two tangent lines forming 
the new type (ii) vertex is 27r.2-‘, implying that the maximal 
height of the new vertex v; is achieved if v-171i = ~ ~ ~ ; ~ J ~ + ~ .  

and is bounded by 

( k  2 2). As at most one probing is done in each stage on the 
type (ii) vertex which corresponds to this side, it follows that 
h, I 2~ after no more than n,  probings done on this vertex, 
where 

(26) 

(The type (ii) vertex that corresponds to a certain side of S ,  
changes its location, of course, after each probing aimed at it. 
but it does not split into two vertices and thus we still refer 
it to as the same vertex.) 

Consider now a probing done on a type (iii) vertex. One 
possible result may be that the vertex is replaced by a type ( i )  
vertex and by another type (iii) vertex. If all the results are of 
this kind then it is guaranteed that the height of the vertex is 
2~ or less after 11, probings, where 

(27) 
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‘ S  
?J 

Fig. 9. Probing a type (ii) vertex and a type (iii) vertex. 

(d, is the length of the chord iiZ-1u,+1 in R, S .  See Fig. 9b). It 
might be, however, that the probing result is that the type (iii) 
vertex is deleted and two type (ii) or type (iii) vertices replace 
it. If the height of both vertices is 2~ or less, then the above 
argument and the above bound (27) hold. If the height of at 
least one of these vertices is higher than 2 ~ ,  then the probings 
done on the original type (iii) vertex, are counted as done on 
this new vertex. If the probing is terminated when a type (ii) 
vertex is probed and two vertices with heights 2~ or smaller are 
created, then applying this argument recursively implies that 
the number of probings done on this vertex (together with the 
probings done on its ancestors) cannot exceed the bound (26),  
where 1, is the length of the corresponding side. Similarly, if 
the probing is terminated when a type (iii) is probed, then the 
bound (27) holds, where d, is the length of the corresponding 
chord. 

The number of probings required to reduce the height of 
all vertices to 2~ or less may be bounded by summing all 
contributions 

The probings are divided into the three sums. The first sum 
includes all the probings done on type (i) vertices. Every term 
of the second sum includes one probing done on a type (ii) 
vertex which results in two vertices with height 2~ or less, 
and all the probings which lead to this probing, which may be 
type (ii) or type (iii). Every term in the third sum includes one 

probing done on a type (iii) vertex which result in two vertices 
with height 2~ or less, and all the probings which lead to this 
probing, which are also type (iii). It is possible that this bound 
may be tightened as many probings are counted twice. 

Suppose that V’ probings were done on type (i) vertices 
and V” probings were done on type (ii) and type (iii) ver- 
tices. (V’, V” 5 V). Each of these chords corresponds to a 
certain vertex vi of Rj, and a certain height, smaller than 2 ~ ,  
associated with it. 

A subtle point to observe is that, the number of probings 
required to reduce the height ti, below 2 ~ ,  as given by (26)  
corresponds to a chord length Zi at that stage, which may be 
larger than the corresponding chord I * ;  in the final K;, from 
which the certified approximation is infered. It is simple to 
show however, that the original chord length 1.i cannot be more 
than twice as large as the final chord length 1 7 .  

Note now that the chords of the final R; may be grouped 
into two subsets of alternating chords, which form two convex 
polygons (with possibly one missing side). These convex 
polygons are included in R4, the perimeter of which is 
bounded by 2L. Therefore, 

By using this relation and the convexity (cap) of the logarith- 
mic function, it follows that by using the proposed strategy, 
no more than n probings are required to lower the height of 
every vertex in RI to 2~ or less, and 

(The function V”log, (s) is increasing in V” for the 
specified range and thus the last inequality is justified.) 

Hence, after no more than Vlog, (%) probings, R5 is a 
CAP,. 

The derivation of the bound on the number of probings, 
done in the above theorem, depends on V’, V”, and E ,  with 
no interdependence between them. Hence, a polygon with 
many vertices may require a lot of probings for achieving the 
certified approximation. This is not the case, however, and the 
bound may be tightened by arguing that the number of vertices 
and sides found by the strategy (i.e., V’ and V”) cannot be 
arbitrarily big and independent of the relation between E and 
L. Our main objective in deriving the above bound is not to 
predict the performance of the probing strategy on polygonal 
objects but rather to use it for developing a bound for the 
general convex object, hence we shall not elaborate on this 
subject. 

VII. PROBING WITH A POSITIVE ERROR 

In this section we perform a further step towards deriving 
the bound in the general case. A special kind of a line prob- 
ing, denoted consistent positive error line probing is defined. 
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Fig. 10. Probing with positive error. 

Probing with such probes according to the proposed probing 
strategy results in a polygon R,, and the height of this set can 
be predicted in a way similar to the one used for usual line 
probing in the last section. In the next section, it is shown how 
to use this result to derive the general bound. 

Recall that a usual line probing is specified by a direction 
Bj  and its result is a positive number p! defining a line 

(31) 

ui -2 
(h) L 3 . - -- ( 2  I B .  . J.  - = O}. 

For the same direction B,, the positive error line probing 

(32) 

gives the result p t  satisfying 

0 5 py - (17 5 d. 

Intuitively, the pair (I?, , p f )  defines a line probing which pen- 
etrates into the object up to a maximal depth (1 (see (Fig. 10). 
A consistent positive error line probing also guarantees that 
all probings create a consistent set of probings, i.e., there is 
a convex object which satisfies the relations (12) and (13) 
for all probings. It is not difficult to see that a sufficient and 
necessary condition for consistency is 

RS is defined similarly to RI and the superscript d denotes that 
it results from line probings with positive error. We leave the 
immediate question, how can one guarantee the consistency, 
without an answer. 'The objective for defining this kind of 
probing is not to serve as a model for some real measurement 
process but rather to be used as a mathematical tool in a 
situation where the consistency will be self evident. A bound 
on the number of probings required to lower the height of R; 
to 2~ or less is derived in the following lines. 

Lemma 1: Let S be a convex polygon with I/ vertices and 
perimeter L. Assume V 5 y. Then, probing according to 
the proposed strategy with consistent positive error line probes 
associated with error d = E guarantees that after no more than 
j = Vlog2 (9) probings, the height of Rf  is 2~ or less. 

Proof: As done in the previous proof, the probings are 
classified and counted according to the classification of their 
corresponding vertices to type ( i ) ,  (ii) and (iii). Consider the 
probing done on a type (i) vertex of R:. The probing deletes 
the vertex and replaces it with two new vertices. The height 
h; of such a new vertex v i  increases with the distance of 
the adjacent old vertex 7 / , + 1 >  and is maximal when v;+1 is in 
infinity (see Fig. ll(a)). Then 

(d) 

Fig. 1 1. 
(see the proof of the lemma). 

Various situations of probing a polygon with the positive error prohe 

where the angle 81 is 27i. 2-k, ha takes the worst case value 
when the segment ua-luz is maximal, or when the tangent line 
u-1'u7 penetrates to the maximal depth d. In this case 

h Z  nliLX = 2d . cot 81 . sin 81 = 2d cos B1 < 2d .  (35) 

For exact probing (d  = O), it is guaranteed that the 
height of vertices created when a type (i) vertex is probed is 
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infinitesimally close to zero, while for positive error probing, 
we have been able to show only that the height of these vertices 
is upper bounded: h, < 2d. However, if we choose E = d, this 
is enough to guarantee that for each vertex of the set S ,  at most 
one probing is done on the corresponding type (i) vertices, and 
no more than V probings are done on all the type (i) vertices. 

Consider now a probing done on a type (ii) vertex of R,. 
The probing deletes the vertex and replaces it with two new 
vertices: one of type (i) and the other of type (ii). Consider 
first the resulting type (i) vertex and assume that it corresponds 
to the vertex vs of S (see Fig. 1 Ib). If R, already includes a 
vertex ( ~ ~ - 1 )  which corresponds to the vertex v, of S, then 
the height of the new type (i) vertex cannot be more than 2d, 
and if E = d, no further probings are done on it. This result 
is proved as follows. Denote by U the projection of the new 
vertex u, on a line parallel to the probe and passing through 
the old vertex vl-l.  The length uta is an upper bound to the 
maximal height of the vertex vz, achieved only when the vertex 
v,+1 is at infinite distance (see Fig. ll(b)), hence 

Note that Fig. 1 I(b) describes the worst case situation ( ~ - 1 w i  

maximal) where two probings result in tangent lines v,-111, 

and vivs passing through ti,, and one probing results in the 
tangent line wiPlvi, which penetrates to the maximal depth d. 
The last inequality follows since the angle 81 is created in the 
same stage k as the angle 82  or earlier, and thus it cannot be 
smaller. (Recall that an angle of Rj created at the kth stage 
has always a value of 27r . a-'.) 

Consider now the new type (ii) vertex resulted from the 
probing. This vertex denoted v i  in Fig. ll(c), is created in 
the intersection between the tangent lines zli-lvi and 71 tUi+l .  

where ui-1i1;  denotes the tangent line revealed by the current 
probing, and ui*ui+l is a previous one (see Fig. 1 l(c)). For 
the worst case analysis, the results of the probing are chosen 
such that the vertices u - 1 ,  vi, and v;+1 are in a position 
that brings the height to a maximum. Choosing the probings' 
results is done for each vertex separately, and is not based 
on the dependencies between them, and thus achieve a value 
which is worse (bigger) than the real worst case value. Suppose 
the vertex vi is in some fixed place, and then choose the 
results of the probing to maximize the distance between ui 

and the line wi-l?ii+l This will be the case if the tangent 
lines vu,-p2~;-l  and v;+1v;+2 are revealed by probings which 
make no error, and the tangent lines iii-1vi and v i v i + ~  are 
revealed by probings which penetrate to the maximal depth. 
Suppose now that the line v-1*0,+1 is in some fixed place 
and then choose the results of the probing to maximize the 
distance between and the vertex v i .  This will be the 
case if the tangent lines 'ui-17Ii  and v;v;+1 are revealed by 
probings which make no error. For a given angle between the 
lines ~ ~ - 1 7 ~ ;  and 'uizi;+1, the maximal height is obtained when 
~ i i - 1 ~ ~  = vivi+l (see Fig. 1 l(d)) where :E, U, and 'U are the 
vertices obtained from exact probing, and :E, U', and 41' are the 
vertices in the worst case discussed above). In the worst case 
the height h,; is the sum of the height we would get by exact 

probing height hn, error = xz and the length 'UIZ caused by 
the probing error. 

(37) 

(see Fig. ll(d)). 81 is the angle of the new sector created by 
the probing and is equal to the new extemal angle of Rj, 
implying that it cannot be bigger than 82 which is a similarly 
created in a previous probing. Therefore, hworst achieves 
a maximal value if 81 is equal to &(= 8). 

3d 
hworst case - hnoerror + d- 5 L o e r r o r  + - 

SlKl e 2 
- (38) 

Suppose it is possible to guarantee that the height of all vertices 
would be 0 . 5 ~  or less if the probing is done without error, 
i.e., hnOerror I 0 . 5 ~ .  Then, if positive error probing with 
d = E is done, it follows that the actual height of all vertices 
cannot exceed 2 ~ .  As proved in Theorem 3 ,  this condition is 
guaranteed after no more than 71,  probings done on this vertex 
or its ancestors, where 

(39) 

For probing which are done on type (iii) vertices the argumen- 
tation is similar, and thus the number of probings required to 
lower the height of a type (iii) vertex to 2~ or less is bounded 
by 

rii 5 [log, (4:) - 1 I log2 (';di). - (40) 

Summarizing all contributions and using the relation 

Elz + Ed, 5 (41) 
( t z )  ( Z t Z )  

and the convexity of the logarithmic function, it follows that 
the total number of probings n required to lower the height of 
Rt to 2~ or less, is bounded by 

and the Lemma is proved. 
The sides of the set R,", created by the probing process, are 

not tangent to S ,  and the set R," itself does not necessarily 
include S. Hence, I?; being of height 2~ does not imply that 
its central polygon is a CA,. 

v111. AN UPPER BOUND ON THE NUMBER 
OF mOBINGS REQUIRED TO FIND A CERTIFTED 

APPROXIMATION TO A CONVEX OBJECT 

In this section it is shown that no more then O (  E l o g  6) 
probings are required to specify a certified approximation with 
precision E (CA,) to every convex object, not necessarily 
polygonal, of perimeter L. The derivation relies on the results 
proved in the previous sections, which leaves only little to be 
done in this section. 
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Theorem 4: Let S be a general convex object with perime- 
ter L. Then, probing according to the proposed probing 
strategy (with parameter 2 ~ )  guarantees that the height of R, 
cannot exceed 2~ and that Rj‘ is a certified approximation to 
S after no more than j = U B  probings, where asymptotically 

UB M F P l o g ,  8~ (E). 
Proof: Consider the unknown object S .  The procedure 

described in Section I1 yields a polygon P ( S )  which circum- 
scribes S and has no more than 

(43) 

vertices (Theorem 1). The perimeter of this polygon, L’ 
satisfies the relation L’ < L+ 2 7 ~ ~  [25]. The results of probing 
5’ with (exact) line probes are tangent lines which may be 
considered also as the results of probing the imaginary polygon 
P ( S )  with a positive error line probe (d = E ,  see Fig. 12). 
The results of the probing must be consistent since they are 
the results of probing a real object. Probing convex polygon 
according to the proposed strategy yields a set R,? whose height 
if 2~ or less after ‘n probings, where 

(44) 

A 
Fig. 12. 
the circumscribing polygon with a positive error probe. 

Probing the true object with a line probe is equivalent to probing 

vertices (e-constant). The length of each side is 

L 1  
z - v  c 

L .  - - = -& 

and thus, 

O(lng2 (E)) 
probings are required to lower the height of the corresponding 
type (ii) vertex to 2 ~ .  Thus, 

(L’ is the perimeter of the polygon, and V is the number of 
its vertices (Lemma).) Inserting these values for the imaginary 
circumscribing polygon, it follows that the height of R, is 2~ 
or less after no more than 

O (  && (E)) 
probings are required to lower the height of all vertices to 
the specified value of 2~ and to achieve the desired certified 
approximation. (Asymptotically, if 11 5 b-log, (%:) 5 (/S + 1) 

128(L + 27r~)  
= UB 

log, €(@Ti+ 11 
(45) is sufficiently large then there is a type (ii) vertex in R, for 

Asymptotically, when E << L. 
every side of S ,  implying that the number of type (ii) vertices 
is V.)  

The polygon R3 circumscribes the unknown object S (it 
includes S ,  and each of its sides is tangent to it). Hence, 
By Theorem 2, the distance between any convex object S 
satisfying the measurements and the central polygon of R, 
is guaranteed to be E or smaller. Thus, RJ” is a certified 
approximation of S .  

Note that the exact bound is given by (45), whereas (46) 
gives only an asymptotic approximation. It is not difficult 
to show that the bound derived in the above theorem is 
asymptotically tight (up to a multiplicative constant). Consider 
the case where the unknown object S is a regular polygon with 

(46) IX. DISCUSSION 

This paper shows how geometric probing can be made into 
a useful technique for shape estimation from partial sparse 
measurements. The demand for exact reconstruction is re- 
placed by an easier and practical demand of finding a certified 
approximation from an adaptive sequence of line probings. 
A lower bound, LB, on the number of probings required to 
achieve an approximation with a certain precision, is derived. 
A probing strategy relying on the basic notion of starting by 
uniform probing and focusing adaptively on higher uncertainty 
directions, is proposed. The performance of the proposed 
strategy is investigated by deriving an upper bound, UB, on 
the number of probings it requires to guarantee an approximate 
reconstruction with a certain precision. Both bounds depend 
on the normalized precision required E,  defined as E,, = f , 
where E is the required precision of the approximation and L is 
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the perimeter of the unknown object. It follows that the number 
of probings, 71, required by the optimal strategy satisfies 

The lower bound LB is, in fact, a lower bound on the 
number of sides of a polygon circumscribing a given object 
S and having a “height” of 2~ or less. By Theorem 2, 
this is also a bound on the number of probings required to 
find a certified approximation to S using line probing and 
complete information about S.  This task, which is easier 
than the one discussed in the paper is the true parallel of 
the Verification task considered in geometric probing. In the 
context of Verification, one already has the information about 
the shape and position of a convex polygon, and uses the 
probing process to verify the correctness of this information. 
Here, the information on the object is also given, but only 
approximate verification is required. 

Note that the strategy proposed is similar, in principle, to 
the hierarchical representations of images [2 11. The region 
quadtree is based on examining a square part of the image, and 
if it is not uniform according to some measure, it is split to a 
four equal square cells, and the process is repeated recursively 
for each of them. This process yields a representation of the 
image made of square uniform cells whose sizes are adapted 
to the local uniformity of the image. In the strategy proposed 
here, the amount of uncertainty is examined for each of the 
angular intervals whose end points are directions of probings, 
and if the uncertainty is above a certain level, another probing 
is done, the interval is halved and the uncertainty is recursively 
examined for each of its halves. 

Real world applications usually involve nonconvex objects, 
to which our method is not directly applicable. Note, however, 
that probing nonconvex objects with the (infinite) line probe 
will reveal their convex hull. Another possible practical exten- 
sion may come if the object’s boundary may be partitioned into 
a finite number of parts separated by inflection points. Then, if 
a sensor is capable of specifying a direction and returning the 
distance of a boundary segment perpendicular to this direction 
(e.g., ultrasound), then one can use a variation of our strategy 
for reconstruction. 

Many interesting open problems arise. The first obvious one 
is to close the gap between the lower bound and the proved 
performance of the proposed strategy. Extending the results to 
hyperplane probing and to higher dimensions remains an open 
problem too. Finding certified approximations using different 
metrics will also lead to completely different problems. It is 
interesting to note, in this context, that if difference of area is 
considered as the metric, and if a line probe which reveals the 
tangency point is used, then an optimal blind approximation 
method is available [16]. 
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