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Abstract--The Hough Transform for straight line detection is considered. It is shown that if just a small 
subset of the edge points in the image, selected at random, is used as input for the Hough Transform, 
the performance is often only slightly impaired, thus the execution time can be considerably shortened. 
The performance of the resulting "Probabilistic Hough Transform" is analysed. The analysis is supported 
by experimental evidence. 
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1. I N T R O D U C T I O N  

The well-known Hough Transform0) is an efficient 
method for the detection of predefined features in 
digital images. Consider the Hough Transform for 
straight line detection using normal parameters as 
suggested by Duda and Hart; (2) in order to detect 
lines through large collinear subsets of a planar set 

' A 
of edge points P = {(xi,Yi) i = 1 . . . . .  M}, each 
point is regarded as a constraint 

p = xicos 0 + y~ sin 0 (1) 

on the normal parameters (p, 0) of the straight lines 
on which the point may be located. The intersection 
of a large number of sinusoids in the (/9, 0) normal 
parameter plane corresponds to the normal par- 
ameters of a straight line through a large collinear 
subset of P. 

The Duda and Hart (E) algorithm is a member of a 
family of "one to many" Hough Transforms in which 
one edge point is transformed to many points in the 
parameter space. "Many to one" and "one to one" 
Hough Transforms have also been suggested and 
analysed, especially with respect to the effects of 
edge point location errors on peak location in the 
parameter space. (3-5) 

In the standard implementation of the Duda and 
Hart algorithm (a subset of), the (/9, 0) plane is 
divided into Np x No rectangular cells and repre- 
sented by an accumulator array. The algorithm is 
performed in two stages; the first is an incrementa- 
tion stage in which for each i E  [1 . . . . .  M] the 
accumulators corresponding to cells that the sinusoid 
(1) intersects are incremented. The second stage is 
an exhaustive search for maxima in the accumulator 
array. These represent the normal parameters of 
straight lines through large collinear subsets of 
points. 

The execution of the Duda and Hart algorithm 
requires O(M.  No) operations in the incrementation 
stage and O(Np. No) operations in the search stage. 
In typical applications each dimension of the accumu- 
lator array, Np and No, is a few hundred cells or less, 
while M, the number of edge points, could be an 
order of magnitude higher. Thus the incrementation 
stage usually dominates the execution time of the 
algorithm. The linear dependence of the number 
of operations on M is an important advantage of 
accumulator-based "one to many" Hough Trans- 
forms in comparison with "many to one" algorithms 
and with algorithms that employ clustering tech- 
niques other than the accumulator method. 

The large number of operations has been a major 
obstacle to wide-spread application of the Hough 
Transform. One approach to accelerate the algor- 
ithm is based on "coarse to fine" variable resolution 
quantization of the parameter plane. Certain theor- 
etical limitations have, however, been observed, t6) 
Another approach is parallel implementation, often 
specifying specialized hardware which is expensive 
or bulky. 

The incrementation stage of the Hough algorithm 
is often regarded and referred to as "voting": each 
edge point "votes" for the parameter pairs of all 
straight lines on which it can lie. The "winning" lines 
correspond to the largest collinear subsets of edge 
points in the image. This pape/" suggests that in many 
practical situations a limited poll can replace full- 
scale voting with negligible performance degrada- 
tion. This means that a small subset of the edge 
points, selected at random, can often provide suf- 
ficient input to the Hough algorithm, allowing con- 
siderable reduction in execution time. A closely 
related approach has been briefly sketched in ref- 
erence (7) to demonstrate a possible application of a 
"blackboard"-based parallel processing architecture. 

The fundamental difference between the Duda 
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and Hart algorithm and the suggested "Probabilistic 
Hough Transform" is that only m edge points 
(m < M) selected at random guide the incrementa- 
tion process. As the number of operations at this 
stage is proportional to m. No, significant com- 
putational savings with respect to the Duda and Hart 
algorithm will result if m could be made much smaller 
than M. It should be observed that if m < N o further 
computational savings can be obtained by using 
Gerig's (s) sinusoid-guided peak detection procedure 
instead of conventional exhaustive search. While 
exhaustive search requires about Np. No operations, 
Gerig's method, which is computationally equivalent 
to the incrementation stage, requires approximately 
m • No operations. 

The limit on the possible decrease of m is the 
requirement that a feature in the image that mani- 
fests itself as a significant peak in the accumulator 
array of the conventional algorithm should be, with 
high probability, detectable using just m edge points 
to guide accumulation in the Probabilistic Hough 
algorithm. The optimal choice of m, and the resulting 
computational savings, are problem dependent. In 
the next section a model is presented and analysis 
is carried out. The applicability of the suggested 
approach to real problems that differ from the model 
has been experimentally studied, and is reported in 
Section 3. Preliminary results have been presented 
in reference (9). 

2. PROBABILISTIC HOUGH TRANSFORM ANALYSIS 

Assume that the image occupies a circle of unit 
radius, centred at the origin. (Using square rather 
than circular image model would have led to cum- 
bersome, albeit straightforward, analysis, which 
might have obscured more important principles.) 
The set of edge points P contains M points, S which 
lie on a "thick" straight line segment of length L and 

width 2b, and N ~ M - S which are due to noise, 
and are uniformly distributed in the edge map. Nor- 
mal parametrization of straight lines and rectangular 
plane quantization are employed, such that 
0 ~ [0, z)  is sampled at No evenly spaced values 
AO = z/No apart, and p E [ -1 ,  1] is quantized into 
No buckets of width Ap = 2/Np each. Suppose that 
m edge points are selected at random to guide the 
incrementation process; let s denote the number of 
selected points which belong to the line segment, /x 
and let n = m - s denote the number of selected 
points which are due to noise. 

It is well known that the quantization of the par- 
ameter plane and the "thickness" of the line segment 
lead to spreading of the peak in the accumulator 
array, making it harder to detect. The worst case 
spreading at a given 0 in terms of buckets along the 
p coordinate is: (m, ix) 

d=[Lsin(AO/2)+ 2bcos(AO/2)] + 2. (2) 
Ap 

A standard peak-detection practice which will be 
followed here is to find the maximum sum of buckets 
in a sliding rectangular window which is designed 
to capture the full peak spread and consists of d 
consecutive buckets in the p direction. 

The sliding window generally takes in con- 
tributions from both the signal and noise. At the 
peak, the signal contribution is the random variable 
s which is governed by the binomial distribution. The 
probability of s selected points which belong to the 
line is: 

P(s) = ( : )  (S/M)S(N/M)m-L (3) 

If m is large enough such that 

S N 
m . ~ . ~ - > l  (4) 

then the Gaussian approximation of (3) holds, with 
an expected value 

m 
~s = ~ s (5) 

and standard deviation 

• /  S N 
Os = m - ~ . ~ .  (6) 

Let a random variable n* represent the noise con- 
tribution to the sliding window at a certain location 
in the accumulator array. Generally, 

m 

P(n*) = Z P(n). P(n*/n) (7) 
n = O  

where P(n) is the probability of n selected noise 
edge points and P(n*/n) represents the conditional 
probability of n*. P(n) is binomial 

P(n) = ( : )  (N/M)"(S/M) m-" (8) 

and assuming that (4) holds can be well approximated 
by a Gaussian with an expected value 

m 
r/. = ~ N (9) 

and standard deviation o, = as. Note that since in 
interesting (i.e. difficult) situations N is much larger 
than S and m -> 1, then usually a, "~ r/,. 

It is known o2) that uniform noise in the image 
leads to non-uniform noise in the accumulator array. 
In the model studied here, it is easy to show that for 
a sliding window centred at a certain location (P0, 00) 
in the accumulator array, 

n n* P(n*/n) \/In*lP ( i - p ) " - " *  (10) 

where p is the probability that a "noise" edge point, 
selected at random, contributes to the sliding window 
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at (P0, 00). For d A p . ~  1, 

2 d A p  X/1 - 
p = o2o (11) 

i.e. p is the fraction of the image area which is 
projected onto a segment of length dAp,  concurrent 
with the diameter of the image at any orientation 00, 
and at average distance P0 from the centre along that 
diameter, as shown in Fig. 1. In the most noisy 
neighbourhoods in the accumulator array 

p = 2dAp/:r. (12) 

If np is not much larger than 1 the Poisson approxi- 
mation to the binomial distribution holds: 

P(n*/n)  ~ e-"P (np)n* 
n*! (13) 

Furthermore, since On ~ rln and since P(n*/n) is not 
extremely sensitive to small variations in n, it is safe 
to approximate P(n) in (7) as an impulse function at 
n = r/n. Thus 

(r/,p)"* 
P(n*) -~. e -%'p - -  (14) 

n*! 

where r/, is given by (9). The approximation of P(n) 
by a constant also implies that the random variables 
s and n ' can  be considered "almost" independent. 

Peak detection difficulties in the Hough Trans- 
form, i.e. high counts at accumulators distant from 
the genuine peak location, are generally due to ran- 
dom noise and due to bias, t~3) which is an interference 
generated by features in the image. Since our image 
model is noise-dominated, i.e. the image contains 
just noise and a single straight line segment, bias in 
the accumulator array is limited to that which is 
caused by projections of the line segment itself at 
various angles. This bias is characterized by its so- 
called butterfly pattern, and can actually be utilized 
to improve the location accuracy of the detected 
line. (11'14) Hence, in the present noise-dominated 
model, the main issue is whether or not the true peak 
would be distinct with respect to peaks generated by 
random noise. 

It is desired to detect the peak by establishing a 
threshold T. such that a sliding window at a certain 
location would be said to be in the neighbourhood 
of the peak if its value exceeds the threshold, and 
would otherwise be associated with noise. The detec- 
tion probability is 

PD = Prob(s + n*) > T (15) 

and the false alarm probability per window location 
is 

PrA = Prob(n*) > T. (16) 

Since P(n*) depends on Po, PD and PFA are generally 
p0-dependent as well. Thus the optimal threshold T 
is a function of P0. 

The above analysis is now used to relate PD, PpA, 

T and m in a particular example. Let M = 5000 be 
the total number of edge points, N = 4000 be the 
number of points due to random noise and S = 1000 
be the number of points generated by a line segment 
of length L = 0.8 and width 2b = 0.02, which is typi- 
cal to edges obtained from real images by edge 
detection. Since noise level is highest at P0 ~ 0, for 
worst case analysis a line that is nearly concurrent 
with a diameter of the circular image is assumed. 
The dimensions of the accumulator array are No = 
No = 500. 

Using (2) we obtain that the worst case spreading 
of the peak in buckets along the p coordinate is 
d = 7. Applying (11), we find 

p ~ 0.018X/1 - 02. (17) 

Under the assumption that mp is not much larger 
than 1, the noise in the accumulator array at P0 ~ 0 
is governed by the Poisson distribution, and the 
probability of false alarm per window location is 

PFA ~ E e -II'mS" (0"015m)~* (18) 
n*=r r/*! 

The probability distribution of s + n* can be 
approximated, since s and n* are "almost" inde- 
pendent, by convolution of the individual distri- 
butions. Assuming that 0.16m is large. P(s) is 
approximately Gaussian with 

r;s = 0.2m 

o~ 0.4X/m. (19) 

Since On. ~- 0.3os and r/n. = 0.075r/s, P(s + n*) can be 
roughly approximated by a Gaussian with 

{ r;~+~. = 0.215m 

as+,,. = 0.418~v/m. (20) 

To obtain Po ~ 98% the threshold is set at 

T ~-- qs+,,* - 2os+,. (21) 

Fig. 1. The geometric interpretation of (11). 
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or 
T-~ 0.215m - 0.84 ~/m. (22) 

To illustrate, assume that m -- 100, i.e. a random 
sample of just 2% of the edge points is used. To 
obtain 98% detection probability, the threshold is 
set at T = 13. In this case the per-window false alarm 
rate at the most noisy area in the accumulator array 
is in the order of 10 -s, which is negligible. The 
behaviour of Pea as a function of m for Po = 98% 
shows a threshold effect: for m = 50 the per-window 
false alarm rate is about 10 -3 at noisy areas, implying 
the existence of dozens of false alarms. It is inter- 
esting to note that if the sliding window method had 
not been used and peaks had been detected by per- 
accumulator comparison, it would have been nec- 
essary to increase m to more than 400 to obtain 

performance similar to that which is obtained with 
the sliding window method at m = 100. 

3. EXPERIMENTS 

The theoretical analysis just presented predicts 
that the improvement of the performance of the 
Probabilistic Hough Transform as the sample size 
increases exhibits a threshold effect. Thus, even in 
the presence of significant noise as well as errors in 
the coordinates of the data points, large com- 
putational savings should be possible• 

The analysis has been based on a certain image 
model, as well as on a specific formulation of the 
algorithm. A series of experiments was designed in 
order to verify the applicability of the suggested 
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Fig. 2. (a) An original edge map containing 2150 points, 270 of which lie on the straight edge. (b), (c) 
and (d) show a random selection of 20%, 5% and 2% of the edge points, respectively. 
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(c) 

(b) 

(d) 

Fig. 3. The accumulator maps that correspond to the edge maps of Fig. 2. 

approach in real problems, that deviate in several 
important ways from the theoretical assumptions. 

In order to evaluate the performance of the algor- 
ithm, an error measure must be chosen. In all the 
following experiments the chosen measure is the 
average number of false alarms, i.e. peaks in the 
accumulator array that are higher than the peaks 
that correspond to the "true" features. This measure 
represents the average number of random arrange- 
ments that would erroneously be detected whenever 
the threshold is adjusted to be low enough to enable 
detection of the genuine features. The average num- 
ber of false alarms is useful in predicting the com- 
putational effort required for implementing a post- 

processing verification algorithm. Each point in the 
following graphs (showing the average number of 
false alarms as a function of the fraction of data 
points used to guide accumulation) is an average 
based on the results of 100 experiments, each with 
its own random selection of data points. 

All experiments were carried out using real 
256 × 256 pictures, taken with a CCD camera. The 
corresponding edge maps were generated by simple 
edge detection procedures. In some cases synthetic 
noise or features had to be added. 

The first experiment was meant to verify the analy- 
sis, using a simple image which roughly fits the theor- 
etical model 's  assumptions. Figure 2(a) shows an 
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Fig. 4. The average number of false alarms (based on 100 experiments) as a function of the fraction of 
edge points selected to guide the accumulation• A threshold effect is evident• 

edge map obtained from a real image, to which 
uniformly distributed noise has been synthetically 
added. The main feature in the image is a straight 
edge which consists of about 270 edge points out of 
a total of about 2150 in the edge map. There are also 
a few smaller patterns and very many noise points 
that constitute the main "distractor". This essentially 
corresponds to the noise-dominated model assumed 
in the theoretical analysis. When all the edge points 
are input to the Duda and Hart algorithm (with an 
180 x 200 accumulator array) the accumulation is as 

shown in Fig. 3(a), and the straight edge is easily 
detected. Figures 2(b), (c) and (d) show, respect- 
ively, a random selection which consists of 20%, 5% 
and 2% of the edge points; the respective accumu- 
lator maps are shown in Figs 3(b), (c) and (d). 
Figure 4 shows the average number of false alarms 
as a function of the fraction of edge points selected 
to guide the accumulation. It clearly demonstrates 
the threshold effect predicted by theory which makes 
significant computational savings possible. 

In the edge map of Fig. 5, which is a synthetic 
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Fig. 5. An edge map (6998 points), containing a straight edge of 420 points, a distracting curve, and 
noise. 
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Fig. 6. The average number of false alarms as a function of the sample size, when the Probabilistic 
Hough Transform is applied to the edge map shown in Fig. 5. The sharp threshold indicates that large 

computational savings are possible. 

combinat ion of two real edge maps, the dominant  
distracting feature is an irregular curve; the straight 
edge consists of merely  420 of  the 6998 edge points. 
Figure 6 shows the average number  of false alarms in 
this case, as a function of sample size. The threshold 

effect is clear• 

The next exper iment  was designed to test the 
suggested approach when the distracting features are 
themselves straight line segments.  Figure 7(a) shows 
an edge map which contains two significant straight 
edges, one longer than the other ,  and several shorter 
straight segments.  Figures 7(b) and (c) are noisy 
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Fig. 7. (continued on next page). 
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(c)  

Fig. 7. (a) A n  edge  m a p  con ta in ing  two significant s t ra ight  edges ,  one  longer  than  the  o ther ,  severa l  
sho r t e r  s t ra ight  edges  an d  s o m e  r a n d o m  noise .  O u t  of  a total  of  4000 edge  points ,  326 points  lie on  the  
longer  s t ra ight  edge  and  234 po in t s  lie on  the  o ther .  (b) A similar  edge  m a p  with 2000 un i fo rmly  
d i s t r ibu ted  noisy  edge  po in t s  added .  (c) A n  edge  m a p  similar  to (a) with 4000 noisy edge  po in t s  added .  
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Fig. 8. T h e  ave rage  n u m b e r  of  false a l a rms  as a funct ion  of  the  fract ion of  edge  points  t aken .  The  
c o n t i n u o u s  l ine c o r r e s p o n d s  to Fig. 7(a). T h e  da shed  line and  the do t ted  line co r re spond  to Fig. 7(b) 
and  7(c) respect ively•  T h e  rob us tn e s s  of  the  sugges ted  app roach  to the  p resence  of  d is t rac t ing s t ra ight  

edges  as well as significant r a n d o m  noise  is evident .  
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versions of the original edge map of Fig. 7(a). Figure 
8 shows the average number of false alarms (with 
respect to the longest edge) as a function of sample 
size, and exhibits a strong threshold effect. 

Figure 9 shows the average number of false alarms 
with respect to the t w o  most significant edges in Fig. 
7(a), i.e. the number of peaks in the accumulator 
array larger than at least one of the two peaks that 
correspond to the longest straight edges. For com- 
parison the graph of the average number of false 
alarms with respect to the (single) longest edge is 
provided as well. While the threshold effect is still 
evident, it is clear that the sample size must be 
increased if the false alarms rate should not change 
while the number of features to be detected grows. 
This means that as the complexity of the task which 
the Hough algorithm is expected to perform 
increases, more of the available data should be used. 
This observation seems to be in line with the con- 
clusions of Grimson and Huttenlocher. (15) 

To test whether the threshold effect that makes 
the suggested probabilistic approach attractive dep- 
ends on the specific Hough algorithm used, circle 
detection experiments were carried out. The three 
dimensional (128 x 128 x 60) accumulator array, 
which is needed since the radius is assumed to be 
unknown, and the use of directional edge infor- 
mation (with incrementation guided by an error 
model) make this Hough algorithm quite different 
to the algorithm for straight line detection. 

Figure 10 shows a textured circle covered by a 
distracting curve; the corresponding edge map is 
shown in Fig. 11. Figure 12 shows the average num- 
ber of false alarms as a function of sample size, and 
exhibits a clear threshold. 

In Fig. 13(a) the feature to be detected is again 
the circle, the distractors being straight edges. 
Figures 13(b) and (c) are noisy versions of Fig. 13(a), 
and Figs 14(a), (b) and (c) are the respective edge 
maps. The average number of false alarms in the 
three cases as a function of sample size is shown in 
Fig. 15, and again shows a sharp threshold effect, 
indicating the applicability of the suggested pro- 
babilistic approach to the Hough algorithm for circle 
detection. 

4.  D I S C U S S I O N  

The theoretical analysis and the various experi- 
ments demonstrate that even in the presence of 
distracting features, significant noise and errors in 
the coordinates of the data points, large com- 
putational savings are often possible by using the 
suggested Probabilistic Hough Transform. The 
results also show another aspect of the robustness of 
conventional Hough algorithms. 

An alternative approach, based on the Random 
Sample Consensus (RANSAC) paradigm, Ilo) is sug- 
gested in reference (7). To detect straight edges, 
pairs of data points are consecutively selected at 
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Fig. 9. The dashed line shows the average number of false alarms with respect to the two most significant 
edges in Fig. 7(a). For comparison, the solid line shows the false alarms with respect to the single longest 
edge. While it is clear that the sample size must be increased if a certain fixed false alarms rate is to be 

maintained, the threshold effect remains evident. 
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Fig. 10. A grey scale image showing a textured circle 
covered by a distracting curve. 
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Fig. 11. An  edge map  obtained from the image shown in 
Fig. 10 by the Marr-Hildreth edge detection algorithm. Out  
of  a total of  6231 edge points,  105 lie on the circle's edge. 
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Fig. 12. The  average number  of  false alarms as a function of sample size when a probabilistic circle 
detection Hough  algorithm was applied to the edge map of Fig. 11. Directional edge information was 
used. The clear threshold effect indicates that significant computat ional  savings can be obtained even 

in such a problem, which is rather difficult for edge based circle detection algorithms. 
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(a) 

.............. ~;Y~S'~7~ ~ ££ ;  ? :, " . 

(b) 

(c) 

Fig. 13. (a): A grey level image that contains a circular feature, several straight edges and noise. (b) 
and (c) are similar, with different levels of additive Gaussian noise. 
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Fig. 15. The average number of false alarms as a function of sample size. The dotted, dashed and solid 
lines correspond to the edge maps shown in Figs 14(c), (b) and (a), respectively. The sharp threshold 

demonstrates against the robustness of the suggested approach. 

random, and the goodness of fit of the line that they 
define is verified by evaluating its distance from all 
other edge points, until an acceptable fit is reached. 
That technique, possibly with minor modifications 
aimed at lowering the computational cost of the 
verification process, can yield good results, especially 
when the errors in the coordinates of edge points are 
very small, and when the SIN level is not too low. 
Reference (17) regards the conventional Hough 
Transform, which emphasizes evidence collection, 
and techniques similar to RANSAC, that stress 
hypotheses generation and verification with mini- 
mum data gathering, as two ends of a spectrum, and 
suggests, in the context of model-based vision, a 
dynamic compromise between those extremes. See 
also reference (18). The Prohabilistic Hough Trans- 
form in conjunction with a verification algorithm 
can be regarded as a possible compromise. It is 
interesting to note that the results of a recent study 05) 
concerning the robustness of Ballard's Generalized 
Hough Transform (19) imply that in demanding appli- 
cations of that algorithm to complex high dimen- 
sional problems all available data should preferably 
be used. 

S U M M A R Y  

The well-known Hough Transform is a standard 
method for the detection of predefined features in 
images. Its usual implementation consists of a voting 
stage, in which each feature point is mapped into a 
curve (hypersurface) m a parameter space, and an 
exhaustive search for peaks. The parameter space is 

usually quantized and represented by an accumulator 
array. 

One of the major obstacles to wide-spread appli- 
cation of the Hough Transform has been the large 
number of operations, which is esentially due to the 
dependence of the number of operations in the voting 
stage on the (large) number of edge points in the 
image. Parallel processing using standard or special- 
ized hardware is an excellent way to reduce com- 
putation time, but usually requires costly or bulky 
equipment. "Coarse to fine" multiresolution pro- 
cessing in the parameter space had been suggested, 
but several theoretical and practical limitations have 
been observed. 

This paper suggests an alternative approach to fast 
Hough Transform computation. Its essence is the 
replacement of full scale voting in the incrementation 
stage of the algorithm by a limited poll of a small 
number of edge points, selected at random. This 
leads to large computational savings. The key to 
successful application of the "Probabilistic Hough 
Transform" is the dependence of the algorithm's 
performance (in terms of detection probability and 
false alarm rate) on the fraction of the data that is 
used. The expected number of peaks in the par- 
ameter space that are higher than the "true" peak is 
especially important if a post-processing verification 
algorithm is considered. 

The dependence of the algorithm's performance 
on the fraction of edge points used has been analysed 
for the case of straight line detection. An image 
model that consists of considerable background noise 
and one straight edge segment with significant edge 



316 N. KIRYATI et al. 

point location errors has been assumed. The analysis 
shows that the dependence of the performance on 
the fraction of edge points used exhibits a sharp 
threshold effect, implying that considerable com- 
putational savings are possible with negligible per- 
formance degradation.  

The applicability of this interesting result in the 
processing of real images (that deviate in many ways 
from the model used in the analysis) has been inves- 
tigated experimentally.  The threshold effect pre- 
dicted by the theoretical analysis appeared even 
when the image contained several distracting fea- 
tures in addition to various kinds of noise. This 
means that large computat ional  savings can often be 
achieved by using the Probabilistic Hough Trans- 
form. 
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