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The discretization of the Hough transform parameter plane is 
considered. It is shown that the popular accumulator method 
implies sampling of a nonbandlimited signal. The resultant alias- 
ing accounts for several familiar difficulties in the algorithm. 
Bandlimiting the parameter plane would allow Nyquist sampling, 
thus aliasing could be avoided. An effectively alias-free Hough 
algorithm is presented and analyzed. The uncertainty principle of 
signal representation induces a compromise between image-space 
localization and parameter-space sampling density, as well as an 
upper bound on the performance of the algorithm. These results 
contribute to the development of a design methodology for hierar- 
chical “coarse to fine” Hough algorithms. 01 IWI Academic PESS, IIK. 

1. INTRODUCTION 

In this paper the Hough transform [14, 17, 161 for 
straight line detection using normal parameters as sug- 
gested by Duda and Hart [IO] is considered. With the aim 
of detecting lines through large collinear subsets of a pla- 
nar set of edge points P 4 {(xi, y;), i = 1, . . . , N}, each 
point is regarded as a constraint 

p = xi cos 6 + yi sin 0 (1) 

on the normal parameters (p, 0) of the straight lines on 
which the point may be located. Drawn on the (p, 13) 
normal parameters plane, the intersection of a large num- 
ber of sinusoids corresponds to the normal parameters of 
a straight line through a large collinear subset of P. 

In the standard implementation, (a subset of) the (p, 0) 
parameter plane is divided into N,, x N0 rectangular cells, 
and each cell is represented by an accumulator in an N,, x 
NB accumulator array. The algorithm is performed in two 
stages; the first is an incrementation stage in which for 
eachiE[l,. . . , N] the accumulators corresponding to 
cells that the sinusoid (1) intersects are incremented. The 
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second stage is an exhaustive search for maxima in the 
accumulator array. These represent the normal parame- 
ters of straight lines through large collinear subsets of 
points. 

This technique is quite general and has indeed been 
extended to allow the detection of other parametric 
shapes, such as circles, ellipses, and parabolas. The use 
of edge-direction information as a further constraint on 
the parameters of possible lines, as suggested by O’Gor- 
man and Clowes [34], was instrumental in the generaliza- 
tion of the Hough transform by Ballard [I] to detect arbi- 
trary shapes. Another approach has recently been 
suggested by Casasent and Krishnapuram [7, 221. 

Contributions to the theoretical analysis of the Hough 
transform have been made by Sklansky [44], Shapiro [40, 
411, Shapiro and Iannino 1431, Brown [41, Maitre [301, 
Cohen and Toussaint [S], Van Veen and Groen [501, and 
others. Deans [9] has shown that the Hough transform 
can be regarded as a special case of the well known Ra- 
don transform. 

A distinction is usually made between the study of the 
performance of the Hough transform with respect to lo- 
calization accuracy and the research concerning its per- 
formance as a detector. Recent Ref. [33] is mostly con- 
cerned with localization accuracy issues, while Refs. [12, 
13, 231 exemplify current research on detection perfor- 
mance of the Hough transform. 

The quantization of the parameter space, inherent m 
any implementation on a digital computer, is a source for 
several problems and design trade-offs. Increasing the 
resolution is usually assumed to lead to better accuracy 
in the parameters of the detected lines, but to a larger 
storage requirement and a heavier computational burden. 
The challenge of this classical trade-off is met by the 
rapid decline in the cost of memory, by implementing the 
algorithm on parallel processors, e.g., 1421, and in spe- 
cialized VLSI hardware, e.g, [38, 61, by employing 
multiresolution “coarse to fine” strategies, e.g., 145, 35, 
3, 32, 5, 15, 27, 26, 21, and recently by interpolating the 
parameter space [33]. 
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The sucess in pushing the limits of the Hough parame- 
ter space resolution has not alleviated several other quan- 
tization-related problems. Especially, it is clear that at 
any finite resolution a high count at an accumulator could 
result from the combined effect of several insignificant 
peaks rather than from a single significant one. On the 
other hand, a true peak could be split between several 
accumulators and lost. This phenomenon, which induces 
degradation in the detection performance of the Hough 
transform, has been studied by Van Veen and Groen [50] 
as well as by Skingley and Rye 1471, Niblack and 
Petkovic [33], and others. An excellent demonstration of 
these problems can be obtained by applying the Hough 
algoritm to detect straight lines in an image which con- 
tains a “multiscale curve” [31]. At any fixed resolution 
false maxima and peak spreading would be apparent. 

In their recent paper Niblack and Petkovic [33] consid- 
ered the Hough transform for straight line detection, and 
stated the following four open questions: 

1. How should the quantization steps Ap and A0 of p 
and 8 be chosen? 

2. Can improved accuracy be obtained by additional 
preprocessing and/or interpolation of the Hough trans- 
form h(p, 0) instead of simply taking the cell with the 
maximum count? 

3. What are the effects of noise in the coordinates (xi, 
yi) on the location of the peak? 

4. What is the accuracy achievable using the Hough 
transform, and how does it compare with that from other 
techniques, specifically least squares‘? 

The purpose of this paper is to establish a theoretical 
framework which contributes to the understanding of 
these issues. Reference [20] is a preliminary version of 
this paper. 

2. ALIASING IN THE HOUGH ALGORITHM 

In the Hough algorithm [IO] the detection of collinear 
points is substituted by the detection of sinusoid intersec- 
tions. The key to the implementation of the algorithm is 
the two-stage accumulator method for the detection of 
sinusoid intersections. In the first stage accumulators are 
incremented-“voted for”-by sinusoids. The second 
stage is a search for maxima in the accumulator array. 

The voting process is intended to produce at the accu- 
mulator array a discrete approximation of the continu- 
ous-domain Hough transform h(p, O), defined as follows: 

Let p; 2 0 and 0 5 Bi < 27~ denote the polar coordinates 
of a data point pi E P. Then every pi E P generates a 
sinusoid p:(B) in the (p, 0) parameter plane: 

p’i’(O) = p; cos(8; - O), 8 E [O, x). (2) 

An indicator function is associated with each sinusoid: 

mA 0) = 
1 

1, p = P?W 
(3) 

0, otherwise. 

Summing up the indicator functions yields the continu- 
ous-domain Hough transform: 

MP, 0) = 2 ap, 0). 
i=l 

(4) 

The representation of a continuous-domain function by 
a discrete set of numbers, as is the representation of h(p, 
0) by the contents of the accumulator array, is referred to 
as “digitization” in the signal processing literature, a 
process which may generally consist of three stages: pre- 
filtering the continuous domain function, sampling it, and 
quantizing the samples. 

Two incrementation rules are commonly used in con- 
junction with the accumulator method. Either an accu- 
mulator is incremented wherever a sinusoid traverses the 
cell in the normal parameters plane to which that accu- 
mulator corresponds, or alternatively a rectangular grid 
is imposed on the (p, f3) plane, each accumulator corre- 
sponding to a grid point; an accumulator is incremented 
wherever the respective grid point is nearest to an inter- 
section of a sinusoid with a grid line parallel to the p axis. 
In signal processing terms both incrementation rules are 
equivalent to a certain space-variant transformation fol- 
lowed by sampling on a rectangular grid. 

h(p, f3) is, however, a discontinuous-hence non- 
bandlimited-function. This is hardly changed by the 
spatial-dependent transformation inherent in the voting 
process. It is well known that due to aliasing effects a 
nonbandlimited signal cannot be properly represented by 
a discrete set of samples. This indicates a basic inade- 
quacy in the implementation of the Hough algorithm. 

Various aspects of this problem are studied in the rest 
of this paper, and a remedy is developed and analyzed. A 
key to any solution should involve, however, the replace- 
ment of h(p, 13) by an essentially bandlimited function 
whose Nyquist rate is finite, such that sufficient parame- 
ter-plane sampling could be carried out. Interpolation by 
an appropriate low-pass filter would then allow to search 
for maxima at any desired resolution. 

“Blurring” the accumulator array in the process of 
voting has indeed been suggested, e.g., by Niblack and 
Petkovic [33]. Other authors suggested to smooth the ac- 
cumulator array following the incrementation stage; this 
is less effective. Niblack and Petkovic [33] have also in- 
sightfully employed interpolation in the parameter plane 
to increase the effective resolution. However, to the best 
of our knowledge, no previous author has taken a fre- 
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quency-domain approach to guide the discretization of 
the Hough transform parameter space. 

3. STRAIGHT LINE DETECTION AS 
AN OPTIMIZATION PROBLEM 

The Hough transform is aimed at detecting collinear 
subsets within a planar set of points, which usually result 
from the application of edge detection and thresholding 
to an image of a scene. Some points result from straight 
edges in the underlying scene; other points are consid- 
ered as “noise.” 

Let us consider a simplified situation, where all points 
are the experimental outcome of a single straight edge. 
Due to various random effects these points will not be 
truly collinear. Furthermore, the points generally appear 
as small “blobs.” Thus, the design of an algorithm to 
extract the parameters of the straight line passing through 
these points requires a measure of fitness such that lines 
could be compared and an “optimal” line could be se- 
lected. 

If the deviation of every data point from its “true” 
position could be considered a random variable with a 
known distribution, then a meaningful measure of fitness 
in the statistical sense could be devised; otherwise its 
selection is quite arbitrary. A common chaise is to take 
the line that minimizes the sum of squared distances to 
the data point, the distances being measured either in 
parallel to one of the axes or normal to the line. See [ 1 I]. 

The method of least squares is inadequate when data 
points due to noise and to other edges are present. This 
problem has recently been treated by several authors, 
e.g., Weiss [51], Kamgar-Parsi and Kamgar-Parsi [24, 
251, Otsu [36], Thrift and Dunn [48], and Kiryati and 
Bruckstein [19, 211. The approach of [48, 191 will be fol- 
lowed here because of its close relation with the Hough 
algorithm. 

Each data point contributes to the “weight” of every 
candidate line according to an “influence function” 
which relates the contribution to the normal distance be- 
tween the line and the point. The “best” line is the line 
that has maximum weight. The influence function could 
be specified as desired, but a meaningful choice is a posi- 
tive, monotonically decreasing function of the distance. 
(For mathematical convenience the influence function is 
defined to be symmetric, and is usually a decreasing func- 
tion of the absolute value of its argument.) By choosing 
such a function, whose localization can be represented 
by an “effective radius” proportional, perhaps, to its 
second moment, the designer indeed implies that lines 
passing within the effective radius are considered as re- 
lated to the point, while other lines are not. A scalar, 
circularly symmetric “influence field” can be visualized 
around each data point: the contribution of the point to 

the weight of a line is the value of the field at the foot of 
the normal from the line to the point. 

The special relation between this line fitting approach 
and the Hough algorithm stems from the following prop- 
erty: 

Let the sinusoid (2) represent the locus of the normal 
parameters of all possible straight lines through a data 
point pi = (Xi, yi). The locus of all straight lines tangent to 
a circle of radius Y around pi, i.e., the locus of all lines 
whose distance to pi is Y, is a pair of dc-biased sinusoids 
in the (p, 0) plane: 

p:(8) = r + p?(8) = r + pj cos(8; - O), 

8 E [0, 7~) (5a) 

pi(O) = -r + p?(O) = -r + p; cos(Oj - f3), 

8 E [O, n-1. (5b) 

An extended Hough technique to determine lines of 
high weight which is based on the above-mentioned prop- 
erty can now be outlined. Let c(r) denote the (symmetric) 
influence function, and let an extended indicator function 
Zi(p, (3) represent at every pair (p, 19) the weight contrib- 
uted by the point pi to the line. From the property, 

Note that for every fixed 8, I;( p, (?) is a convolution of the 
influence function c(p) with an impulse 6 (p - pi cos(& - 
0)). The total weight accumulated by a line whose normal 
parameters are (p, 0) is 

z(p, 0) = 2 lib, 0). (7) 
1-l 

Note that the extended Hough transform z(p, ti) can be 
visualized as the Radon transform of a modified input 
function in which each data point is replaced by a circu- 
larly symmetric density distribution which is the inverse 
Abel transform of the influence function. 

Significant lines can be detected by employing the ac- 
cumulator method to evaluate samples of z(p, 0) and 
search for peaks. Clearly, more accumulators need to be 
incremented than in the conventional Hough algorithm; 
the exact number depends on the support of the influence 
function. The key to efficient implementation of the com- 
putationally critical accumulation stage is the systematic 
incrementation law (6). It is easily observed that for 
every discrete value of 6, a vector which is the discretiza- 
tion of c(p - p!(0)) must be added to the respective 
column of the accumulator array. This operation can be 
carried out very efficiently by many modern computers 
optimized for image processing tasks. Furthermore, 
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moving to the next value of 8 requires just a shift of the 
contents of the vector according to p:(O), e.g., by relative 
indexing. In a purely serial implementation the number of 
operations in the accumulation process would linearly 
depend on the support of the influence function. 

Using the influence function 

P(r) = 
i 

1, p=o 
(8) 

0, r#O 

reduces this algorithm to the conventional Hough algo- 
rithm. Note that by using the influence function 

G(r) = 
1 

I, If-1 5 d 

II.1 > d 
(9) 

0, 

Shapiro’s algorithm [41] for detecting straight lines in the 
presence of isotropic quantization errors (limited by d) is 
obtained. 

4. BAND REGION OF THE EXTENDED 
HOUGH TRANSFORM 

It is obvious that the extended Hough transform z(p, 
13) is not bandlimited if general influence functions are 
allowed. Hence, an implementation of the algorithm 
based on the accumulator method implies aliasing. For 
example, implementing Shapiro’s algorithm [41], that 
specifies the discontinuous influence function (9), calls 
for sampling of a function z( p, 0) consisting of sinusoidal 
bands whose vertical profiles are a rectangular pulse. 
Thus z(p, 0) is discontinuous, nonbandlimited, and its 
sampling clearly results with aliasing. It can nevertheless 
be shown that the situation is somewhat improved with 
respect to the conventional Hough transform, because 
the magnitude of the Fourier transform of (9) is upper- 
bounded by a decreasing function of the frequency, while 
the magnitude of the Fourier transform of (8) is constant. 

If, however, it is possible to specify a special influence 
function that leads to an effectively bandlimited extended 
Hough transform while retaining adequate localization in 
a well defined sense, then an essentially alias-free Hough 
transform can be devised. 

In this section the bandwidth of the extended Hough 
transform is computed under the assumption that a 
bandlimited influence function is used. The calculation 
and its results are analogous to the Radon transform 
bandwidth computation performed by Rattey and Lind- 
gren [39, 291. 

The extended Hough transform z(p, /3) of the planar 
set of points P can be expressed as 

z(p, e) = i c(p - p:(e)) = i c$p - pi cost8 - 6)). 
,=I i=l 

(10) 

The linearity of the Fourier transform implies that Z(W(, , 
We), the 2-D Fourier transform of z(p, O), can be ex- 
pressed as 

where Z;(MJ~, wO) denotes the 2-D Fourier transform of 
the 2-D composite function c(p - pi COS(O - 8;)): 

Let C(M~) denote the I-D Fourier transform of the sym- 
metric influence function c(r). Integrating with respect to 
p, it is noted that 

exp(-jpjwjp ~$8 - 0,)) is periodic, thus its Fourier trans- 
form is discrete: 

x 

c ak 6(w0 - k), (14) 

where S(e) is the impulse function, and 

(15) 

A straightforward calculation yields 

where Jk(piwp) denotes the order-k Bessel function of the 
first kind. Substituting (16) into (14) results in 

Z;(wp, w(j) = C(wJ . 27T 2 @(w’?+H,’ 
h--x 

. Jk(p;w,) S(M’(J - k). (17) 

Assume that the retina is finite, i.e., pi < pM, Vi, and a 
bandlimited influence function such that C(M){,) is nearly 
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“0 

Fig. 1. The ‘LpM~~snil bow tie” effective region of support of Z(M;,, 
MrH). 

zero for wP > WI,,,. A comparison with 1391 reveals that 
Z(w,, We) is mathematically equivalent to the 2-D Fourier 
transform of the Randon transform of a function whose 
effective region of support is a circle of radius pM, and 
which is also effectively bandlimited to a circle of radius 
WM. 

Jk(/3), the Bessel function of the first kind of order k 
and argument p, decays monotonically for k/P > I; fur- 
thermore (Jk(/3)l 4 I if (k//3/ + I. To calculate the effec- 
tive support of Z(w), , uje) Rattey and Lindgren applied a 
standard approximation from FM-communication theory 
that Jk(p) is effectively zero for 

tkl > IPI + 1. (18) 

Under this approximation they have found the region of 
support of Z(w, , we) to be effectively confined to a 
“PMW,,., bow tie,” as shown in Fig. 1. 

5. SAMPLING REQUIREMENTS FOR THE EXTENDED 

HOUGH TRANSFORM 

After showing in the previous section that a band- 
limited influence function leads to a bandlimited ex- 
tended Hough transform whose band region is a “pMwM 
bow tie,” it is now necessary to determine the sampling 
requirements that would guarantee an alias-free Hough 
transform. 

Assuming that the influence function is effectively zero 
for 1~1 > I+,,,, it is noted that the support of the extended 
Hough transform in the p direction is limited to 

td d PM + YM. (19) 

Since the extended Hough transform satisfies 

~((-l)~p, 8 + kn-1 = z(p, 01, (20) 

then, provided that the number of samples in the 8 direc- 
tion is even, it needs to be sampled only for 8 f [0, 7r). 

Rattey and Lindgren [39] have shown that optimal 
sampling for signals whose band region is the “bow tie” 
shown in Fig. 1 is on an hexagonal grid. They have deter- 
mined that the intersample distance in the p direction 
must satisfy 

Ap < 7~1~‘~ 

and with hexagonal sampling 

(21) 

A$ 5 %-/(~p,,@$,~ + 3), (22) 

where 1x1 denotes the largest integer smaller than X. The 
resultant minimum required number of samples is 

L = (p,,,, + ~,&+,(tp,,,~t~,$~ + 3)/n. (23) 

Normalizing (23) by assuming without loss of generality 
pM b 1 gives 

L = (1 + YM)w,(twM] + 3)/%-. (24) 

If a reasonably localized influence function satisfying r~ 
+ pM is assumed, (23) degenerates to the sampling re- 
quirement for the “space and bandlimited” Radon trans- 
form [39]. rM e pM 4 1 also implies wM * 1, allowing the 
approximation 

Sampling the extended Hough transform on a rectangular 
grid instead of on the optimal hexagonal grid results in a 
doubled sampling requirement. 

6. THE COMPROMISE BETWEEN IMAGE-PLANE 

LOCALIZATION AND SAMPLING REQUIREMENTS 

The subject of this section is the design of (symmetric) 
influence functions that meet two objectives simulta- 
neously. First, they must be well localized in the spatial 
domain within an interval (-TV, YM) to allow adequate 
localization in the image plane. Second, their Fourier 
transform must be adequately localized within an interval 
(-W,W, W,W) to decrease the number of samples required 
to obtain negligible aliasing. 

The uncertainty principle of signal representation 1371 
dictates, however, that the influence function c(v) and its 
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Fourier transform C(w) cannot both be of “short dura- 
tion.” Depending on the meaning of the word “duration” 
the uncertainty principle can take several mathematical 
forms. Since any implementation of the extended Hough 
transform implies an influence function of finite duration, 
it seems meaningful to focus on designing influence func- 
tions that are truly space limited in (-rM, Y,,,,) while hav- 
ing the smallest possible “effective bandwidth” in a cer- 
tain sense. (As mentioned earlier, the number of 
operations in a purely serial implementation of the accu- 
mulation process linearly depends on yM). 

Letting E denote the energy of the influence function 

E = II:, S(r) dr = &- I _:, c*(w) dw (26) 

and D2 denote the second-order energy moment of C(W) 

it is known [37] that 

rM . D 2 7~12 (28) 

and that equality holds only for the influence function 

c(r) = 
k cos(m/2r~), IrI 5 Y,V, 

1~1 > c+f, 
(29) 

0, 

where k is a constant. With k > 0 this influence function 
is a positive, symmetric, and monotonically decreasing 
function of IrI within its interval of support. 

For sampling purposes, an effective bandwidth wM can 
be defined as proportional to D. A large enough propor- 
tionality constant would ensure negligible aliasing. A rea- 
sonable definition is wM = 30, corresponding in the opti- 
mal function (29) to the width of the main lobe of its 
Fourier transform. See Fig. 2. 

Alternatively, it is possible to design influence func- 
tions that minimize wM, now defined as the bandwidth 
into which a certain fraction /3 of the energy is confined, 
i.e., 

The relevant version of the uncertainty principle is re- 
lated to prolate spheroidal functions [46, 28, 371 which 
are the solutions of the eigenvalue-eigenfunction prob- 
lem 

I TM P(X) 
sin wM(r - x) 

n(r - x) 
dx = Xcp(r). (31) 

c(r) 

/A k 
/ \ t* 

-‘h4 ‘M 

Fig. 2. The influence function C(Y) that achieves the uncertainty 
bound (28) and its Fourier transform. 

In particular, 

YMWM z .,f(k% (32) 

where f(p) is a positive, monotonically increasing func- 
tion, and equality holds only for the influence function 

c(r) = 
km(r), Irl 5 rM 
0, b-1 > rM7 

(33) 

where k is a constant and cpa(r) is the eigenfunction of (31) 
which corresponds to its largest eigenvalue. The uncer- 
tainty relation (32) also demonstrates the relation be- 
tween the sampling requirement, which depends on w,,,, 
and the selection of the threshold under which aliasing is 
assumed negligible, as implied by p. Note that the Kaiser 
window [18] is an excellent approximation of the prolate 
spheroidal function. 

7. CONCLUSIONS 

In this section conclusions are drawn from the results 
of this research toward a better understanding of the four 
open problems which have been presented by Niblack 
and Petkovic [33] and mentioned in the Introduction to 
this work, and toward strengthening the theoretical foun- 
dation for multiresolution focusing Hough transform 
methods. 

One question posed in (331 is whether or not improved 
accuracy can be obtained by preprocessing and/or inter- 
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polation of the Hough transform instead of by simply 
taking the cell with the maximum count. The answer to 
this question is affirmative. In particular, the preprocess- 
ing advocated here is to alleviate the abasing problem 
inherent in the accumulator method by employing the 
extended Hough transform [48, 191 in conjunction with 
carefully designed influence functions that are effectively 
space- and bandlimited, providing the best compromise 
between image-domain accuracy and transform-domain 
bandwidth. Low-pass filtering, in correspondence with 
the size and the shape of the transform’s bandregion, is 
the optimal postsampling interpolation scheme, but even 
local, computationally economical interpolators would 
yield better results than simply taking the cell with the 
maximum count, equivalent to crude zero-order hold in- 
terpolation. 

Another question is how should the quantization steps 
Ap and A8 be chosen. The suggested reply is that to allow 
effectively alias-free representation of the transform by 
its samples the sampling intervals Ap and A0 should be 
chosen to satisfy the Nyquist condition. The optimal 
sampling grid is hexagonal rather than rectangular; the 
required sampling intervals and the total required number 
of samples are given by inequalities (21), (22), and (25) in 
terms of the effective space and bandwidth of the influ- 
ence function, which should be designed to correspond 
with the desired image-domain accuracy. 

To complete the answer to this question several re- 
marks are due. First, the accuracy of the input data 
points provides a lower bound on the useful value of I-,+., , 
the effective radius of the influence function’s spatial 
support, and through the uncertainty principle an upper 
bound on its useful effective bandwidth. If the total num- 
ber of sampling points is severely limited, image-domain 
accuracy must be sacrificed by specifying a narrow-band 
influence function whose effective radius in the image 
domain is large with respect to the accuracy of input 
data. In this case the performance of the Hough trans- 
form is limited by the resources rather than by the quality 
of the data. If, however, it would be possible to increase 
the number of sampling points, the effective radius of the 
influence could be made to correspond with the accuracy 
of the data, allowing the performance of the transform to 
reach the limit posed by the accuracy of the data. In- 
creasing the sampling density even further (without un- 
necessarily increasing the bandwidth of the influence 
function) would have the effect of producing guard-bands 
between the replicas of the transform’s bandregion, thus 
allowing the specifications of the interpolating low-pass 
filter to be relaxed, and making computationally econom- 
ical “local” interpolation feasible. 

A further question presented in [33] concerns the ef- 
fects of noise in the coordinates (xi, yi) of the input data 
points on the location of the peak. The sensitivity of the 
Hough transform in its usual definition to errors 

(“noise”) in the coordinates of the input data points is 
well known. In particular, it has the effect of smearing 
the peak in the transform domain between several accu- 
mulator cells, sometimes to such a degree that the peak is 
lost in the background. The extended Hough transform 
with a suitable influence function whose spatial extent 
reflects the accuracy of the data has indeed evolved [41, 
48, 191 as a remedy to this problem as much as can be 
allowed by the quality of the data. If properly applied, the 
resultant peak in the transform domain is indeed smooth, 
but sufficient sampling and proper interpolation allow ac- 
curate peak detection and parameter extraction. 

The last question concerns the accuracy achievable us- 
ing the Hough transform, and its comparison with that 
from other techniques, specifically least squares. In a 
previous work [I91 it has been shown that by specifying 
various influence functions the extended Hough trans- 
form can be made to simulate many line fitting tech- 
niques, the least squares (in the normal direction) in par- 
ticular. Hence, leaving computational considerations 
aside, the extended Hough transform can be tuned to be 
equivalent to other methods. Furthermore, by specifying 
appropriate influence functions, the extended Hough 
transform easily overcomes the two main obstacles that 
render many other techniques useless-the presence of 
input data points due to more than one line, and due to 
background noise processes. 

The accuracy of the extended Hough transform is lim- 
ited either by the inherent errors in the input data, or by 
insufficient resources which dictate the employment of 
influence functions whose spatial extent is large with re- 
spect to the accuracy of the data. In the latter case the 
accuracy achievable using the extended Hough transform 
is governed by the uncertainty principle of signal repre- 
sentation (Eqs. (28) and (32)) which relates (through the 
sampling requirement (25)) the number of available accu- 
mulators to the spatial extent of the best influence func- 
tions. 

The total number of available accumulators is severely 
limited in low-resolution stages of multiresolution Hough 
transform algorithms. Indeed, significant undersampling- 
related difficulties have been reported [ 161 in the applica- 
tion of the “adaptive Hough transform” 1151 to complex 
images. The results presented in this paper provide a 
clear limit on the achievable resolution in the image do- 
main as a function of the number of available accumula- 
tors. A multiresolution extended Hough transform that 
actually achieves this limit can be devised such that at 
any stage the spatial extent of the influence function de- 
creases and the sampling requirement increases with re- 
spect to the previous stage, approaching the input data 
quality limit. 

Useful multiresolution Hough algorithms are based on 
focusing-i.e., on combining all resources to perform 
high-resolution accumulation and search just in small ar- 
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eas of interest in the transform domain which were found 
in a preceding low-resolution stage of the algorithm. An 
inherent difficulty arises since in postsampling interpola- 
tion of the transform by low-pass filtering the contribu- 
tions of sampling points throughout the parameter plane 
are required for producing any interpolated value. This 
problem can be alleviated by oversampling the transform 
with respect to the Nyquist rate, thus providing guard- 
bands between replicas of the transform’s bandregion 
and allowing relaxed filtering requirements, which corre- 
spond to local interpolation within the focused-on area. 

8. DISCUSSION 

The accumulator method which is essential in most 
implementations of the popular Hough algorithm has 
been regarded here as a peculiar sampling scheme which 
is applied to the nonbandlimited Hough transform func- 
tion. To minimize the resultant aliasing errors, the Hough 
transform should be bandlimited prior to its sampling. 
Point-sampling has the advantage that the bandlimited 
Hough transform needs to be evaluated just at the sam- 
pling points. Bandlimiting the Hough transform by com- 
putational low-pass filtering is impractical, since the fil- 
tered value at any sampling point depends on the value of 
the (continuous-domain) input everywhere. Further- 
more, it is not obvious how the performance of the 
Hough transform in the image-domain is changed by gen- 
eral two-dimensional filtering in the transform domain. 

To overcome these problems, the application of an ex- 
tended Hough transform [48, 191 is suggested. It has been 
shown in this paper that the extended Hough transform 
can be tuned by an appropriate choice of an “influence 
function” to be essentially bandlimited while retaining 
predictable performance in the image-domain. In particu- 
lar, the trade-off between the total number of available 
accumulators L which sets the maximum bandwidth and 
image-domain performance has been pointed out. 

To illustrate, consider the arrangement of data points 
shown in Fig. 3a. Given the number of accumulators L, 
one wishes to know whether or not the Hough algorithm 
can resolve the individual line segments. The theory pre- 
sented in this paper can provide a straightforward answer 
to such questions. 

For values of L which are not extremely small, satisfy- 
ing the Nyquist sampling requirement (25) implies that 
the Fourier transform of the chosen influence function 
must effectively vanish for 

I,‘,‘( > WM = m. (34) 

A reasonable type of influence function is (29). Applying 
the uncertainty principle (28) and the definition MJ~ = 30 
yields 

a 
. . . 

. . 
. . 

. : . . 

b 

Fig. 3. (a) An arrangement of input points lying on individual line 

segments. (b) rM is relatively large, thus the points are interpreted as 

lying on a single straight line. (c) I’,,, is sufficiently small. enabling the 

detection of the individual segments. 

rM = n-l2D = 37~/2w~. 

Substituting (34) in (35) gives 

(35) 

(36) 

where rM, which is the radius of support of the (one- 
dimensional) influence function, can be interpreted in the 
image domain as the “radius of influence” of a data 
point: a line is considered by the extended Hough trans- 
form to pass “through” a point, if it intersects a circle of 
radius rM around the point. Thus, (36) quantifies the 
trade-off between image-domain localization and the 
number of accumulators. Referring to Fig. 3a, it is now 
clear that if A = rM and certainly if A < rM the extended 
Hough transform cannot resolve the individual segments, 
and the data points would be interpreted as lying on a 
single straight line as shown in Fig. 3b. If however L is 
large enough such that A + rM the individual segments 
can be detected: see Fig. 3c. 

Possibilities for future research include the extension 
of the results presented here to versions of the Hough 
transform other than that of Duda and Hart [lo]. These 
include algorithms that employ gradient direction and 
magnitude, algorithms for detecting parametric shapes 
other than straight lines, e.g., circles and parabolas, and 
algorithms for detecting arbitrary shapes. 

The influence functions which were considered in this 
paper are truly space-limited functions which are essen- 
tially-but not absolutely-bandlimited. Thus, a small 
aliasing error in the sampling of the Hough transform is 
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not completely avoided. By specifying influence func- 
tions that are effectively-but not truly-space-limited a 
truncation error [49] would be introduced, but the alias- 
ing error could be reduced. Balancing the trade-off to 
obtain an influence function that minimizes the total com- 
bined aliasing and truncation error can lead to further 
enhancement in the performance of the algorithm. This 
possible improvement must also be traded against the 
increased number of operations (in a serial implementa- 
tion of the accumulation process) implied by the in- 
creased spatial support of the influence function. 

In this paper a parameter plane sampling requirement 
is presented which is based on the sampling theorem and 
is related to the effective bandwidth of the extended 
Hough transform. A subtle observation is that (given a 
certain influence function) all possible realizations of the 
extended Hough transform are a priori known to belong 
to a rather limited subclass within the general class of 
functions of comparable bandwidth. This motivates work 
toward finding influence functions that could allow one to 
determine the extended Hough transform by a smaller 
number of samples than is required by the sampling 
theorem. 

High-accuracy line detection requires reconstruction 
of the extended Hough transform from its samples by 
interpolation, and peak detection in the continuous do- 
main. “Ideal low-pass filter” interpolation, which is re- 
quired if sampling is carried out near the Nyquist rate, 
and the associated peak detection algorithm are computa- 
tionally expensive. Sampling at a higher rate allows the 
specifications of the interpolation scheme to be relaxed 
and computationally economical interpolation and peak 
detection algorithms to be employed. It would be very 
nice if an interpolation scheme-in conjunction with a 
sampling requirement and a peak detection algorithm- 
could be developed that would allow one to locate peaks 
of the continuous extended Hough transform function 
directly from its samples, without having to actually 
carry out the interpolation and to locate the peak by 
search. A peak detection algorithm in which the value of 
the peak is a weighted average of nearby samples and its 
location is their “weighted” center of mass is especially 
desirable. One of the interpolation methods of [33] can be 
regarded as a step in this direction. 

In this paper the relation between the number of accu- 
mulators and the performance of the Hough transform in 
the image domain has been clarified. Referring to multi- 
resolution “focusing” Hough algorithms, it is clear that a 
peak in a low-resolution stage can result from the com- 
bined effects of several insignificant peaks, while a true 
peak can be lost in the background. This poses a severe 
difficulty in the design of focusing Hough algorithms. The 
development of a focusing strategy that is optimal with 
respect to a “reasonable” distribution of lines in images 

is of great theoretical and practical importance and will 
be the subject of future work. 
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