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Abstract. Multiscale representations and progressive smoothing constitute an important topic in different field
as computer vision, CAGD, and image processing. In this work, a multiscale representation of planar shapes
first described. The approach is based on computing classical B-splines of increasing orders, and therefore is a
matically affine invariant. The resulting representation satisfies basic scale-space properties at least in a qualita
form, and is simple to implement.

The representation obtained in this way is discrete in scale, since classical B-splines are functfoAsitere
k is an integer bigger or equal than two. We present a subdivision scheme for the computation of B-splines
finite support at continuous scales. With this scheme, B-splines representati@narinobtained for any realin
[0, 00), and the multiscale representation is extended to continuous scale.

The proposed progressive smoothing receives a discrete set of points as initial shape, while the smoothed cun
are represented by continuous (analytical) functions, allowing a straightforward computation of geometric chara
teristics of the shape.

Keywords: B-spline representations, subdivision schemes, continuous scale, affine invariant, progressive smoo
ing, computer implementation

1. Introduction where Qi .n[-] represents the action of the filter
K(-,t). Larger values ot correspond to signals at
Multiscale descriptions of signals have been studied coarser resolutions.
for several years already since Witkin's work [43],and A classical example of a scale-space kernel is the
developed in several different frameworks by a number Gaussian one. Inthis case, the scale-spaceislinear, and
of researchers in the past decade [4, 8, 14, 17, 21, 25—thefilterin (1) is defined via convolution. The Gaussian
27,30-32, 34, 44]. The idea of scale-space filtering is kernel is one of the most studied in the theory of scale-
based on filtering a given initial signdlp(X) : R" — spaces [4, 21, 25, 44]. It has some very interesting
R™ with a family of filtersiC(X, t) : R" — R™, where properties, one of them being that the sigbalbtained
t € R* represents the scale. In other words, the scale- from it is the solution of the heat equation (with as
space is given byp (X, t) defined as initial condition) given by

) . I
DX, 1) 1= Q. [Po(X)], () i
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One of the key facts that can be gleaned from the

Eq. (1)) can be obtained either from the initial sig-

Gaussian example is that the scale-space can be ob- nalg>(>?, 0) via Q(tp), or from an intermediate one

tained as the solution of a partial differential equation
called arevolution equationThis idea was developed
in different works [1-3, 23, 24, 38] for evolution equa-
tions different from the classical heat flow.

Let’s concentrate now on the family of planar curves

C(u,t):[a,b] x[0,7) — R?,
and define the evolution equation

ic _ e
ot~ oap?’
C(u, 0) = Cp(u).

)

If p = u, then the classical heat equation is obtained.
If p = v, wherev is the Euclidean arc-lengtj42],
theEuclidean shortening floyor Euclidean geometric
heat flow is obtained [18, 20]. This equation defines a
geometric Euclidean invariant scale-space [2, 24, 32].
If p=s, wheres is theaffine arc-lengtt6], then the
affine shortening flowor affine geometric heat flgw

D (X, ty) ViaQ(tz —1t1) (1 < tp).

In [1], Alvarez et al. gave a characterization of the
evolution equations for which these and other proper-
ties hold. Examples are, of course, both the classical
and the geometric heat flows described above [1, 2, 38].

The multiscale representation here developed is not
obtained as the solution of an evolution equation. It is
based on computing B-spline representations at differ-
ent orders. Increasing the order of the B-spline repre-
sentation, smoother curves are obtained. Therefore, the
B-spline order plays the role of the scale parameter in
previously described scale-spaces. We will show that
the above mentioned multiscale representation proper-
ties hold at least in a qualitative form. Since B-splines
are affine-invariant, so is the obtained representation.
This means that the B-spline representations of two se-
ries of control points related by an affine motion, are
related by the same affine motion.

Classical B-splines are functions @2, where
k, the B-spline order, is an integer number bigger or

is obtained [36, 37]. Sapiro and Tannenbaum [36, 37, equal than 2. Therefore, the multiscale representation
39] proved that this equation is the affine analog of the based on classical B-splines of different orders, is dis-
Euclidean shortening flow, and that any simple curve crete in its “scale” parametér.? Based on subdivi-
converges to an ellipse when evolving according to it sion schemes, we present an extension of the classical
(in the Euclidean case, convergence to a circle is ob- B-spline basis in order to obtain a finite support basis in
tained [18, 20]). The affine flow was implemented C' r ¢ [0, co). This way, we also obtain a continuous
using an efficient numerical algorithm for curve evo- in “scale” multiscale B-spline based representation.
lution presented in [33], and based on this, a geomet-  The proposed B-spline based progressive smoothing
ric affine invariant scale-space for planar curves was (representation) is easy to implement (see Sections 2
defined [38]. and 4). In contrast with frequently used scale-spaces,

In general, a number of properties are required to as the Gaussian one, itis defined directly (intrinsically)
form a scale-space [1, 4]. Some of the basic properties on an initial discrete set of points, avoiding possible
are: problems caused by discretization of continuous scale-
spaces. See for example [30] for an analysis of this
problem in linear scale-spaces, and a possible solu-
tion. (Related to this see also [17].) While the initial
signal is discrete, the smoothed one is continuous and
defined as a linear combination of B-spline basis. This
allows a straightforward computation of geometric
properties of the smoothed curve, as for example curva-
ture or other invariants [22]. With the continuous scale
B-spline basis presented in this paper, the represen-
tation is continuous in scale as well. Therefore, the
trema, total curvature, and so on. The causality proposed representation is natural for computer shape
criterion is usually also related to tleemi-group analysis, since itreceives as input a digital signal, while
property(specially when the scale-space is derived keeping a continuous representation which can be help-
from evolution equations): The signal X, t,) (see ful for different computations.

1. Completeness The original signal should be ob-
tained whert — 0.

2. Order preserving If &g < ®g, thend(t) < P(t)
for allt > 0. This property is violated for example
for 2D Gaussian filters (shapes can merge).

3. Causality criterion This criterion means that “in-
formation” is not added when moving from a finer
to a coarser scale. The “information” can be
characterized for example by zero-crossings-
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The remainder of this paper is organized as follows:
Section 2 gives a brief description of the theory of
B-spline approximations. Section 3 presents the affine
invariant multiscale representation based on classical
B-splines basis. The continuous scale B-spline basis,
developed using subdivision schemes, is presented in
Section 4. Concluding remarks are given in Section 5.

2. Basic Concepts on B-Splines

We briefly describe now the theory of B-spline approx-
imations. For details see for example [5, 9, 40, 41].
Let

C(u):[a, b] > R?

be a planar curve, with Cartesian coordinates
[X(u), y(u)]. Polynomials are computationally effi-
cient to work with, but it is not always possible to
define a satisfactory curve using single polynomi-
als for x andy. Then, the curve is divided in seg-
ments, each one defined by a given polynomial. The
segments are joined together to forrmpiacewise poly-
nomialcurve. The joints between the polynomial seg-
ments occur at special curve points callethts The
sequencely, Uy, ... of knots is required to be nonde-
creasing. The distance between two consecutive knots
can be constant or not. Two successive polynomial seg-
ments are joined together at a given kngtin such a
way that the resulting piecewise polynomial lolecson-
tinuous derivatives. Of course, the order of the poly-
nomials depends aah In this way, a basis is obtained,
and the curvé is given by a linear combination of it.
Formally, the curvé€ is aB-splineapproximation of
the series of pointy; = [x;,y],1 < i < n, called
control verticesif it can be written as

Cr(u) = ZVi Bi ., 3

where Bjx = B(:; Ui, Uiy1,...,U1x) is the i-th
B-spline basisof order k for the knot sequence
[Ui, ..., Unk].  In particular, Bk is a piecewise
polynomial function of degreeck, with breakpoints,
U“...,Uy+k?

Several properties can be proven for the b&sis

1. BU(Z 0.
2. Bix=0 outside the intervaly, uj;«]. This pro-
perty shows the locality of the approximation:

Changing a given control vertex affects only a cor-
responding portion of the curve.

3. The basis is normalized for all order

Z Bix(u) =1 onu---Unul.

4. The support of the B-spline basis is minimal among
all polynomial splines of ordek. This property
shows that this representation is optimal in certain

sense.

The multiplicity of the knots governs the smooth-
ness. If a given number occursr times in the knot
sequenca]j, .. ., Uj,k], thenthefirsk — r — 1deriva-
tives of B; \ are continuous at the breakpointThere-
fore, without knot multiplicity,C, € C<2.

Computation with B-splines are facilitated by using
the following recursive formula [5, 9, 10]:

u-—u Uik — U
Bix(u) = " Bi1+ ———— Btk 1,
Ui+k—1 — Ui Uitk — Uit

4)
together with
B 1(U) = 1 U U< Uiy, )
LT 10 otherwise

The basisB; k is in fact the repeated convolution of a
Haar function with itself, i.e.,

Box = (%)x[0, 1].

3. The B-Spline Multiscale Representation

A generalaffine transformation in the plané€R?) is
defined as
X=AX+T, (6)

where X € R? is a vector,A € GLJ (R) (the group
of invertible real 2x 2 matrices with positive determi-
nant) is the affine matrix, anti € R? is a translation
vector. Itis easy to show that transformatidids T)
of the type (6) form areal algebraic group called the
group of proper affine motionsf A € SL(R) (i.e, the
determinant ofA is 1), (6) gives thegroup of special
affine motions.Asy.

A quantity Q is called arinvariantof the groupA if
wheneverQ transforms intoQ by any transformation
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(A, T) € A, we obtainQ = wQ, whereV is a func- polygon is given., together with the cprresponding
tion of (A, T) alone. Ifw = 1forall (A, T) € A, Q BAIMfork = 2',i =1, 2, 4,6, 7. InFig. 1(b), the

is called arabsolute invarianf13]. initial polygon is obtained via an affine transformation
Observe that from (3), the affine invariant property ©f the polygon in Fig. 1(a). Due to the affine invariant

of the B-spline representation is immediate{\f}] is property, the correspondi@AIM is related to the one

obtained from{V; }} by an affine transformatiafA, T), in Fig. 1(a) by the same affine transformation.

then Note that wherk increases — oo, see Fig. 1), the

- B-spline representation converges to the centroid of the
Ce(u) = Alk(u) + T, @) initial polygon. The convergence is in such a way that
where the shape approaches an ellipse. This is obtained from
n the following theorem:
Ce(u) =Y ViBik,
i Theorem 1. As k increasegk — o0), the B-spline
and representation converges to the centroid of the control
Cull) = an\z B points{V;}], its shape becoming elliptical.
1

Proof: Let's represent the control points as complex
numbers, i.e.V; = [% + jvyi]. Then, using the Fourier
series expansion of the basis functi@g (u) [40, 41],

we have that:

Note that the representation is invariant with respect
to affine transformations of the control poirfte; }],
when the B-spline basis is given (including the knots
points) and kept constant. A completely intrinsic affine
invariant scale space is obtained via the affine geomet- n
ric heat flow mentioned in the Introduction [36, 38]. (i (u) = Z Vi Bi k

Based on this affine invariance, we define now the i=1

B-spline affine invariant multiscale shape representa- n m=co
tion (BAIM) of the pointg{V; }7, as the family of curves = Z(Xi +jyi) Z exp{jmi}
Ck obtained from (3) fok =2, 3, .... i=1 m=—o0

Figure ¥ presents the firsBAIM example. The 2 sinmr/2) \ )
polygon contains 12 points. In Fig. 1(a), the initial X (T) expfjmzmu}

— i (Z(xi + jyoexp{jmni})

m=—o00 i

i=1

<Zsin(mn/2)
o (22

mr

k
> exp{jmmru}.

A

We see that wheh increasegsk — o0), the B-spline
representation converges to the centroid of the initial
polygon (only the term fom = 0 remains in the sum).
Furthermore, the convergence is in such a way that the
curve shape approaches an ellipse. Thisis so since high
frequency components of the Fourier transform of the
B BAIM die out much faster than the low frequency ones.
Therefore, the limiting curve becomes approximately
an ellipse, when only the zeton = 0) and first(m =
+1) frequency components remain significant. O

Figure 1 Example of theBAIM and its affine invariant property.

A 12 points polygon (top) and its correspondent B-spline represen- As pointed out in the Introduction. a curve evolving
tations of ordek = 2',i = 1, 2, 4, 6, 7. Note the convergence !

to the centroid, with an elliptical shape. In the bottom, the original according to the affine geometric heat flow, also con-

polygon is obtained via an affine transformation of the one in the top. VErges to a point with elliptical shape [36-39]. In [7],
The correspondinBAIM is related by the same transformation. the authors presented a discrete polygonal model of
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the affine heat flow, and proved, also using Fourier de-
composition, that the limiting polygon approaches an

ellipse. These results are expected, since all of these
three processes are affine smoothing process [7, 38
41], and the ellipse is the most smooth affine invariant
shape, being the only closed curve with constant affine

curvature [35].

Before referring to a number of properties of this
representation, let's remark basic differences between
the BAIM and most scale-spaces as those presented a
the Introduction:

1. Scale-spaces are usually motivated and defined ove

continuous curves and then discretized. BA¢M
is directly derived from a s€V; } of discrete points.
These set of points can be a dense sampling of the
curve (evenwittn — oo), butitis always a discrete
set. The smoothed curves, in contrast, are contin- ) L
uous, given as a linear combination of basis func- Whenk increasesdiminishing property. The follow- -
tions. This permits the easy computation of different N9 g€ometric results can be proven as well, in relation
curve properties (see also [17]). v_wth the smoothlng property of B-splln_e representa-
2. The multiscale representation obtained via scale- 1ONS- The firstresult, due to Lane and Riesenfeld [29],

spaces is usually continuogse [0, 7)), while the refers to thegeometric diminishing propertyand ba-
one obtained from th@AIM is discrete(k = 2 sically shows that the B-spline representation does not

3,...). See Section 4. “oscillates” more than the given set of control points:

Figure 2 The smoothing property of thBAIM is shown in this
example (orders 4, 20, and 90). The curve is getting more and more
smooth when the order of the B-spline approximation is increased.

We discuss now, for th®AIM, the properties of ~ Theorem 2. Every hyperplane oR™ intersects a
scale-spaces presented in the Introduction. First note B-curve inR™ no more often than the associated con-
that fork = 2, the original set of points, or the polygon  trol polygon.
defined by them, is obtained. Therefore, the represen-
tation is complete.

The curve obtained from the B-spline representation
(3) lies in the convex hull of at moktconsecutive con-
trol points (those which affect the curve at the given
point). For other relations between the control points,
and the obtained B-spline, see [9]. Then, the order
preserving property given in the Introduction, refers to Notation:
the corresponding convex-hull for tHEAIM, as well
as to the other relations between control points and 1. ForCy = (Xo, Yo) andC; = (Xg, y1), we define

One of the possible requirements related to the
causality criteriais that the number of inflection points,
zero crossings of the curvature, decreases when the
scale increases. The following result, due to Goodman
[19], states this.

B-splines given in [9]. Note that when processing iso-
lated shapes, this property is not so crucial in all ap- 2.
plications. It becomes important for example when 3.
dealing with level sets of images as in [1].

The “causality” criteria holds, since for increasing 4.
Kk, increasingly smoother versions of the initial curve
are obtained (see Figs. 1 and 2). Note that wken
increases, both the basis functions get smoother, and
the curve values are obtained as the weighted mean of
more control points. Th&AIM is a smoothing pro-

Co x C1 = XoY1 — YoX1.

i (C) — number of inflections in the cun@ e R2.

S(@ = S(ai,...,an) — number of strict sign
changes in the sequenae R2.

S(f) — number of strict changes in the function
f:(@ab) > R. S(f) = supS(f(ty),..., f(tn)),
where the supremum is taken over all the sequences
a<ti<---<ty<hb

The following definitions present a concept of cur-

cess with increasing smoothing exponent [41], in the vature and curvature sign changes & curves and
sense that the total difference of any order decreasespolygons. This is necessary since the control points do
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not form aC? curve. Recall that the curvatukeof a

Having all these definitions, we can now relate the

C2 curve is defined as the rate of change of the tangent behavior of the zero crossings of the B-splifievith

7T to the curve, and can be computedcas= Cs x Csg
wheresis the arc-length, and therefafgis the tangent

[42]. The definitions below are based on approxima-

tions of tangent vectors for na? curves.

Definition 1. Suppose :[a, b] — R? is continuous
with piecewiseC! tangent vector

— C/
Ic'’
whereC’ = £. Fort e (a, b), x(t) is defined such
that it is positive (negative) if the curve is turning anti-
clockwise (clockwise) af(t). Suppose the curve is
constant atd, 8] C (a, b), but not in any other larger
interval. Then, we define

1

E[U(a_) x v'(@7) +v(Bh) x V(]
if v@™) =v(B")
if v(a™) # v(BT)

k() =
v(@™) x v'(BY)
Finally,

i(C) := S(k).

Definition 2. Ifthe curveC is a polygon, as the control
polygon{Vi}], we write

li == (M —Vic) x (Viz1 — V),
and

I({V|}r£) = S(l4, ..., In).

The following definition limits the class of control
points for which the behavior af-) is analyzed. The
idea is to limit the polygon such that it cannot turn too
sharply.

Definition 3. The polygon{V}{ is regular if the fol-
lowing hold:

1. Itturns to a total angle of magnitude at masthat
is, for some vectoV € R?, V - (V, — Vi_1) > 0,
i=01,...,n.

2. ltdoes not turn through an anglemofat any vertex,
i.e., (Vi —Vi_1) # AV, — Vi) for any realr.

those of its control points:

Theorem 3. If the control polygon{V;}] is regular,
then for the B-spline representatiGrobtained from it
via (3), the following relation holds

i(C) <i({Vi)])-

Theorem 3 means thatif the control polygon does not
turn too sharply, then the number of inflection points of
the B-spline representation does not exceed the number
of inflections points at the control polygon. This result
also holds for a large class of basis functions [16].

From the results above, we conclude that when mov-
ing from the control polygon to a B-spline representa-
tion, no “information” is added.

As pointed out in the Introduction, when scale-
spaces are obtained as solutions of evolution equations,
the causality criteria is usually connected to the semi-
group property. We want to investigate now this prop-
erty in a qualitative form. First note that the B-spline
basis is obtained via repeated convolution of the Haar
function, i.e.,

Bk = x * Bk-1,

wherey is the indicator function. Therefore, the semi-
group property holds for the basis of the representation.
Assume now that given the series of control points
{Vi}], the corresponding B-spline representatiGps
andCy, of orderk; andk, respectively are computed
(k1 < kp). Then, inrelation to the semi-group property,
we ask if we can compute (or atleast approdgighfrom
Ck,. From (3) we have

n
Cr, (U) = ZVi Bik
i
n
Cip(U) = ZVi Bik,-
i
For computing a B-spline representation, we need a

discrete setof control points. Therefofg,is sampled:

n

Vi) = {Ckl(Ui)}rl1 = :ZVJ Bj,kl(ui)} ,
i

1

and the sampling points are used for the computation
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of a new B-spline approximation of ordks:
A n ~
Ci (W) =) ViBiy,
i

n n .
=Y (Z Vj B,—,kl(u')> Bik,.
i j
The difference betweety, and@;<2 is given by:

Hckz _ékzn
n n n )
= ‘ ZV‘ Bik — Z (ZVJ BLM(“')) Bi
i i j
n n )
= ’ Z |:Vi - ZVJ' Bj,kl(U')i| Bi
j
n n .
<> Vi = > ViBiW)
i j

< Y(ke {ViD D Bik,

= T(ky, {Vi}),

Bi k,

whereY (k, {Vi}) is a bound on the distance between
the control points and the B-spline of orderGeneral
bounds for the distance between the initial polygon

2

sampled, and represented by the same number of points
as the original polygon. After that, the B-splines of or-
der(kz) 10 and 15 were computed, with this polygon as
initial data (Figs. 3(f) and 3(g)). As expected, the ob-
tained B-spline representations are very similar to the
ones obtained with the original polygon in Fig. 3(a).
(When Figs. 3(b), 3(f), and Figs. 3(c), 3(g), are pre-
sented in the same draw, almost no distinction between
the corresponding curves is obtained.) Small differ-
ence were observed whé&qis increased, but the gen-
eral (qualitative) shape was always preserved. There-
fore, we can conclude that the semi-group property
holds in a qualitative form.

3.1. The BAIM of Continuous Initial Curves
and Noisy Polygons

If the original curve is given in a continuous form (by a
formula for example), then the curve must be sampled
in order to construct thBAIM. This is in fact what we
did in Fig. 3 for the construction of Figs. 3(f) and 3(g).
Since we are interested in an affine invariant repre-
sentation, the ideal situation is to do the sampling in
an affine invariant form. This can be done for example
starting form the point of maximailffine curvatureand
sampling the curve at constaaffine distance These
properties are conserved under an affine transformation

and the corresponding B-spline representation can be[6]. In this way, the sampling points (control vertices)

found in [9]. Note that since the B-spline basis are
normalized, we have

Vi — <2Vj Bj,kl(ui))
i

Bi k.

Bi k.,

Y (Vi = VB ()
j

are affine invariant. Note also that since B&IM is
given as a linear combination of B-spline basis func-
tions, geometric properties of the curve, as affine cur-
vature, can be computed directly, using the classical
formulas for derivatives [9]. For instance, it is well
known that derivatives of B-splines can be obtained
taking finite differences of lower order splines.

If the sampling strategy described above cannot be
performed (due to the presence of noise for example),

andthe error s like aweighted average of the difference then, a regular sampling can be performed. Since the

between the control points (only those which affects the
value atu').
Since the bound" increases witlk [9], so does the

B-spline basis is normalized, the error of tBAIM is
controlled by the error in the control vertices coordi-
nates. In other words, if the error in the control ver-

error bound. On the other hand, the shape of the splinetices coordinates is bounded byso is the error in the

approximations is similar to the original curve, then it
is expected from the shap@g andCy, to be similar as
well. The error can also be reducedif is sampled in
such away that the poin€, (u') are as close as possi-
ble toV;. This property was experimented and the re-
sults are shown in Fig. 3. The original polygon is given
in Fig. 3(a). The B-spline representations of order
5, 10, and 15 were computed (Figs. 3(b)—(e)). Then,
the B-spline of ordek; = 5 (Fig. 3(b)) is uniformly

B-spline representation coordinates. Figures 4 and 5
show examples of th8AIM of noisy initial curves.
Note that wherk increases, the noise in a given control
point extends to bigger segments in the curve (the sup-
port of B; x gets bigger). On the other hand, increasing
k, also increases the number of control points which
participates in the weighted mean (3) for each point
Ck(u), decreasing the influence of the error in a given
control point.
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a

(402
CAC A0

Figure 3 Investigation of the semi-group property for tBAIM: (a) The original polygon, (b) B-spline representation of order 5, (c) B-spline
representation of order 10, (d) B-spline representation of order 15, (e) B-spline representations of orders 5, 10, and 15, (f) B-spline representa
of order 10 obtained from the sampling of the curve in (b), (g) B-spline representation of order 15 obtained from the sampling of the cury
in (b).

4. Continuous-Scale B-Splines Bo.x = Bok—1* x[o,1] indicating thaBg x is obtained by
smoothingBp k1. To preserve this causality, we would

The multiscale representation described so far is dis- like that forry > ry, By, is obtained by as smoothing

crete in the sense that the B-splingg, = (*)kX[O,l] operation applied t®, ,. Recall that iff isin C" but

that are used to generate it are indexed by a discretenot inC"*2, then its (global) ldlder exponent is given

parametekk € N — {0}. In order to obtain a con- by u(f) =n+ v with

tinuous multiscale representation, one needs to extend

these generators to a family of compactly supported

functions By, ,r € [0, +00), that coincides with the v =inf (

previous one on the integer values of X
The semi-group property of the multiscale represen-

tation is expressed in the integer case by the relation where f (™ is then-th derivative of the functiorf . If

(n) _ £
imint log| f™(x +1t) — f (x)I>’ ®)
|t|—0 log|t|
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— ]

=N

a

b

(A

(AC AC

Figure 4 TheBAIM of a noisy curve: (a) the original polygon. The polygon was obtained from the one in Fig. 3(a) adding random noise
to the coordinates, (b) original and noisy polygons, (c) B-spline representation of order 5, (d) B-spline representation of order 10, (e) B-splil
representation of order 15, (f) B-spline representation of order 5 of the original and noisy polygons, (g) B-spline representation of order 10
the original and noisy polygons, (h) B-spline representation of order 15 of the original and noisy polygons.

we use of Hblder exponent to measure the reguladty
our generators, we would like to have

ri>ro= w(Boy,) > u(Boyr,). ()]

A straightforward technique to extend the B-spline
family isto define for = k+s,k e N—{0}, s € [0, 1],
Bor = (1 —9)Bok + SByks1- (10)

With such a definition, it is clear however that the

property (9) will not be satisfied since we have, for
all0<'s < 1, u(Bokss) = pu(Boy) =k — 1.

We shall thus use a more sophisticated extension of
the B-spline family. This extension is based on “subdi-
vision schemes” that are frequently used in computer-
aided geometric design [15, 28].

Subdivision schemes constitute a useful tool for the
fast generation of smooth curves and surfaces from a set
of control points by means of iterative refinements. In
the most often considered binary unidimensional case,
one starts from a sequensgti) and obtains at step
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wherep is the limit function obtained from the Dirac se-
quencex(i) = 8. Forthisreason is often called the
“limit function” of the stationary subdivision. There-
fore, for a given set of stationary maalandb, having
the control pointss, is enough to determine the final
curve f, having computed apriori the limit functign

a One can also rewrite (11) as

5271 =) ci —2ms;_1(27* ), (13)
n
with c(2i) = a(i) andc(2i + 1) = b(i). Note that
(11) is equivalent to fill the sequensg.1 with zeros at
the intermediate points2(2i 4+1) and apply a discrete
b c convolution with the sequencegi ). As a consequence,
the functiony is the result of an infinite number of dis-

Figure5 A second example of tH®AIM of a noisy curve (compare ! " "
crete convolutions at finer and finer scales. It can also

with Fig. 2): (a) The noisy curve, (b) B-spline representation of order

4, (c) B-spline representation of order 20. be expressed in the Fourier domain by the infinite prod-
uct
a sequencs; (27/i), generated from the previous one +00 _
by linear rules: P() =[] m2 o), (14)
j=1

527721 = > aji(n)s 12711 —ny), _
n wherem(w) = 33" c(n)e™"* is a 2r-periodic func-
S; 2@ +1) = ij,i(n)sj_l(Z’”l(i —n)). tion. Note that ifc(n) = 0forn < aandN > b,
n i.e.,m(w) is afinite Fourier series, thenis compactly
(11) supported in4, b].
Equation (14) means that the design of a subdivision
The masksg; i (n) andb; i (n) are in general finite se-  scheme can be performed in the Fourier domain, via
quences, a property that is clearly useful for the prac- the design of the Fourier transform of the maskc.
tical implementation of (11). This will be crucial in order to obtain continuous scale
Equation (11) means that the new series of points B-splines below.

Sj+1 Is obtained as a linear combination of the series  Detailed reviews of stationary subdivision and their

sj, starting from the control points. Different se-  possible generalizations have been done by Cavaretta,
lections of the mask will give different seriesg. A Dahmen and Micchelli in [11] and Dyn in [15].

natural problem is then to study the convergence of  The B-splineBo  can be viewed as the limit function
such an algorithm to a limit function whegn— oo. In of a stationary subdivision scheme associated to the

particular, the scheme is said to be strongly convergent trigonometric polynomiél
if and only if there exists a continuous functidr(x)
such that lim_, ;. (sup Isj(27)i) — f27Ji)]) = 0. +eioK
One can study more general type of convergence with Me(w) = < 2 ) ’ (15)
the use of a smooth functiog that is well localized
in space (for example compactly supported) and satis- Since we have indeed
fies the interpolation property(i) = ;. One can then Lok oo
define f;(x) = > Si (ZTJi)g(ZJx — i) and study the éo,k(w) _ (1+ € ) _ l_[mk(Z_jw)- (16)
convergence in a functional sensefgfto f. w i1
A subdivision scheme is said to be stationary when
the masks andb are independent of the parametgrs  Note that the coefficients of the subdivision are given

andi. In that case, the limif (x) is given by by ck(n) = 27%1(X) forn = 0- - - k. Itis thus possible
to use the above described subdivision algorithm to
f(x) = Z so)e(x —i), (12) generate the B-spline discrete representation in a very

i€z fast way.
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(Continued on next page
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Figure 6 (Continued)

In order to extend the B-splines to continuous scale,
we have to compute a new function, r € R*, which
will define via (14) the Fourier transforgof the limit
functiong, that is, the continuous scale B-spline. Hav-
ing computedp, the continuous scale representation is

obtained via (12), as in the classical case of discrete
scale B-spline representations. We shall now generate
this continuous parameter representation by interpolat-

ing between the functionsy (w). We shall thus define
forr =k+s, ke N—{0},s € [0, 1],

1 i
e (52

— % ; c (n)eflnw.
Note thatm, above is obtained from the functiany
corresponding to classical B-splines by multiplication
with ”lSTe; Other functiongn, can be computed, as
for example replacing the discrete exponkrim (15)
by the continuous one. This will give a limit func-
tion ¢ with non-compact support, making the extended
continuous scale B-splines non-local and not useful for
real computations.

From m, we obtain that our continuously para-
metrized B-splineBy,; will then be defined by (the
Fourier transform)

1+ e oK
2

17)

+00
Bor (@) := [ [m (27 w). (18)
j=1

J

These functions are compactly supported irkjg- 1]
for k <r <k+ 1. Their regularity can be studied

limit functions of subdivision schemes, due to the di-
verse possible definitions of regularity. For thel&Er
exponent, a method that leads to an exact estimate is
described in Daubechies and Lagarias [12]. Applied
to our particular limit functions, this method can be
summarized as follows: One defines two infinite ma-
trices (Tp)i,; = (2 — j —e+1),e = 0,1 and
study their action on the stable subsp&cef the se-
quencey...,0,0,s,5,0,0---}. The Hilder expo-
nent of By, = Bok4s IS then given by

w(Bor) =k —log, p(To, To),

wherep (TO, T1) is the “joint spectral radius” of and
T,, defined by

19)

p(T0,TY
= Iimsup( max ||T£1T£2~-~Tgm||l/m>. (20)
egj=0o0r1

E
m—-+oo

In E, the operatordy andT; are given by the two

matrices
10 s 1
(0 S) and M, = <0 1) .

(21)

One checks easily that we have in that case
p(To. T) = || Toll = 1% and we thus have that the
Holder exponent for our continuous scale B-splines is

given by

_ 2
T 1+s

2

0 1+s

w(Bor) =k —1+41l0g,(1+9). (22)

This formula shows in particular that the smoothing
property (9) is satisfied by this construction wf.
Note also, from Eq. (17) that the defined continuously
parametrized B-spline basis coincides with the classi-
cal one for integer scales, i.e., foe= 0, 1. Other im-
portant properties of classical B-splines, as the normal-
ization (see Section 2) can be showed for the extended
basis as well.

Figure 6 shows the graphs & (u) for different
values ofr. The splines orders are given in the graphs.
Fork <r < k+ 1, all basis supports are in the same
interval, corresponding to the interval between the sup-
ports of By x andBg k1. An example of a continuously
parametrized B-spline representation is given in Fig. 7
(the original control shape is in the top left corner).
Note how the shape becomes more and more smooth

by several techniques. Many contributions have been whenr increases, even forvalues in the same interval

made to the problem of estimating the regularity of the

[k, k + 1].
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Figure 7. (Continued)

5. Concluding Remarks

In this paper, an affine invariant multiscale shape repre-

sentation was described. The representation is obtained

via the computation of B-splines of increasing order,
and therefore is affine invariant. The representation
was first presented using classical B-splines, which are
functions inC*~2, obtaining a scale-space which is dis-
crete in scale. We then extended, based on subdivision

schemes, this basis to a continuous-scale one, that is,

finite support functions irC=2*", wherer e [0, 1].
Whenr = 0 orr = 1, the basis coincides with the
classical B-spline one described here. Using this ba-
sis, the affine multiscale representation is extended to
a continuous scale one as well.

We showed that the basic properties of continuous
scale-spaces hold for this representation, at least in a
qualitative form. We presented as well a number of
geometric properties related to the smoothing behav-
ior of B-spline representations. The proposed B-spline
based multiscale representation is easily implemented
using the recursive formula for the B-spline basis com-
putation. In contrast with scale-spaces as the Gaus-
sian one, it is defined directly on an initial discrete set
of points, avoiding problems caused by discretization
of continuous scale-spaces. The smoothed signal is
continuous (and analytical), allowing straightforward
computation of geometric properties of the smoothed
curve, as curvature (this is a main difference with other

discrete scale-spaces as the proposed in [30]). There-
fore, the proposed representation in natural for com- 1

puter shape analysis, since receives as input a digi-
tal signal, while keeping a continuous representation
which can be helpful for different computations.

The same ideas presented in this paper hold for other
basis based representation, as well as other subdivision
schemes, which keep the basic properties described
in this work. We described the basic approach us-
ing the classical B-spline, and its extension given in
Section 4, because of its attractive properties, as those
given in Section 2, and the existence of extensive anal-
ysis, which permits to conclude important geometric
properties as the theorems presented in this paper.

Notes

. In the case of the 1D Gaussian scale-space for example, zero
crossings are not added.

. Since the ordek plays the (qualitative) role of scale, from now

on we refer tdk as the scale of the representation.

To deal with closed curves, the series of points are periodic, that

is, the indices are computed module- 1.

The examples here presented were implemented using the Matlab

Spline Toolbox [10].

Recall thaiBg « is obtained from the convolution of the indicator

function.

3.
4.

5.
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