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Abstract. Multiscale representations and progressive smoothing constitute an important topic in different fields
as computer vision, CAGD, and image processing. In this work, a multiscale representation of planar shapes is
first described. The approach is based on computing classical B-splines of increasing orders, and therefore is auto-
matically affine invariant. The resulting representation satisfies basic scale-space properties at least in a qualitative
form, and is simple to implement.

The representation obtained in this way is discrete in scale, since classical B-splines are functions inCk−2, where
k is an integer bigger or equal than two. We present a subdivision scheme for the computation of B-splines of
finite support at continuous scales. With this scheme, B-splines representations inCr are obtained for any realr in
[0, ∞), and the multiscale representation is extended to continuous scale.

The proposed progressive smoothing receives a discrete set of points as initial shape, while the smoothed curves
are represented by continuous (analytical) functions, allowing a straightforward computation of geometric charac-
teristics of the shape.
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1. Introduction

Multiscale descriptions of signals have been studied
for several years already since Witkin’s work [43], and
developed in several different frameworks by a number
of researchers in the past decade [4, 8, 14, 17, 21, 25–
27, 30–32, 34, 44]. The idea of scale-space filtering is
based on filtering a given initial signal80( EX) : Rn →
Rm with a family of filtersK( EX, t) : Rn → Rm, where
t ∈ R+ represents the scale. In other words, the scale-
space is given by8( EX, t) defined as

8( EX, t) := ÄK( EX,t)[80( EX)], (1)

where ÄK(·,t)[·] represents the action of the filter
K(·, t). Larger values oft correspond to signals at
coarser resolutions.

A classical example of a scale-space kernel is the
Gaussian one. In this case, the scale-space is linear, and
the filter in (1) is defined via convolution. The Gaussian
kernel is one of the most studied in the theory of scale-
spaces [4, 21, 25, 44]. It has some very interesting
properties, one of them being that the signal8 obtained
from it is the solution of the heat equation (with80 as
initial condition) given by

∂8

∂t
= 18.
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One of the key facts that can be gleaned from the
Gaussian example is that the scale-space can be ob-
tained as the solution of a partial differential equation
called anevolution equation. This idea was developed
in different works [1–3, 23, 24, 38] for evolution equa-
tions different from the classical heat flow.

Let’s concentrate now on the family of planar curves

C(u, t) : [a, b] × [0, τ ) → R2,

and define the evolution equation
∂C

∂t
= ∂2C

∂p2
,

C(u, 0) = C0(u).

(2)

If p ≡ u, then the classical heat equation is obtained.
If p ≡ v, wherev is theEuclidean arc-length[42],
theEuclidean shortening flow, orEuclidean geometric
heat flow, is obtained [18, 20]. This equation defines a
geometric Euclidean invariant scale-space [2, 24, 32].
If p ≡ s, wheres is theaffine arc-length[6], then the
affine shortening flow, or affine geometric heat flow,
is obtained [36, 37]. Sapiro and Tannenbaum [36, 37,
39] proved that this equation is the affine analog of the
Euclidean shortening flow, and that any simple curve
converges to an ellipse when evolving according to it
(in the Euclidean case, convergence to a circle is ob-
tained [18, 20]). The affine flow was implemented
using an efficient numerical algorithm for curve evo-
lution presented in [33], and based on this, a geomet-
ric affine invariant scale-space for planar curves was
defined [38].

In general, a number of properties are required to
form a scale-space [1, 4]. Some of the basic properties
are:

1. Completeness. The original signal should be ob-
tained whent → 0.

2. Order preserving. If 80 < 8̄0, then8(t) < 8̄(t)
for all t > 0. This property is violated for example
for 2D Gaussian filters (shapes can merge).

3. Causality criterion. This criterion means that “in-
formation” is not added when moving from a finer
to a coarser scale. The “information” can be
characterized for example by zero-crossings1, ex-
trema, total curvature, and so on. The causality
criterion is usually also related to thesemi-group
property(specially when the scale-space is derived
from evolution equations): The signal8( EX, t2) (see

Eq. (1)) can be obtained either from the initial sig-
nal8( EX, 0) via Ä(t2), or from an intermediate one
8( EX, t1) via Ä(t2 − t1) (t1 < t2).

In [1], Alvarez et al. gave a characterization of the
evolution equations for which these and other proper-
ties hold. Examples are, of course, both the classical
and the geometric heat flows described above [1, 2, 38].

The multiscale representation here developed is not
obtained as the solution of an evolution equation. It is
based on computing B-spline representations at differ-
ent orders. Increasing the order of the B-spline repre-
sentation, smoother curves are obtained. Therefore, the
B-spline order plays the role of the scale parameter in
previously described scale-spaces. We will show that
the above mentioned multiscale representation proper-
ties hold at least in a qualitative form. Since B-splines
are affine-invariant, so is the obtained representation.
This means that the B-spline representations of two se-
ries of control points related by an affine motion, are
related by the same affine motion.

Classical B-splines are functions inCk−2, where
k, the B-spline order, is an integer number bigger or
equal than 2. Therefore, the multiscale representation
based on classical B-splines of different orders, is dis-
crete in its “scale” parameterk.2 Based on subdivi-
sion schemes, we present an extension of the classical
B-spline basis in order to obtain a finite support basis in
Cr , r ∈ [0, ∞). This way, we also obtain a continuous
in “scale” multiscale B-spline based representation.

The proposed B-spline based progressive smoothing
(representation) is easy to implement (see Sections 2
and 4). In contrast with frequently used scale-spaces,
as the Gaussian one, it is defined directly (intrinsically)
on an initial discrete set of points, avoiding possible
problems caused by discretization of continuous scale-
spaces. See for example [30] for an analysis of this
problem in linear scale-spaces, and a possible solu-
tion. (Related to this see also [17].) While the initial
signal is discrete, the smoothed one is continuous and
defined as a linear combination of B-spline basis. This
allows a straightforward computation of geometric
properties of the smoothed curve, as for example curva-
ture or other invariants [22]. With the continuous scale
B-spline basis presented in this paper, the represen-
tation is continuous in scale as well. Therefore, the
proposed representation is natural for computer shape
analysis, since it receives as input a digital signal, while
keeping a continuous representation which can be help-
ful for different computations.
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The remainder of this paper is organized as follows:
Section 2 gives a brief description of the theory of
B-spline approximations. Section 3 presents the affine
invariant multiscale representation based on classical
B-splines basis. The continuous scale B-spline basis,
developed using subdivision schemes, is presented in
Section 4. Concluding remarks are given in Section 5.

2. Basic Concepts on B-Splines

We briefly describe now the theory of B-spline approx-
imations. For details see for example [5, 9, 40, 41].

Let

C(u) : [a, b] → R2

be a planar curve, with Cartesian coordinates
[x(u), y(u)]. Polynomials are computationally effi-
cient to work with, but it is not always possible to
define a satisfactory curveC using single polynomi-
als for x and y. Then, the curve is divided in seg-
ments, each one defined by a given polynomial. The
segments are joined together to form apiecewise poly-
nomialcurve. The joints between the polynomial seg-
ments occur at special curve points calledknots. The
sequenceu1, u2, . . . of knots is required to be nonde-
creasing. The distance between two consecutive knots
can be constant or not. Two successive polynomial seg-
ments are joined together at a given knotu j in such a
way that the resulting piecewise polynomial hasd con-
tinuous derivatives. Of course, the order of the poly-
nomials depends ond. In this way, a basis is obtained,
and the curveC is given by a linear combination of it.

Formally, the curveC is aB-splineapproximation of
the series of pointsVi = [xi , yi ], 1 ≤ i ≤ n, called
control vertices, if it can be written as

Ck(u) =
n∑
i

Vi Bi,k, (3)

where Bi,k = B(·; ui , ui +1, . . . , ui +k) is the i -th
B-spline basisof order k for the knot sequence
[u1, . . . , un+k]. In particular, Bi,k is a piecewise
polynomial function of degree<k, with breakpoints,
ui , . . . , ui +k.3

Several properties can be proven for the basisBi,k:

1. Bi,k ≥ 0.
2. Bi,k ≡ 0 outside the interval [ui , ui +k]. This pro-

perty shows the locality of the approximation:

Changing a given control vertex affects only a cor-
responding portion of the curve.

3. The basis is normalized for all orderk:∑
i

Bi,k(u) = 1 on [uk · · · un+1].

4. The support of the B-spline basis is minimal among
all polynomial splines of orderk. This property
shows that this representation is optimal in certain
sense.

The multiplicity of the knots governs the smooth-
ness. If a given numberτ occursr times in the knot
sequence [ui , . . . , ui +k], then the firstk − r − 1 deriva-
tives ofBj,k are continuous at the breakpointτ . There-
fore, without knot multiplicity,Ck ∈ Ck−2.

Computation with B-splines are facilitated by using
the following recursive formula [5, 9, 10]:

Bi,k(u) = u − ui

ui +k−1 − ui
Bi,k−1 + ui +k − u

ui +k − ui +1
Bi +1,k−1,

(4)

together with

Bi,1(u) =
{

1 ui ≤ u < ui +1,

0 otherwise.
(5)

The basisBi,k is in fact the repeated convolution of a
Haar function with itself, i.e.,

B0,k = (∗)kχ [0, 1].

3. The B-Spline Multiscale Representation

A generalaffine transformation in the plane(R2) is
defined as

X̃ = AX + T, (6)

where X ∈ R2 is a vector,A ∈ GL+
2 (R) (the group

of invertible real 2× 2 matrices with positive determi-
nant) is the affine matrix, andT ∈ R2 is a translation
vector. It is easy to show that transformations(A, T)

of the type (6) form a real algebraic groupA, called the
group of proper affine motions. If A ∈ SL2(R) (i.e, the
determinant ofA is 1), (6) gives thegroup of special
affine motions,Asp.

A quantityQ is called aninvariantof the groupA if
wheneverQ transforms intoQ̃ by any transformation
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(A, T) ∈ A, we obtainQ̃ = 9Q, where9 is a func-
tion of (A, T) alone. If9 ≡ 1 for all (A, T) ∈ A, Q
is called anabsolute invariant[13].

Observe that from (3), the affine invariant property
of the B-spline representation is immediate. If{Ṽi }n

1 is
obtained from{Vi }n

1 by an affine transformation(A, T),
then

C̃k(u) = ACk(u) + T, (7)

where

Ck(u) =
n∑
i

Vi Bi,k,

and

C̃k(u) =
n∑
i

Ṽi Bi,k.

Note that the representation is invariant with respect
to affine transformations of the control points{Vi }n

1,
when the B-spline basis is given (including the knots
points) and kept constant. A completely intrinsic affine
invariant scale space is obtained via the affine geomet-
ric heat flow mentioned in the Introduction [36, 38].

Based on this affine invariance, we define now the
B-spline affine invariant multiscale shape representa-
tion (BAIM) of the points{Vi }n

1, as the family of curves
Ck obtained from (3) fork = 2, 3, . . . .

Figure 14 presents the firstBAIM example. The
polygon contains 12 points. In Fig. 1(a), the initial

Figure 1. Example of theBAIM and its affine invariant property.
A 12 points polygon (top) and its correspondent B-spline represen-
tations of orderk = 2i , i = 1, 2, 4, 6, 7. Note the convergence
to the centroid, with an elliptical shape. In the bottom, the original
polygon is obtained via an affine transformation of the one in the top.
The correspondingBAIM is related by the same transformation.

polygon is given, together with the corresponding
BAIM for k = 2i , i = 1, 2, 4, 6, 7. In Fig. 1(b), the
initial polygon is obtained via an affine transformation
of the polygon in Fig. 1(a). Due to the affine invariant
property, the correspondingBAIM is related to the one
in Fig. 1(a) by the same affine transformation.

Note that whenk increases (k → ∞, see Fig. 1), the
B-spline representation converges to the centroid of the
initial polygon. The convergence is in such a way that
the shape approaches an ellipse. This is obtained from
the following theorem:

Theorem 1. As k increases(k → ∞), the B-spline
representation converges to the centroid of the control
points{Vi }n

1, its shape becoming elliptical.

Proof: Let’s represent the control points as complex
numbers, i.e.,Vi = [xi + j yi ]. Then, using the Fourier
series expansion of the basis functionsBi,k(u) [40, 41],
we have that:

Ck(u) =
n∑

i =1

Vi Bi,k

=
n∑

i =1

(xi + j yi )

[
m=∞∑

m=−∞
exp{ jmπ i }

×
(

2 sin(mπ/2)

mπ

)k

exp{ jmπu}
]

=
m=∞∑

m=−∞

(
n∑

i =1

(xi + j yi ) exp{ jmπ i }
)

×
(

2 sin(mπ/2)

mπ

)k

exp{ jmπu}.

We see that whenk increases(k → ∞), the B-spline
representation converges to the centroid of the initial
polygon (only the term form = 0 remains in the sum).
Furthermore, the convergence is in such a way that the
curve shape approaches an ellipse. This is so since high
frequency components of the Fourier transform of the
BAIM die out much faster than the low frequency ones.
Therefore, the limiting curve becomes approximately
an ellipse, when only the zero(m = 0) and first(m =
±1) frequency components remain significant. 2

As pointed out in the Introduction, a curve evolving
according to the affine geometric heat flow, also con-
verges to a point with elliptical shape [36–39]. In [7],
the authors presented a discrete polygonal model of
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the affine heat flow, and proved, also using Fourier de-
composition, that the limiting polygon approaches an
ellipse. These results are expected, since all of these
three processes are affine smoothing process [7, 38,
41], and the ellipse is the most smooth affine invariant
shape, being the only closed curve with constant affine
curvature [35].

Before referring to a number of properties of this
representation, let’s remark basic differences between
theBAIM and most scale-spaces as those presented at
the Introduction:

1. Scale-spaces are usually motivated and defined over
continuous curves and then discretized. TheBAIM
is directly derived from a set{Vi } of discrete points.
These set of points can be a dense sampling of the
curve (even withn → ∞), but it is always a discrete
set. The smoothed curves, in contrast, are contin-
uous, given as a linear combination of basis func-
tions. This permits the easy computation of different
curve properties (see also [17]).

2. The multiscale representation obtained via scale-
spaces is usually continuous(t ∈ [0, τ )), while the
one obtained from theBAIM is discrete(k = 2,

3, . . .). See Section 4.

We discuss now, for theBAIM, the properties of
scale-spaces presented in the Introduction. First note
that fork = 2, the original set of points, or the polygon
defined by them, is obtained. Therefore, the represen-
tation is complete.

The curve obtained from the B-spline representation
(3) lies in the convex hull of at mostk consecutive con-
trol points (those which affect the curve at the given
point). For other relations between the control points,
and the obtained B-spline, see [9]. Then, the order
preserving property given in the Introduction, refers to
the corresponding convex-hull for theBAIM, as well
as to the other relations between control points and
B-splines given in [9]. Note that when processing iso-
lated shapes, this property is not so crucial in all ap-
plications. It becomes important for example when
dealing with level sets of images as in [1].

The “causality” criteria holds, since for increasing
k, increasingly smoother versions of the initial curve
are obtained (see Figs. 1 and 2). Note that whenk
increases, both the basis functions get smoother, and
the curve values are obtained as the weighted mean of
more control points. TheBAIM is a smoothing pro-
cess with increasing smoothing exponent [41], in the
sense that the total difference of any order decreases

Figure 2. The smoothing property of theBAIM is shown in this
example (orders 4, 20, and 90). The curve is getting more and more
smooth when the order of the B-spline approximation is increased.

whenk increases (diminishing property). The follow-
ing geometric results can be proven as well, in relation
with the smoothing property of B-spline representa-
tions. The first result, due to Lane and Riesenfeld [29],
refers to thegeometric diminishing property, and ba-
sically shows that the B-spline representation does not
“oscillates” more than the given set of control points:

Theorem 2. Every hyperplane ofRm intersects a
B-curve inRm no more often than the associated con-
trol polygon.

One of the possible requirements related to the
causality criteria is that the number of inflection points,
zero crossings of the curvature, decreases when the
scale increases. The following result, due to Goodman
[19], states this.

Notation:

1. For C0 = (x0, y0) and C1 = (x1, y1), we define
C0 × C1 := x0y1 − y0x1.

2. i (C) — number of inflections in the curveC ∈ R2.
3. S(a) = S(a1, . . . , an) — number of strict sign

changes in the sequencea ∈ R2.
4. S( f ) — number of strict changes in the function

f : (a, b) → R. S( f ) = supS( f (t1), . . . , f (tn)),
where the supremum is taken over all the sequences
a < t1 < · · · < tn < b.

The following definitions present a concept of cur-
vature and curvature sign changes forC1 curves and
polygons. This is necessary since the control points do
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not form aC2 curve. Recall that the curvatureκ of a
C2 curve is defined as the rate of change of the tangent
T to the curve, and can be computed asκ := Cs × Css

wheres is the arc-length, and thereforeCs is the tangent
[42]. The definitions below are based on approxima-
tions of tangent vectors for nonC2 curves.

Definition 1. SupposeC : [a, b] → R2 is continuous
with piecewiseC1 tangent vector

v := C ′

|C ′| ,

whereC ′ = ∂C
∂t . For t ∈ (a, b), κ(t) is defined such

that it is positive (negative) if the curve is turning anti-
clockwise (clockwise) atC(t). Suppose the curve is
constant at [α, β] ⊂ (a, b), but not in any other larger
interval. Then, we define

κ(t) :=


1

2
[v(α−) × v′(α−) + v(β+) × v′(β+)]

if v(α−) = v(β+)

v(α−) × v′(β+) if v(α−) 6= v(β+)

Finally,

i (C) := S(κ).

Definition 2. If the curveC is a polygon, as the control
polygon{Vi }n

1, we write

Ii := (Vi − Vi −1) × (Vi +1 − Vi ),

and

i
({Vi }n

1

)
:= S(I1, . . . , IN).

The following definition limits the class of control
points for which the behavior ofi (·) is analyzed. The
idea is to limit the polygon such that it cannot turn too
sharply.

Definition 3. The polygon{V}n
i is regular if the fol-

lowing hold:

1. It turns to a total angle of magnitude at mostπ , that
is, for some vectorV ∈ R2, V · (Vi − Vi −1) ≥ 0,
i = 0, 1, . . . , n.

2. It does not turn through an angle ofπ at any vertex,
i.e.,(Vi − Vi −1) 6= λ(Vi − Vi +1) for any realλ.

Having all these definitions, we can now relate the
behavior of the zero crossings of the B-splineC with
those of its control points:

Theorem 3. If the control polygon{Vi }n
1 is regular,

then for the B-spline representationC obtained from it
via (3), the following relation holds:

i (C) ≤ i
({Vi }n

1

)
.

Theorem 3 means that if the control polygon does not
turn too sharply, then the number of inflection points of
the B-spline representation does not exceed the number
of inflections points at the control polygon. This result
also holds for a large class of basis functions [16].

From the results above, we conclude that when mov-
ing from the control polygon to a B-spline representa-
tion, no “information” is added.

As pointed out in the Introduction, when scale-
spaces are obtained as solutions of evolution equations,
the causality criteria is usually connected to the semi-
group property. We want to investigate now this prop-
erty in a qualitative form. First note that the B-spline
basis is obtained via repeated convolution of the Haar
function, i.e.,

Bk = χ ∗ Bk−1,

whereχ is the indicator function. Therefore, the semi-
group property holds for the basis of the representation.

Assume now that given the series of control points
{Vi }n

1, the corresponding B-spline representationsCk1

andCk2 of orderk1 andk2 respectively are computed
(k1 < k2). Then, in relation to the semi-group property,
we ask if we can compute (or at least approach)Ck2 from
Ck1. From (3) we have

Ck1(u) =
n∑
i

Vi Bi,k1,

Ck2(u) =
n∑
i

Vi Bi,k2.

For computing a B-spline representation, we need a
discrete set of control points. Therefore,Ck1 is sampled:

{V̂i }n
1 := {

Ck1(u
i )

}n

1 =
{

n∑
j

Vj Bj,k1(u
i )

}n

1

,

and the sampling points are used for the computation
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of a new B-spline approximation of orderk2:

Ĉk2(u) =
n∑
i

V̂i Bi,k2

=
n∑
i

(
n∑
j

Vj Bj,k1(u
i )

)
Bi,k2.

The difference betweenCk2 andĈk2 is given by:∥∥Ck2 − Ĉk2

∥∥
=

∥∥∥∥∥ n∑
i

Vi Bi,k2 −
n∑
i

(
n∑
j

Vj Bj,k1(u
i )

)
Bi,k2

∥∥∥∥∥
=

∥∥∥∥∥ n∑
i

[
Vi −

n∑
j

Vj Bj,k1(u
i )

]
Bi,k2

∥∥∥∥∥
≤

n∑
i

∥∥∥∥∥Vi −
n∑
j

Vj Bj,k1(u
i )

∥∥∥∥∥Bi,k2

≤ ϒ(k1, {Vi })
n∑
i

Bi,k2

= ϒ(k1, {Vi }),

whereϒ(k, {Vi }) is a bound on the distance between
the control points and the B-spline of orderk. General
bounds for the distance between the initial polygon
and the corresponding B-spline representation can be
found in [9]. Note that since the B-spline basis are
normalized, we have∥∥∥∥∥Vi −

(
n∑
j

Vj Bj,k1(u
i )

)∥∥∥∥∥Bi,k2

=
∥∥∥∥∥ n∑

j

(Vi − Vj )Bj,k1(u
i )

∥∥∥∥∥Bi,k2,

and the error is like a weighted average of the difference
between the control points (only those which affects the
value atui ).

Since the boundϒ increases withk [9], so does the
error bound. On the other hand, the shape of the spline
approximations is similar to the original curve, then it
is expected from the shapesCk2 andĈk2 to be similar as
well. The error can also be reduced ifCk1 is sampled in
such a way that the pointsCk1(u

i ) are as close as possi-
ble toVi . This property was experimented and the re-
sults are shown in Fig. 3. The original polygon is given
in Fig. 3(a). The B-spline representations of order
5, 10, and 15 were computed (Figs. 3(b)–(e)). Then,
the B-spline of orderk1 = 5 (Fig. 3(b)) is uniformly

sampled, and represented by the same number of points
as the original polygon. After that, the B-splines of or-
der(k2) 10 and 15 were computed, with this polygon as
initial data (Figs. 3(f) and 3(g)). As expected, the ob-
tained B-spline representations are very similar to the
ones obtained with the original polygon in Fig. 3(a).
(When Figs. 3(b), 3(f), and Figs. 3(c), 3(g), are pre-
sented in the same draw, almost no distinction between
the corresponding curves is obtained.) Small differ-
ence were observed whenk1 is increased, but the gen-
eral (qualitative) shape was always preserved. There-
fore, we can conclude that the semi-group property
holds in a qualitative form.

3.1. The BAIM of Continuous Initial Curves
and Noisy Polygons

If the original curve is given in a continuous form (by a
formula for example), then the curve must be sampled
in order to construct theBAIM. This is in fact what we
did in Fig. 3 for the construction of Figs. 3(f) and 3(g).

Since we are interested in an affine invariant repre-
sentation, the ideal situation is to do the sampling in
an affine invariant form. This can be done for example
starting form the point of maximalaffine curvature, and
sampling the curve at constantaffine distance. These
properties are conserved under an affine transformation
[6]. In this way, the sampling points (control vertices)
are affine invariant. Note also that since theBAIM is
given as a linear combination of B-spline basis func-
tions, geometric properties of the curve, as affine cur-
vature, can be computed directly, using the classical
formulas for derivatives [9]. For instance, it is well
known that derivatives of B-splines can be obtained
taking finite differences of lower order splines.

If the sampling strategy described above cannot be
performed (due to the presence of noise for example),
then, a regular sampling can be performed. Since the
B-spline basis is normalized, the error of theBAIM is
controlled by the error in the control vertices coordi-
nates. In other words, if the error in the control ver-
tices coordinates is bounded byε, so is the error in the
B-spline representation coordinates. Figures 4 and 5
show examples of theBAIM of noisy initial curves.
Note that whenk increases, the noise in a given control
point extends to bigger segments in the curve (the sup-
port of Bi,k gets bigger). On the other hand, increasing
k, also increases the number of control points which
participates in the weighted mean (3) for each point
Ck(u), decreasing the influence of the error in a given
control point.
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Figure 3. Investigation of the semi-group property for theBAIM: (a) The original polygon, (b) B-spline representation of order 5, (c) B-spline
representation of order 10, (d) B-spline representation of order 15, (e) B-spline representations of orders 5, 10, and 15, (f) B-spline representation
of order 10 obtained from the sampling of the curve in (b), (g) B-spline representation of order 15 obtained from the sampling of the curve
in (b).

4. Continuous-Scale B-Splines

The multiscale representation described so far is dis-
crete in the sense that the B-splinesB0,k = (∗)kχ[0,1]

that are used to generate it are indexed by a discrete
parameterk ∈ N − {0}. In order to obtain a con-
tinuous multiscale representation, one needs to extend
these generators to a family of compactly supported
functions B0,r , r ∈ [0, +∞), that coincides with the
previous one on the integer values ofr .

The semi-group property of the multiscale represen-
tation is expressed in the integer case by the relation

B0,k = B0,k−1 ∗χ[0,1] indicating thatB0,k is obtained by
smoothingB0,k−1. To preserve this causality, we would
like that forr1 > r2, B0,r1 is obtained by as smoothing
operation applied toB0,r2. Recall that if f is in Cn but
not inCn+1, then its (global) H¨older exponent is given
by µ( f ) = n + ν with

ν = inf
x

(
lim inf
|t |→0

log | f (n)(x + t) − f (n)(x)|
log |t |

)
, (8)

where f (n) is then-th derivative of the functionf . If
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Figure 4. TheBAIM of a noisy curve: (a) the original polygon. The polygon was obtained from the one in Fig. 3(a) adding random noise
to the coordinates, (b) original and noisy polygons, (c) B-spline representation of order 5, (d) B-spline representation of order 10, (e) B-spline
representation of order 15, (f) B-spline representation of order 5 of the original and noisy polygons, (g) B-spline representation of order 10 of
the original and noisy polygons, (h) B-spline representation of order 15 of the original and noisy polygons.

we use of H¨older exponent to measure the regularityc
our generators, we would like to have

r1 > r2 ⇒ µ(B0,r1) > µ(B0,r2). (9)

A straightforward technique to extend the B-spline
family is to define forr = k+s, k ∈ N−{0}, s ∈ [0, 1],

B0,r = (1 − s)B0,k + sB0,k+1. (10)

With such a definition, it is clear however that the

property (9) will not be satisfied since we have, for
all 0 ≤ s < 1, µ(B0,k+s) = µ(B0,k) = k − 1.

We shall thus use a more sophisticated extension of
the B-spline family. This extension is based on “subdi-
vision schemes” that are frequently used in computer-
aided geometric design [15, 28].

Subdivision schemes constitute a useful tool for the
fast generation of smooth curves and surfaces from a set
of control points by means of iterative refinements. In
the most often considered binary unidimensional case,
one starts from a sequences0(i ) and obtains at stepj
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Figure 5. A second example of theBAIMof a noisy curve (compare
with Fig. 2): (a) The noisy curve, (b) B-spline representation of order
4, (c) B-spline representation of order 20.

a sequencesj (2− j i ), generated from the previous one
by linear rules:

sj (2
− j 2i ) =

∑
n

aj,i (n)sj −1(2
− j +1(i − n)),

sj (2
− j (2i + 1)) =

∑
n

bj,i (n)sj −1(2
− j +1(i − n)).

(11)

The masksaj,i (n) andbj,i (n) are in general finite se-
quences, a property that is clearly useful for the prac-
tical implementation of (11).

Equation (11) means that the new series of points
sj +1 is obtained as a linear combination of the series
sj , starting from the control pointss0. Different se-
lections of the mask will give different seriessj . A
natural problem is then to study the convergence of
such an algorithm to a limit function whenj → ∞. In
particular, the scheme is said to be strongly convergent
if and only if there exists a continuous functionf (x)

such that limj →+∞(supi |sj (2− j i ) − f (2− j i )|) = 0.
One can study more general type of convergence with
the use of a smooth functiong that is well localized
in space (for example compactly supported) and satis-
fies the interpolation propertyg(i ) = δi . One can then
define f j (x) = ∑

i sj (2− j i )g(2 j x − i ) and study the
convergence in a functional sense off j to f .

A subdivision scheme is said to be stationary when
the masksa andb are independent of the parametersj
andi . In that case, the limitf (x) is given by

f (x) =
∑
i ∈Z

s0(i )ϕ(x − i ), (12)

whereϕ is the limit function obtained from the Dirac se-
quences0(i ) = δ0,i . For this reasonϕ is often called the
“limit function” of the stationary subdivision. There-
fore, for a given set of stationary maska andb, having
the control pointss0 is enough to determine the final
curve f , having computed apriori the limit functionϕ.
One can also rewrite (11) as

sj (2
− j i ) =

∑
n

c(i − 2n)sj −1(2
− j +1n), (13)

with c(2i ) = a(i ) andc(2i + 1) = b(i ). Note that
(11) is equivalent to fill the sequencesj −1 with zeros at
the intermediate points 2− j (2i +1) and apply a discrete
convolution with the sequencec(i ). As a consequence,
the functionϕ is the result of an infinite number of dis-
crete convolutions at finer and finer scales. It can also
be expressed in the Fourier domain by the infinite prod-
uct

ϕ̂(ω) =
+∞∏
j =1

m(2− j ω), (14)

wherem(ω) = 1
2

∑
n c(n)e−inω is a 2π -periodic func-

tion. Note that ifc(n) = 0 for n < a and N > b,
i.e.,m(ω) is a finite Fourier series, thenϕ is compactly
supported in [a, b].

Equation (14) means that the design of a subdivision
scheme can be performed in the Fourier domain, via
the design of the Fourier transformm of the maskc.
This will be crucial in order to obtain continuous scale
B-splines below.

Detailed reviews of stationary subdivision and their
possible generalizations have been done by Cavaretta,
Dahmen and Micchelli in [11] and Dyn in [15].

The B-splineB0,k can be viewed as the limit function
of a stationary subdivision scheme associated to the
trigonometric polynomial5

mk(ω) =
(

1 + e−i ω

2

)k

, (15)

since we have indeed

B̂0,k(ω) =
(

1 + e−i ω

ω

)k

=
+∞∏
j =1

mk(2
− j ω). (16)

Note that the coefficients of the subdivision are given
by ck(n) = 2−k+1

(k
n

)
for n = 0 · · · k. It is thus possible

to use the above described subdivision algorithm to
generate the B-spline discrete representation in a very
fast way.
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Figure 6. Example of continuous scale B-spline basis functionsB0,r (u), r ∈ R+. The splines ordersr are given in the graphs.
(Continued on next page)
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Figure 6. (Continues.)
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Figure 6. (Continued.)

In order to extend the B-splines to continuous scale,
we have to compute a new functionmr , r ∈ R+, which
will define via (14) the Fourier transform̂ϕ of the limit
functionϕ, that is, the continuous scale B-spline. Hav-
ing computedϕ, the continuous scale representation is
obtained via (12), as in the classical case of discrete
scale B-spline representations. We shall now generate
this continuous parameter representation by interpolat-
ing between the functionsmk(ω). We shall thus define
for r = k + s, k ∈ N− {0}, s ∈ [0, 1],

mr (ω) :=
(

1 + se−i ω

1 + s

)(
1 + e−i ω

2

)k

= 1

2

∑
n

cr (n)e−inω. (17)

Note thatmr above is obtained from the functionmk

corresponding to classical B-splines by multiplication
with 1+se−i ω

1+s . Other functionsmr can be computed, as
for example replacing the discrete exponentk in (15)
by the continuous oner . This will give a limit func-
tionϕ with non-compact support, making the extended
continuous scale B-splines non-local and not useful for
real computations.

From mr we obtain that our continuously para-
metrized B-splineB0,r will then be defined by (the
Fourier transform)

B̂0,r (ω) :=
+∞∏
j =1

mr (2
− j ω). (18)

These functions are compactly supported in [0, k + 1]
for k < r ≤ k + 1. Their regularity can be studied
by several techniques. Many contributions have been
made to the problem of estimating the regularity of the

limit functions of subdivision schemes, due to the di-
verse possible definitions of regularity. For the H¨older
exponent, a method that leads to an exact estimate is
described in Daubechies and Lagarias [12]. Applied
to our particular limit functions, this method can be
summarized as follows: One defines two infinite ma-
trices (Tε)i, j = cs(2i − j − ε + 1), ε = 0, 1 and
study their action on the stable subspaceE of the se-
quences{. . . , 0, 0, s1, s2, 0, 0 · · ·}. The Hölder expo-
nent ofB0,r = B0,k+s is then given by

µ(B0,r ) = k − log2 ρ(T0, T1), (19)

whereρ(T0, T1) is the “joint spectral radius” ofT0 and
T1, defined by

ρ(T0, T1)

:= lim sup
m→+∞

(
max

ε j =0 or 1

∥∥Tε1Tε2 · · · Tεm

∥∥1/m

E

)
. (20)

In E, the operatorsT0 andT1 are given by the two
matrices

M0 = 2

1 + s

(
1 0
0 s

)
and M1 = 2

1 + s

(
s 1
0 1

)
.

(21)

One checks easily that we have in that case
ρ(T0, T1) = ‖T0‖ = 2

1+s and we thus have that the
Hölder exponent for our continuous scale B-splines is
given by

µ(B0,r ) = k − 1 + log2(1 + s). (22)

This formula shows in particular that the smoothing
property (9) is satisfied by this construction ofmr .
Note also, from Eq. (17) that the defined continuously
parametrized B-spline basis coincides with the classi-
cal one for integer scales, i.e., fors = 0, 1. Other im-
portant properties of classical B-splines, as the normal-
ization (see Section 2) can be showed for the extended
basis as well.

Figure 6 shows the graphs ofB0,r (u) for different
values ofr . The splines orders are given in the graphs.
For k ≤ r ≤ k + 1, all basis supports are in the same
interval, corresponding to the interval between the sup-
ports ofB0,k andB0,k+1. An example of a continuously
parametrized B-spline representation is given in Fig. 7
(the original control shape is in the top left corner).
Note how the shape becomes more and more smooth
whenr increases, even forr values in the same interval
[k, k + 1].
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Figure 7. Example of continuous scale B-spline representation. The splines ordersr are given in the graphs. The original control points are
given in the top left corner. (Continued on next page)
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Figure 7. (Continues.)
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Figure 7. (Continued.)

5. Concluding Remarks

In this paper, an affine invariant multiscale shape repre-
sentation was described. The representation is obtained
via the computation of B-splines of increasing order,
and therefore is affine invariant. The representation
was first presented using classical B-splines, which are
functions inCk−2, obtaining a scale-space which is dis-
crete in scale. We then extended, based on subdivision
schemes, this basis to a continuous-scale one, that is,
finite support functions inCk−2+r , wherer ∈ [0, 1].
When r = 0 or r = 1, the basis coincides with the
classical B-spline one described here. Using this ba-
sis, the affine multiscale representation is extended to
a continuous scale one as well.

We showed that the basic properties of continuous
scale-spaces hold for this representation, at least in a
qualitative form. We presented as well a number of
geometric properties related to the smoothing behav-
ior of B-spline representations. The proposed B-spline
based multiscale representation is easily implemented
using the recursive formula for the B-spline basis com-
putation. In contrast with scale-spaces as the Gaus-
sian one, it is defined directly on an initial discrete set
of points, avoiding problems caused by discretization
of continuous scale-spaces. The smoothed signal is
continuous (and analytical), allowing straightforward
computation of geometric properties of the smoothed
curve, as curvature (this is a main difference with other
discrete scale-spaces as the proposed in [30]). There-
fore, the proposed representation in natural for com-
puter shape analysis, since receives as input a digi-
tal signal, while keeping a continuous representation
which can be helpful for different computations.

The same ideas presented in this paper hold for other
basis based representation, as well as other subdivision
schemes, which keep the basic properties described
in this work. We described the basic approach us-
ing the classical B-spline, and its extension given in
Section 4, because of its attractive properties, as those
given in Section 2, and the existence of extensive anal-
ysis, which permits to conclude important geometric
properties as the theorems presented in this paper.

Notes

1. In the case of the 1D Gaussian scale-space for example, zero
crossings are not added.

2. Since the orderk plays the (qualitative) role of scale, from now
on we refer tok as the scale of the representation.

3. To deal with closed curves, the series of points are periodic, that
is, the indices are computed modulon + 1.

4. The examples here presented were implemented using the Matlab
Spline Toolbox [10].

5. Recall thatB0,k is obtained from the convolution of the indicator
function.
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