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Abstract. Numerical analysis of conservation laws plays an important role in the implementation of curve evo-
lution equations. This paper reviews the relevant concepts in numerical analysis and the relation between curve
evolution, Hamilton-Jacobi partial differential equations, and differential conservation laws. This close relation en-
ables us to introduce finite difference approximations, based on the theory of conservation laws, into curve evolution.
It is shown how curve evolution serves as a powerful tool for image analysis, and how these mathematical relations
enable us to construct efficient and accurate numerical schemes. Some examples demonstrate the importance of
the CFL condition as a necessary condition for the stability of the numerical schemes.
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1. Introduction

Recently, researchers in the field of image processing
and computer vision started to pay attention to new
ways of analyzing and representing two-dimensional,
stationary or moving images, via planar curve evolu-
tion. In fact, any image can be viewed as a set of
level curves “evolving” with the height parameter.
Even such a simple description is quite useful in a
variety of situations.

Several image analysis algorithms nowadays are
based on propagating planar curves in the image plane
according to local variations in the grey-level of the im-
age (Bruckstein, 1994; Kimmel, 1995). Those planar
contours might be, for example, the level sets on the

surface of an object whose shaded image we are try-
ing to interpret so as to recover its three-dimensional
structure. The Shape-from-Shading field is indeed
a good example illustrating the way curve propaga-
tion algorithms found a very interesting application
(Bruckstein, 1988). Their usefulness in this and other
applications was further enhanced by the recent de-
velopment, in the field of numerical analysis, of a
“miraculous” algorithm for the stable propagation of
planar curves according to a variety of rules (Osher
and Sethian, 1988). This algorithm together with
some recent results in the theory of curve evolution
also resulted in powerful tools for edge preserving im-
age smoothing (Alvarez et al., 1992, 1993; Weickert,
1995).
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Other fields in which there were immediate conse-
quences of having a stable and efficient way to prop-
agate curves, are Computer Aided Design, Robotics,
Shape Analysis and Computer Graphics.

In CAD there is a need to find offset curves and
surfaces, implying fixed-speed curve propagation.
Geodesic deformable models where introduced for
shape modeling and analysis. In Computer Graphics,
Pnueli and Bruckstein found an interesting application
in the design of a clever half-toning method they named
Digi

Dürer.
In Robotics, where one often needs to find a path for

robots that need to move from a source to a certain des-
tination, one could determine shortest routes by propa-
gating a wave of possibilities, and finding out the way
its wavefront reaches the destination point. This is like
Feynman’s particles sniffing all possible paths before
deciding on the trajectory of minimal action (Feynman
et al., 1964) This, by the way, can be done even in the
presence of moving obstacles. Last, but not least, we
shall mention the field of Mathematical Morphology,
where there is a need to precisely compute various types
of distance functions, to enable erosion or dilation of
shapes.

The solution for some of the problems that we will
describe is based on the ability to find a new curve-
evolution-based formulation to the problem. This new
formulation is of the form of a differential equation
that describes the propagation of a planar curve in time,
under the constraints imposed by the problem. While
propagating a planar curve one must often overcome
various problems such as topological changes, e.g., a
single curve that splits into two separate curves, and
numerical problems that may be caused by the type
of curve representation used, e.g., the problem of de-
termining the offset curve to a polynomial parametric
curve.

The most general propagation rule for a closed planar
curve in time along its normal directionEN is

∂C
∂t
= V EN givenC(0),

whereC(s, t) : S1× [0, T ] → IR2 is the curve descrip-
tion andV is a smooth scalar velocity function. The
functionV may depend on local properties of the curve
or on some external control variable like for exam-
ple the image gray level or terrain traversability1. Let
φ(x, y, t) be an implicit representation of the curve so
thatC(s, t) = {(x, y) | φ(x, y, t) = 0}, i.e., the zero
level set of a time varying surface functionφ(x, y, t).
Then, the propagation rule forφ that yields the correct
curve propagation equation is given by (Osher and

Sethian, 1988).

∂φ

∂t
= V |∇φ| givenφ−1(0) = C(0).

In some of the problems it is natural to use a given
image I as initialization for the implicit function
φ(x, y, 0) = I .

The implicit representation of the propagating curve
solves numerical and topological problems of the prop-
agation. Tracking thezero level setof the bivariate
functionφ(x, y) propagating in time, overcomes these
problems in an elegant way, and leads to the desired
numerical scheme. This new formulation for the im-
plementation of propagating curves is due to Osher and
Sethian (1988), who called it theEulerianformulation.

In Section 2 some classical problems are presented,
and the curve evolution solutions to these problems are
shortly described. Sections 3 through 9 present guide
lines for constructing numerical schemes for the curve
evolution equations. The importance of the CFL con-
dition is illustrated by several examples in Section 10.

2. Variations on a Theme

2.1. Shape from Shading

A classical problem in the area of computer vision
is how to reconstruct a 3D surfacez(x, y) from a
given gray-level pictureI (x, y). In (Bruckstein, 1988;
Kimmel, 1992; Kimmel et al., 1995b), it is shown that
under reasonable assumptions about the light source
and the object reflection properties, it is possible to
solve this problem by using the image data to con-
trol the evolution of a planar curve so as to track
the equal height contours of the object. Those equal
height contours refer to equal heights with respect to the
light source direction (Kimmel and Bruckstein, 1995b).
Some analytic manipulations on the relations between
the contours and the data leads to an evolution rule for
a planar curve. This evolution rule, in which the propa-
gation time indicates the height with respect to the light

source direction̂l = (−pl ,−ql , 1)/
√

1+ p2
l + q2

l , is
determined by the gray-level image and the local nature
of the curve. For the simplest shading ruleI = 〈l̂ , n̂〉,
see Fig. 1, the planar evolution of the equal height (with
respect tôl ) is given by

Ct = F(x,y)
√

n2
1(1+q2

l )+ n2
2(1+ p2

l )− n1n22pl ql − (pl n1+ql n2)√
1+ p2

l +q2
l

·EN ,

where EN = (n1, n2) is the normal to the curve and
F(x, y) = I (x, y)/

√
1− I (x, y)2, I (x, y) being the
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Figure 1. According to the simplest shading ruleI = 〈l̂ , n̂〉, where
n̂ is the surface normal.

Figure 2. A smooth synthetic surface on the upper left produces the shading image on the upper right frame. The reconstruction of the 3D shape
from the shading image, based on Morse smoothness assumption is displayed on the lower left, and the error of subtracting the reconstruction
from the original surface on the lower right.

shaded image. The implicit, Eulerian, formulation in
this case is:

φt = F(x,y)
√
φ2

x(1+q2
l )+φ2

y(1+ p2
l )−φxφy2pl ql−(plφx +qlφy)√

1+ p2
l +q2

l

.

In (Kimmel and Bruckstein, 1995a) we have shown
how to use “weighted distance transforms” implied by
the shape from shading curve evolution for each of
the singular points in the shading image to solve the
global shape from shading problem for smooth surfaces
(Morse functions). See Fig. 2 (taken from (Kimmel and
Bruckstein, 1995a)).

2.2. Gridless Halftoning—TheDigi
Dürer

Using the image data to control the evolution of a
planar curve can also be used to generate graphical
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Figure 3. Propagating a planar curve with a velocity proportional to the image gray levels results in an artistic approach for halftoning.

effects. One such application for gray and color
half-toning is theDigi

Dürer, that aims to emulate the
work of classical engravers (Pnueli and Bruckstein,
1994, 1996; Schroeder, 1983). Figure 3, taken from
(Pnueli and Bruckstein, 1994), shows the result of
propagating a planar curve controlled by the image
intensity.

A rough description of this evolution is

Ct = F(I (x, y)) EN ,

where F : IR+ → IR+ is a monotone function. The
implicit formulation is:

φt = F(I (x, y))|∇φ|.

2.3. Continuous Scale Morphology

In the field of shape theory, it is often required to an-
alyze a shape by activating some “morphological” op-
erations that make use of a “structuring element” with
some given shape, see Fig. 5. In (Sapiro et al., 1993),
the problem of morphological operators in which the
element may be of any convex shape with variable sizes

was explored (Brockett and Maragos, 1992), see also
(Alvarez et al., 1993). This problem too may be re-
formulated as the problem of activating a propagation
rule for the shape boundary. The evolution rule for the
shape‘s boundary is determined by the structuring ele-
ment’s shaper (θ), and the time of evolution in this case
represents the size of the element. The planar evolution
of the boundary curve is

Ct = sup
θ

〈r (θ), EN 〉 EN ,

see Fig. 4, and the Eulerian evolution is given by

φt = sup
θ

〈r (θ),∇φ〉.

2.4. Shape Offsets or Prairie Fire Propagation

In CAD (computer aided design) one often encoun-
ters the need to find the offset of a given curve. A
simple algorithm that solves this problem may be con-
structed by considering a curve that propagates with
a constant velocity along its normal direction at each
point (Kimmel and Bruckstein, 1993; Blum, 1973).
The propagation time represents the “offset distance”
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Figure 4. Dilation operation with a circle structuring element. In
this case, since supθ 〈r (θ), EN 〉 = 1 the evolution rule is simply
Ct = EN (i.e., the offsetting/prairie-fire problem).

Figure 5. A dilation and erosion operations with diamond and circle
structuring elements of different scales.

from the given curve, and the evolution rule is simply

Ct = EN ,

its implicit Eulerian formulation being

φt = |∇φ|.

This is, of course, also Blum’s prairie fire propaga-
tion model for finding shape skeleton, i.e., the shock
fronts of the propagation rule.

2.5. Minimal Geodesics on Surfaces

This important problem in the field of robotic navi-
gation may be solved by considering an equal distance
contour propagating from a point on a given surface. In
(Kimmel et al., 1995c), an analytic model that describes
the propagating 3D curve, was introduced. Tracking
such a 3D curve is quite a complicated task. However,
it is also possible to follow its projection on the plane,
see Fig. 6.

Calculating the 3D distance maps by tracking the
projected evolution from both source and destination
points on the given surface, enables us to select the
shortest path which is given by the minimal level set
in the sum of the two distance maps, see Fig. 7. The
propagation time in this case, indicates distance on the
surface, i.e., the geodesic distance. The planar evolu-
tion is

Ct =
√
(1+ q2)n2

1+ (1+ p2)n2
2− (2pq)n1n2

1+ p2+ q2
EN ,

where p = dz/dx andq = dz/dy are the gradient
components of the surfacez(x, y), and EN ≡ (n1, n2)

is the planar normal. The Eulerian (implicit) evolution
in this case is

φt =
√
(1+ q2)φ2

x + (1+ p2)φ2
y − (2pq)φxφy

1+ p2+ q2
.

Figure 6. Projecting the equal geodesic distance contour evolution
to the coordinate plane, simplifies the geodesic distance computation.
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Figure 7. Finding the paths of minimal length between the square and circle areas on a Gaussian mountain surface.

2.6. Shortening Three Dimensional Curves
via Two Dimensional Flows

Given a path connecting two points on a given sur-
face, it is sometimes required to shorten its length
locally and to find the closest geodesic to the given
curve. In (Kimmel and Sapiro, 1995) it is shown that
this operation too may be done by propagating a curve
along the geodesic curvature. This 3D curve propaga-
tion may also be performed by tracking its planar pro-
jection, and may be used to refine minimal geodesics
obtained by other methods, e.g., the minimal path es-
timation obtained by the Kiryati-Sz´ekely algorithm
(1993).

2.7. Distance Maps and Weighted
Distance Transforms

As stated in (Kimmel et al., 1996d), some of the above
results may in fact be grouped under the same title of

‘generalized distance maps’. While searching for off-
set curves, one constructs the distance transform. Re-
constructing the shape from shading may be shown to
be equivalent to calculating a weighted distance trans-
form. Continuous scale morphology, may be shown to
result in the distance transform under a given metric,
where the the structuring element of the morphological
operations defines the unit sphere of the given metric.

2.8. UsingMulti-ValuedDistance Maps in Path
Planning on Surfaces with Moving Obstacles

In (Kimmel et al., 1995) themulti valueddistance map
concept is introduced. A multi valued distance map
is defined and used as a tool for computing optimal
path for a robot with limited velocity navigating on a
surface and avoiding moving obstacles. The distance
map on the given surface incorporates the constraints
imposed by the moving obstacles and is produced by
curve propagation techniques. The basic idea of our
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method is the use of H¨uygens principle leading to a
wave front propagating in time and describing the far-
thest parts the robot could arrive to by moving in all
possible ways away from the source region. Clearly,
the minimal path to the destination will be determined
when this wave front first meets the destination. In some
sense, the method proposed searches over all possi-
ble spatio-temporal robot movements to determine the
time–optimal navigation path and schedule to the re-
quired destination. Although it may seem obvious that
this process will discover the best navigation course,
it is far from trivial to realize how one could actually
carry out this program in a computationally efficient
way. The limit on the robot velocity is used to reduce
the complexity of the problem from a search over a 3D
configuration space to a search over a 2D multi valued
array. The analytic analysis as well as efficient numeri-
cal algorithms for calculating the multi valued distance
map and tracking an optimal path are introduced.

2.9. Skeletons via Level Sets

“Skeletons are thin, exact descriptors of shapes”,
(Shaked and Bruckstein, 1996). Defining the distance
of a point from a curve as the infimum of distances be-
tween the point to the set of curve points. The skeleton
of a shape is the set of internal points whose distance
to the boundary is realized in more than one boundary
point. Each point of the skeleton is associated with a
width descriptor corresponding to its distance from the
boundary.

Being a stick figure, or naive description of the shape,
skeletons are perceptually appealing. From a pattern
recognition point of view, skeletons provide a unique
combination of boundary and area information. Al-
though mathematically well defined (in the continu-
ous plane), it has always been a problem to implement
skeletons on computers. This situation has brought nu-
merous suggestions of solutions referred to as skele-
tonization or thinning algorithms.

Having a stable scheme describing distances in the
digital plane, solves many of the inherent problems of
skeletonization. As shown in (Kimmel et al., 1995a),
skeletons are located on zero crossing curves of dif-
ferences of distance transforms from boundary seg-
ments. Applying simple differential geometry results
to skeletons, it is possible to find a necessary and suf-
ficient partition of the boundary to segments whose
distance transforms participate in the specification of
the skeleton location. See Fig. 8 (taken from (Kimmel
et al., 1995a)).

2.10. Geometric Invariant Flows

The relation between the Eulerian formulation and
curve evolution serves as a direct link between curve
and image evolution. Under some limitations, like
preserving the order of level sets (preserving the em-
bedding), it is possible to evolve all the level sets simul-
taneously. Each of the evolving level sets will follow the
same evolution rule. This important observation made
it possible to extend the Euclidean scale space of pla-
nar curves (Grayson, 1987; Gage and Hamilton, 1986)
into geometric image smoothing, and the affine scale
space of curves into affine invariant image smoothing
(Sapiro and Tannenbaum, 1993; Alvarez et al., 1992;
Alvarez et al., 1993).

The Euclideangeometric heat equationis given by

Ct = κ EN ,

whereκ is the curvature. The Eulerian formulation is

φt = ∇ ·
( ∇φ
|∇φ|

)
|∇φ|.

The affinegeometric heat equationmay be geomet-
rically written as

Ct = κ1/3 EN ,

with Eulerian formulation

φt = ∇ ·
[( ∇φ
|∇φ|

)]1/3

|∇φ|,

that simplifies into

φt =
(
φxxφ

2
y − 2φxφyφxy+ φyyφ

2
x

)1/3
.

2.11. Geodesic Active Contours

One of the main problems in image analysis is the seg-
mentation problem. Given several objects in an image
it is necessary to integrate their boundaries in order to
achieve good model of the objects under inspection.
This problem was addressed in many ways over the
years, starting with simple thresholding, region grow-
ing, and deformable contours based on energy mini-
mization along a given contour called ‘snakes’.

In (Caselles et al., 1995a; 1995b) a novel geometric
model that starts form a user defined contour and seg-
ments objects in various type of images is introduced.
The idea is to minimize a total ‘non-edge’ penalty func-
tion g(x, y) integrated along the curve. The relation to
the classical snakes and to recent geometric models
is explored, showing better behavior of the proposed
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Figure 8. Finding the skeleton of the shape in the upper left frame is done by first locating the curvature positive maxima along the boundaries
on the upper right. Then, by calculating the distance from each boundary segment, the skeleton may be determined with sub-pixel accuracy as
shown in the lower right frame.

method over its ‘ancestors’: The classical snakes and
the recent geometric models. The planar evolution of
the boundary curve is

Ct = ((c+ κ)g− 〈∇g, EN 〉) EN ,

wherec is an arbitrary constant, andκ is the curvature.
The Eulerian evolution in this case is given by

φt =
(

c+∇ ·
( ∇φ
|∇φ|

))
g|∇φ| − 〈∇g,∇φ〉.

The tumor in the Fig. 9 (taken from (Caselles et al.,
1997)) is anacousticus neurinoma, and includes the
triangular shaped portion at the top left part. The
detection process is presented on the zoom out part of
the tumor on the right. For comparison, the same image
was also applied to the model developed in (Caselles
et al., 1993; Malladi et al., 1995). Due to the large vari-
ation of the gradient along the object boundaries and
the high noise in the image, the curve did not stop at

the correct position, it shrinks to a point and the tumor
was not detected.

This way of finding local geodesics in a potential
function defined by an edge detection operator re-
quires an initial contour as initial conditions. In some
other cases, it is desired to locate the minimal geodesic
connecting two points along the boundary of an ob-
ject. In (Cohen and Kimmel, 1997) an approach of
integrating edges by locating the minimal geodesic is
explored. See Fig. 10 (taken from (Cohen and Kimmel,
1997)).

3. Numerical Schemes
and the Eulerian Formulation

The procedures required for in solving some of the
classical problems we deal with are in fact procedures
for solving partial differential equations (PDEs). In
the following sections we give a brief introduction
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Figure 9. An example of tumor detection in MRI via geodesic active contours. The tumor in the image on the left is anacousticus neurinoma,
and includes the triangular shaped portion at the top left part. For this image, an inward deforming contour was used. The tumor portion on the
right is shown after zoom out for better presentation. The gray contours are the positions of the evolving curve in time, while the white contour
is the final result of segmenting the tumor.

Figure 10. An MR heart image on the left. The white contour between the two black end points on the right is the segmentation result of the
desired ventricle.

to numerical analysis issues that were found rele-
vant for approximation, when solving such PDE’s. We
present the basics of how to select the proper nu-
merical scheme for approximating a given evolution
equation. Planar curve evolutions are reformulated as
Hamilton-Jacobi (HJ) equations. Then, using the close
relation between hyperbolic conservation laws and HJ

equations, numerical schemes that make use of this re-
lation are discussed. The purpose of this paper is to
stress the practical usage of the numerical methods,
therefore basic concepts and recipes are presented in
a simple and often simplistic way that we hope will
be of help for potential future implementers of such
methods.
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4. Helpful Literature

The numerical analysis literature that best fits our
needs, deals with numerical approximations of Hamil-
ton Jacobi equations. As shown in (Osher and Sethian,
1988) these equations are closely related in nature to
hyperbolic conservations laws. Therefore, numerical
techniques that were developed for approximating the
evolution of differential conservation laws may readily
be adapted to the type of equations we encounter.

The book of LeVeque (1992) is a great help as an in-
troduction to numerical methods for conservation laws.
The interested reader could find more detailed infor-
mation of the basic concepts and definitions in this
book. Formal definitions and limitations of numerical
methodologies as applied to conservation laws in fluid
dynamics may be found in (Sod, 1985). More informa-
tion about conservation laws and the theory of shock
waves, is given by one of the founders of this theory,
Peter D. Lax, in his lecture notes (Lax, 1973). The the-
ory of shock waves and its applications in the analysis
of gas dynamics is given by Smoller in the third part of
his book (Smoller, 1983).

The relation between conservation laws and the evo-
lution of curves was introduced by Osher and Sethian
in their classic paper (Osher and Sethian, 1988). In this
paper, Osher and Sethian present a new formulation for
curve evolution by considering the evolution of a higher
dimensional function in which the curve is embedded
as a level set. The relation of this evolution process to
conservation laws is explored, stable and efficient nu-
merical schemes being proposed. Other, more general,
(e.g., for non convex Hamiltonians) numerical schemes
approximating the same type of PDE’s may be found
in (Osher and Shu, 1991).

The search for better numerical schemes in this field
is still an ongoing concern of many researchers. Al-
though several new techniques have been introduced
since the book of LeVeque was published, we still
feel that “the mathematical theory is lagging behind
the state-of-the-art computational methods” (LeVeque,
1992).

5. Basic Definitions

The continuous case analysis is of course very im-
portant when analyzing PDE’s. However (although
accurate analysis serves an important role in under-
standing the behavior of the equation) when imple-
menting a numerical approximation of such an equation

on a digital computer one must address several other
topics as well.

An example of a very simple, yet very important,
question is how to approximateux(x), the first deriva-
tive of the functionu(x) : IR→ IR in thex direction.
Let us simplify the problem and assume thatu(x) is
sampled by taking uniform samples of its values at
equal distances of1x. Denoteui to be itsi -th sample,
i.e., ui ≡ u(i1x), and Dxui as thefinite difference
approximationof the functionu at the pointx = i1x.
In approximatingux one should consider computation
efficiency, accuracy and consistency with the continu-
ous case. Using the samples it is possible to interpolate
a smooth function passing through the function values
at the sample points. A very simple approximation is
thecentereddifference finite approximation, given by

Dxui ≡ ui+1− ui−1

21x
.

It is based on the Taylor series expansion, with a trun-
cation error ofO(1x2).

The forward finite approximation is similarly de-
fined as

Dx
+ui ≡ ui+1− ui

1x
,

and thebackwardsapproximation:

Dx
−ui ≡ ui − ui−1

1x
.

In both cases above, the truncation error is ofO(1x).
Taking1x → 0 the approximation obviously con-

verges to the continuous case for the case of smooth
functions. Convergence to the continuous case is an
important issue that is referred to asconsistencywith
the continuous case.

6. Conservation Laws
and Hamilton-Jacobi Equations

The curve evolution equations are differential rules
describing the change of the curve, or its evolution,
in ‘time’. As we shall see in the next section there
is a formulation that puts curve evolution equations
into a closely related formulation having the flavor of
conservation laws. Following (Lax, 1973): A conser-
vation law asserts that the rate of change of thetotal
amountof substance contained in a fixed domainG is
equal to theflux of that substance across the boundary
of G. Denoting thedensityof that substance byu, and
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the flux by f , the conservation law is

d

dt

∫
G

udx= −
∫
∂G
〈 f, n〉 dS,

wheren denotes the outwards normal toG anddSthe
surface element on∂G, which is the boundary ofG,
so that the integral on the right measures the outflow—
hence the minus sign. Applying the divergence theo-
rem, takingd/dt under the integral sign, dividing by
the volume ofG and shrinkingG to a point where all
partial derivatives ofu and f are continuous we obtain
thedifferential conservation law:

ut +∇ · f = 0.

Consider the simple 1D case in which the integral (by
x andt) version of a conservation law gets the explicit
form of:∫ x1

x0

(u(x, t1)− u(x, t0)) dx

+
∫ t1

t0

( f (x1, t)− f (x0, t)) dt = 0.

A solutionu is called ageneralized solutionof the con-
servation law if it satisfies the above integral form for
every interval(x0, x1) and every time interval(t0, t1).
Takingx1→ x0, t1→ t0, and dividing by the volume
dxdt= (x1−x0)(t1−t0), we obtain the 1D differential
conservation law:

ut + fx = 0.

For fx = (H(u))x, (i.e., assumingf is a function of
u given byH(u)) aweak solutionof the above equation
is defined asu(x, t) that satisfies (Sethian, 1989)

d

dt

∫ x1

x0

u(x, t) dx = H(u(x0, t))− H(u(x1, t)).

Weak solutions are useful in handling non smooth data.
Observe further thatu need not be differentiable to sat-
isfy the above form, and they are not unique. Thus, we
are left with the problem of selecting a special ‘physi-
cally correct’ weak solution.

The Hamilton-Jacobi (HJ) equation in IRd has the
form

φt + H
(
φx1, . . . , φxd

) = 0, φ(x, 0) = φ0(x).

Such equations appear in many applications. As poin-
ted out in (Osher and Sethian, 1988; Osher and Shu,

1991), there is a close relation between HJ equations
and hyperbolic conservation laws that in IRd take the
form

ut +
d∑

i=1

fi (u)xi = 0, u(x, 0) = u0(x).

Actually, for the one-dimensional case(d = 1), the
HJ equation is equivalent to the conservation law for
u = φx. This equivalence disappears when considering
more than one dimension:H(·) is often a non linear
function of its argumentsφxi and obviously does not
have to be separable, so that we can no longer use
the integration relation betweenφ and u. However,
numerical methodologies that were successfully used
for solving hyperbolic conservation laws are still useful
for HJ equations.

7. Entropy Condition and Vanishing Viscosity

In general, the weak solution for a conservation law
is not unique and an additional condition is needed
to select thephysically corrector vanishing viscosity
solution. This additional condition is referred to as the
entropy condition.

Consider the ‘viscous’ conservation law:

ut + (H(u))x = εuxx.

The effect of the viscosityεuxx is to smear (or diffuse)
the discontinuities, thereby, ensuring a unique smooth
solution. Introducing the viscosity term turns the equa-
tion from a hyperbolic into a parabolic type, for which
there always exists a unique smooth solution fort > 0.
The limit of this solution asε → 0 is known as the
‘vanishing viscosity’ solution. The entropy condition
selects the weak solution of the conservation law

ut + (H(u))x = 0 u(x, 0) = u0(x),

that is the vanishing viscosity solution foru0. There-
fore, the vanishing viscosity solution is sometimes re-
ferred to as the entropy solution.

Satisfying the entropy condition guarantees mean-
ingful and unique weak solutions. Moreover, there
is a close duality between the entropy condition and
the Eulerian formulation to curve evolution. Actually,
the search for an entropy condition for the case of
curve evolution (Sethian, 1985) eventually led Osher
and Sethian to the Eulerian formulation (1988) that will
be described in the following section.
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8. The Eulerian Formulation

The Eulerian formulation for planar curve evolution
was first proposed by Osher and Sethian in (1988). This
formulation allows the developments of efficient and
stable numerical schemes in which topological changes
of the propagating curve are automatically handled.

Consider the family of planar curves given by
C(s, t) : [0, L(t)] × [0, T) → IR2, wheres is the
arclength of the curveC at timet . Let the curve evolu-
tion equation describing the differential change of the
curve in time be given by

Ct = V, C(s, 0) = C0(s),

whereV(s, t) : [0, L] × [0, T)→ IR2, is some veloc-
ity vector field that changes smoothly along the curve.
The same evolution may be equivalently written by
considering the normalEN = Css/|Css| and tangential
ET = Cs components of the velocity V along the curve:

Ct = 〈V, EN 〉 EN + 〈V, ET 〉 ET , C(s, 0) = C0(s).

A basic result from the theory of curve evolution is
that the geometric shape of the curve (often referred to
as the trace or the image of the planar curve) is only
affected by the normal component of the velocity. The
tangential component affects only the parameteriza-
tion, and not the geometric shape of the propagating
curve:

Lemma 1 (Epstein and Gage, 1987). The family of
curvesC(p, t) that solve the evolution rule

Ct = VN EN + VT ET ,
where VN does not depend on the parameterization of
the curve,2 can be converted into the solution of

Ct = VN EN .

Proof: Given C(p, t) : S1 × [0, T) → IR2 as the
original family of curves, letp = p(ω, τ) andt = τ
with ∂p/∂ω > 0 be a reparametrization. By the chain
rule

Cτ = Cωωτ + Ct tτ

= Cωωτ + Ct .

For the arclength parameterizations we have that

Cω = Cssω

= ET sω.

Using these two expressions we calculate

Cτ = Cωωτ + Ct

= ET sωωτ + VT ET + VN EN
= (VT + sωωτ ) ET + VN EN ,

Choosing the parameterω that solves the O.D.E.:

VT + sωωτ = 0,

and recalling the selectiont = τ we arrive at:

Ct = VN EN . 2

Therefore, since our interest is the shape of the curve
we can consider the ‘Lagrangian’ form of the curve
evolution:

Ct = 〈V, EN 〉 EN , C(s, 0) = C0(s),

and forVN = 〈V, EN 〉,
Ct = VN EN , C(s, 0) = C0(s). (1)

While implementing the evolution given by the
Lagrangian formulation one should handle topological
changes in the evolving curve by external procedures.
Such a procedure should monitor the process and de-
tect possible mergings and splittings of the curve. It
was also shown (Sethian, 1985; Osher and Sethian,
1988; Sethian, 1989) that such implementations are
very sensitive to the formation of high curvature and
sharp corners. The problems appear due to a time vary-
ing coordinate system(s, t) of the direct curve repre-
sentation (wheres is the parameterization, andt—the
time). An initial smooth curve can develop curvature
singularities. The question is how to continue the evo-
lution after singularities appear. The natural way is
to choose the solution which agrees with theHuygens
principle (Sethian, 1985). Viewing the curve as the
front of a burning flame, this solution states thatonce
a particle is burnt, it cannot be re-ignited(Sethian,
1989). It can also be proved that from all theweakso-
lutions of the Lagrangian formulation, the one derived
from the Huygens principle is unique, and can be ob-
tained by a constraint denoted as the “entropy condition
for curve evolution (Osher and Sethian, 1988)”.

In order to overcome these difficulties the ‘Eulerian
formulation’ was proposed in (Osher and Sethian,
1988).

Let φ(x, y, t) : IR2 × [0, T) → IR be an implicit
representation of the curveC(s, t), so that the zero level
setφ(x, y, t) = 0 is the set of points constructing the
curveC(s, t). In other words, the trace of the curveC
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at timet is given by the zero level set of the functionφ
at timet :

C(t) = φ−1(0).

The demand ofC being the zero level set is arbitrary,
and actually any other level set may serve the same
purpose. The problem is how to evolve theφ function
in time so that its zero level set tracks the time varying
curveC(t).

Denote by∇ ≡ (∂/∂x, ∂/∂y) the gradient operator.
Then, from basic calculus, we have

Lemma 2. The planar unit normal of the curveC =
φ−1(c), where c is an arbitrary constant selecting the
level set, is given by EN = ∇φ/|∇φ|.
Proof: Let s be the arclength parameter ofC. Then,
along the equal height contourC the change ofφ is
zero:

φs = 0= φxxs + φyys.

This expression〈∇φ, Cs〉 = 0, determines that∇φ is
orthogonal toCs = ET . 2

According to the chain rule,

φt = φxxt + φyyt .

Then, the above equation may be written as:

φt = 〈∇φ, Ct 〉
= 〈∇φ,VN EN 〉
=
〈
∇φ,VN

∇φ
|∇φ|

〉
= VN

〈
∇φ, ∇φ|∇φ|

〉
= VN |∇φ|,

which is the Eulerian formulation for curve evolu-
tion. Givenany smooth functionφ0(x, y) such that
φ−1

0 (0) = C0 we can rewrite the last result

φt = VN |∇φ|, φ(x, y, 0) = φ0(x, y), (2)

which is a Hamilton-Jacobi type of equation. This for-
mulation of planar curve evolution processes frees us
from the need to take care of the possible topologi-
cal changes in the propagating curve. Sethian (1989)
named the aboveEulerian formulationfor front prop-
agation, because it is written in terms of a fixed
coordinate system.

The normal componentVN may be any smooth scalar
function. An important observation is that any geomet-
ric property of the curveC may be computed from its
implicit representationφ. The curvature, for example,
plays an important role in many applications:

Lemma 3. The curvatureκ of the planar curveC =
φ−1(c) is given by

κ = −φxxφ
2
y − 2φxφyφxy+ φyyφ

2
x(

φ2
x + φ2

y

)3/2 (3)

Proof: Along C, the functionφ does not change its
values. Therefore,∂nφ/∂sn = 0, for anyn. Particu-
larly, for n = 2,

0 = ∂2φ

∂s2

= ∂

∂s
(φxxs + φyys)

= φxxx2
s + 2φxyxsys + φyyy2

s + φxxss+ φyyss

= φxxx2
s + 2φxyxsys + φyyy2

s + 〈∇φ, Css〉. (4)

Recall that EN = (−ys, xs)=∇φ/|∇φ|, and that by
definitionCss= (xss, yss) = κ EN . Or explicitly ys = − φx√

φ2
x+φ2

y

xs = φy√
φ2

x+φ2
y

,

and  xss = κ φx√
φ2

x+φ2
y

yss = κ φy√
φ2

x+φ2
y

.

Introducing these two expressions into Eq. (4) we
conclude that

0 = φxxφ
2
y − 2φxφyφxy+ φyyφ

2
x

|∇φ|2 + 〈∇φ, Css〉

= φxxφ
2
y − 2φxφyφxy+ φyyφ

2
x

|∇φ|2 + |∇φ|κ.
2

9. Numerical Methodologies

We have seen that the curve evolution may be presented
as a Hamilton-Jacobi equation. In one dimension, the
HJ equation coincides with hyperbolic conservation
laws. This close relation can be used to construct
numerical schemes for our problems. Similarly to the
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continuous case, a finite difference method is incon-
servation formif it can be written in the form

un+1
j − un

j

1t
= −

(
gn

j+1/2− gn
j−1/2

)
1x

, (5)

wheregj+1/2 = g(u j−p+1, . . . ,u j+q+1) is called anu-
merical flux, is Lipschitz3 andconsistent(satisfies the
consistency requirement)

g(u, . . . ,u) = H(u),

i.e., setting all thep+q variables of the numerical flux
function tou, the numerical flux becomes identical to
the continuous flux.

Theorem 1. Suppose that the solution u(x, n1t) of a
finite difference method in conservation form converges
to some functionv(x, t) as1x and1t approach zero.
Thenv(x, t) is a weak solution of the continuous equa-
tion.

The proof may be found in (Sod, 1985), p. 286.
A numerical scheme ismonotoneif the function

F(un
j−p, . . . ,u

n
j +q+ 1) that defines the scheme

un+1
j = F

(
un

j−p, . . . ,u
n
j+q+1

)
,

or equivalently (for a conservation form):

un+1
j = F

(
un

j−p, . . . ,u
n
j+q+1

)
= un

j −
1t

1x

(
gn

j+1/2− gn
j−1/2

)
,

is a non-decreasing function of all its (p+ q + 1) ar-
guments, that is,

Fj ≡ ∂F

∂un
j+i

≥ 0 for−p ≤ i ≤ q + 1.

Theorem 2 (Kuznetsov, 1976)4. A consistent,mono-
tone finite difference method un

j that has a conservation
form, converges to the unique entropy satisfying weak
solution of ut − (H(u))x = 0.

The local truncation errormeasures how well the
finite difference method models the differential equa-
tion locally. It is defined by replacing the approxi-
mated solution in the difference method by the true so-
lution u( j1x, n1t). Let us replace for exampleun+1

j
by the Taylor series aboutu(x, t), i.e., u + 1tut +
(1/2)1t2utt + · · ·. We do the same for the spatial
derivatives, and arrive at the error bound that is a func-
tion of 1x and1t . A first order accurate scheme is

a differential method with local truncation error (for
1t/1x = constant) ofO(1t) (as1t → 0).

Satisfying the entropy condition is indeed a desired
quality however these schemes are limited by the fol-
lowing theorem:

Theorem 3. A monotone finite difference method in
conservation form is first order accurate.

For proof see (Sod, 1985), p. 299.
Getting higher order accuracy for such equations

by relaxing the monotonicity demand may be found
in (Osher and Sethian, 1988; Osher and Shu, 1991).
One idea leads to the essentially non-oscillating (ENO)
schemes, in which an adaptive stencil is used between
the discontinuities. Thereby, piecewise smooth data
may be handled with high accuracy.

The relation between the Hamilton-Jacobi equa-
tions and the conservation laws may be used to design
first order finite difference methods for the HJ equa-
tions(Osher and Sethian, 1988). The relation between
φ(x, t), the solution of an HJ equation, andu(x, t), the
solution of the corresponding differential conservation
law that describes the change ofu= ‘the slope ofφ’, for
the one dimensional case, is given by integration, i.e.,
φ(x, t) = ∫ x

−∞ u(x̃, t)dx̃. Thus by integrating over the
monotone numerical scheme (and shifting formj+1/2
to j ) we arrive at

8n+1
j = 8n

j −1t g
(
D−8n

j−p+1, . . . , D+8n
j+q

)
.

Definition 1. An upwind finite difference scheme is
defined so that

gj+1/2 =
{

H(u j ) H ′ > 0
H(u j+1) H ′ < 0

·

In some cases, an upwind numerical flux in a con-
servation form results in a monotone method5. The up-
wind monotone HJ scheme for the special case where

H(u) = h(u2),

with h′(u) < 0, was introduced in (Osher and Sethian,
1988):

gHJ
(
un

j , u
n
j + 1

) = h
((

min
(
un

j , 0
))2

+ (
max

(
un

j + 1, 0
))2)

.

This scheme has the advantage of being easy to gener-
alize to more than one dimension.

Motivated by the theory of mathematical morphol-
ogy (Brockett and Maragos, 1992), we have found the
following scheme to have same qualities (being up-
wind) as the HJ scheme under the same restrictions
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(h′(u) < 0):

gM
(
un

j , u
n
j+1

) = h
((

max
(−un

j , u
n
j+1, 0

))2)
.

This is Godunov’s scheme for this case (see e.g., (Osher
and Sethian, 1988)). The only difference between the
gHJ and thegM is that at points whereu changes form
negative to positive magnitude,gM selects the max-
imum between(u j )

2 and (u j+1)
2, while gHJ selects

(u j )
2+ (u j+1)

2. We have found that thegM numerical
flux produces better results in some cases.

Having the numerical flux, or numerical Hamilton-
ian in the HJ context, we can write the numerical ap-
proximation of the Hamilton-Jacobi formulation as

8n+1
j = 8n

j −1t g
(
D−8n

j , D+8n
j

)
. (6)

As we noted before, in some cases the requirements
on the numerical scheme are relaxed to achieve higher
order accuracy as well as handling more complicated
flux functions. One useful example for our case is par-
tial derivatives that are approximated byslope limiters.
The idea is to keep the total variations of the evolving
data under control, leading to the TVD (total variation
diminishing) methods (LeVeque, 1992). By selecting
the smallest slope between the forward and backward
derivatives, the estimated slope of the data is always
limited by the continuous data. A simple example of a
first order slope limiter is given by theminmodopera-
tion. Define theminmodselection function as

minmod{a, b} =
{

sign(a)min(|a|, |b|) if ab> 0
0 otherwise

This can be used to approximateφx by the minmod
finite derivative

φx|x=i1x ≈ minmod
(
Dx
+8i , Dx

−8i
)
.

In (Osher and Sethian, 1988; Osher and Shu, 1991)
it was shown that higher order accuracy can be easily
achieved by using TVD methods for second order accu-
racy with solid theory, or using ENO method for higher
order accuracy (in this case there is not yet a concrete
theory for these working schemes). An important im-
plementation issue introduced in (Adalsteinsson and
Sethian, 1995), is the fact that performing computa-
tions only in a narrow band around the propagating
front can reduce the computation effort. In this case,
computations are performed in a narrow band that is
dynamically swept with the front, while the rest of the
grid points in the domain serve only as sign holders
(see also (Chopp, 1993)).

10. The CFL Condition

One of the earliest observations in the field of finite
difference schemes was made by Courant et al., (1928,
1967). They observed that a necessary stability con-
dition for any numerical scheme is that thedomain of
dependenceof each point in the domain of the numeri-
cal scheme should include the domain of dependence of
the PDE itself. This condition is necessary, but not nec-
essarily sufficient, for the stability of the scheme. For
hyperbolic PDEs the domain of dependence is known
to be bounded.

Considering the 1D case, when refining the dis-
cretization grid by letting1x → 0 and1t → 0, the
ratio1t/1x should be limited. This limit, known as
the CFL number or the Courant number, is determined
by the maximal possible flow of information. The flow
lines of the information obviously depend on the spe-
cific initial data and are known as thecharacteristics
of the PDE. Collisions of characteristics form ‘shocks’
in the solution and therefore require additional condi-
tions which determine how to handle the propagation
of such a shock. A propagating shock in time may
thus be defined as a sequence of colliding characteris-
tics where the entropy condition defines the speed of
this propagation.

As a simple example consider the 1D conservation
law in which the the point(x = x̃, t = t̃) in the PDE
domain can be influenced by the data bounded by the
triangle(x0, 0), (x̃, t̃), (x1, 0). This means that any in-
formation at the interval(x0, x1) of the initial condition
u0 may influence the result at(x̃, t̃), namelyu(x̃, t̃).
Similarly, it may be asserted that the point(x̃, t̃) is in
the domain of influenceof each point in the interval
(x0, x1). Therefore, any finite difference approximat-
ing the PDE should take this fact into consideration,
by limiting the ratio1t/1x. Taking this to a limit,
for ut + (H(u))x = 0 the CFL restriction for a 3-point
scheme can be shown to be

1≥ 1t

1x
|H ′|,

and in our case, where we have actually integrated a 3-
point of1x scheme of a conservation law into a 3-point
HJ equation we arrive at the same CFL restriction.

As pointed out, thegHJ and thegM numerical flows
may be easily generalized to several dimensions. The
generalization is straightforward and for the specific
case ofH(u, v) = f (u2, v2)we get the following form

gM
(
un

i , u
n
i+1, v

n
j , v

n
j+1

) = h
((

max
(−un

i , u
n
i+1, 0

))2
,(

max
(−vn

j , v
n
j+1, 0

))2)
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This yields an upwind monotone scheme with a CFL
restriction of

1≥
(
1t

1x
|Hu| + 1t

1y
|Hv|

)
.

Consider the simple example of a planar curve prop-
agating with constant velocity along its normal that
obeys the following evolution law,

Ct = EN .

It is easy to see that sinceVN = 1 the Eulerian formu-
lation for this case is

φt = |∇φ|,

thus, H(u, v) = √u2+ v2. For the simple selection
of 1x = 1y = 1, we arrive at the CFL restriction:

1t ≤ 1√
2
.

The following example presents offsets produced by
two schemes, one with1t < 1/

√
2, satisfying the CFL

restriction, and another with1t > 1/
√

2, violating the
CFL restriction. The Eulerian formulation is imple-
mented by the following numerical approximation:

8
n+1
i j =8n

i j +1t

×
√(

max
(
−Dx−8n

i j , Dx+8n
i j , 0

) )2 +
(

max
(
−D

y
−8n

i j , D
y
+8n

i j , 0
) )2

.

Figure 12. The images of the iterations (every two time steps)82 to 816, left to right, upper to bottom, for the scheme with non-violating
(satisfying the CFL restriction) time step1t = 0.7.

Figure 11. The original image which is an implicit representation
of the contours describing the outline of the letters in the image.

Figure 11 is the data imageI , given as initial condi-
tion to the evolution equation (80 = I ). The evolution
of8 in time for the scheme with1t = 0.7< 1/

√
2 is

presented in Fig. 12. The offsetting results of the two
schemes with1t = 0.7 and1t = 0.8 are presented in
Fig. 13 on the left and right columns, respectively. The
gray levels correspond to the height values of8n

i j on
the grid. Histogram equalization is applied to the last
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Figure 13. Left column:1t = 0.7. Right column:1t = 0.8, violating the CFL condition. Upper row: the offsets (zero level sets, of the
propagating8 every two time steps) are shown as white contours on the original image. Middle row: the images of8 at t = 11.2, in which
the heights8i j are presented as gray levels. Bottom row:8 images att = 11.2 after histogram equalization that stresses the instability effects
caused by violating the CFL condition.
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evolution step in order to strengthen the fact that violat-
ing the CFL restriction results in perturbations of the8
function. The bottom row in Fig. 13 shows the unsta-
ble result on the right compared with the stable one on
the left. The zero level sets (every two time steps) are
drawn as white contours on the original image (upper
row). Since we have chosen only few iterations and
selected a time step that is close to the CFL condition,
the zero level sets are only slightly affected. More iter-
ations or a larger time step will amplify the noise and
distort the smoothness of the zero level sets.

11. Concluding Remarks

In this paper we reviewed the basic terminologies and
methodologies in numerical analysis of conservation
laws. Following Osher and Sethian, it was shown how
planar curve evolution can be cast into the Eulerian for-
mulation. This implicit formulation for curve evolution
has the form of a Hamilton-Jacobi type of equation,
for which there is a close relation to conservation laws.
This relation was then explored and used to achieve
efficient and stable numerical schemes.

The numerical schemes and limitations introduced in
this paper were used in the cited papers in the design of
finite difference approximations to the relevant PDEs.
One important property of all the proposed numerical
schemes is that when taking the discretization grid to a
limit following the required limitations, the numerical
schemes converge to the continuous case (the consis-
tency property). This important property is lost for
example when implementing graph search algorithms
aimed at solving similar problems, since the metrics
that the specific graphs induce inevitably lead to met-
rication errors.
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Notes

1. V may also depend on the global properties of the curve (e.g.,
(Sapiro and Tannenbaum, 1995)) as we will show, the relevant
concept is forV to beintrinsic.

2. VN is thus called an ‘intrinsic’ or ‘geometric’ quantity.
3. Observe that the numerical flux is a functiong : IRp+q → IR,

and thus maybe restricted as such to be Lipschitz.
4. See also (Harten et al., 1976).
5. Monotonicity does not necessarily hold for all upwind conserva-

tive schemes.
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