
Computer Vision and Image Understanding78,69–83 (2000)
doi:10.1006/cviu.1999.0828, available online at http://www.idealibrary.com on

Heteroscedastic Hough Transform (HtHT): An
Efficient Method for Robust Line Fitting in the

‘Errors in the Variables’ Problem

Nahum Kiryati

Department of Electrical Engineering—Systems, Faculty of Engineering,
Tel Aviv University, Ramat Aviv 69978, Israel

E-mail: nk@eng.tau.ac.il

and

Alfred M. Bruckstein

Department of Computer Science, Technion—Israel Institute of Technology, Haifa 32000, Israel
E-mail: freddy@cs.technion.ac.il

Received February 23, 1999; accepted November 5, 1999

A versatile, systematic, and efficient line-fitting algorithm is presented, accommo-
dating (1) errors in both coordinates (‘errors in the variables’), (2) correlation between
the noise in the two coordinates (i.e., equal noise density ellipses that are not aligned
with the coordinate axes), (3) heteroscedastic noise (different noise covariance ma-
trices for different data points), and (4) outliers (achieving robustness by using finite
support influence functions). The starting point for the analysis is the assumption of
additive, zero mean, Gaussian measurement noise with point-dependent covariance
matrix with crossterms. A maximum-likelihood approach is taken. The handling of
outliers is inspired by robust M-estimation. Line fitting is viewed as a global opti-
mization problem. It is shown that even in the rather general setup considered here,
the objective function has a special structure in the normal parameters space, that
allows efficient systematic computation. The suggested algorithm can be extended
to deal with “repulsive” data points (from which the line should keep a distance) and
with simultaneous fitting of several lines to the same data set.c© 2000 Academic Press
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1. INTRODUCTION

Consider the problem of fitting a straight linel to a planar set of points

S= {(xi , yi ), i = 1, . . . ,M}.

In the simplest formulation of the problem, which is common in practically all the exper-
imental sciences, it is assumed that thexi ’s are error-free, while theyi ’s are contaminated
with additive random i.i.d. Gaussian noise with zero mean and varianceσ 2

y . It is well known
(and easy to show) that maximum likelihood (ML) estimation of the line parameters leads
in this case to the classical method of least squares (LS), i.e., to the minimization problem

l̂ = arg min
l

M∑
i=1

(Yi − yi )
2,

subject to the constraint that the “adjusted” points{(Xi = xi ,Yi ) | i = 1, . . . ,M} are on
the linel . This problem has a well-known closed-form analytic solution.

In the ‘errors in the variables’ formulation of the line-fitting problem, it is no longer
assumed that thexi ’s are error-free. Generally, the ‘errors in the variables’ problem does
not admit an analytic solution. Suppose, however, that the noise in thexi ’s is also identically
distributed Gaussian with zero mean and varianceσ 2

x = σ 2
y , and that for any givenxi it is

independent of the noise in the otherxi ’s and is also independent of the noise inyi . ML
estimation of the line parameters leads, in this case, to the method of total least squares
(TLS), i.e., to minimizing the sum of squared distances between the noisy data points and
the fitted line, measured in the direction perpendicular to the line. The TLS line fitting
admits an analytic solution. By scaling the coordinate system axes, the analytic solution
can be extended to the case ofσ 2

x 6= σ 2
y .

In many applications, the assumptions behind the LS and TLS methods are acceptable.
Suppose, however, that the variance of the noise is not identical for all the data points. This
is known as the heteroscedastic case. Furthermore, assume that the noise inxi is correlated
to the noise inyi . The latter situation leads to constant noise density ellipses that are not
aligned with the coordinate system axes. Generally, there is no analytic solution for the
cases of heteroscedastic and/or correlated noise.

Line-fitting problems with heteroscedastic and correlated noise are quite common. When-
ever the points in the data set are obtained by fusion of several sensors, each the source
of some of the points, the noise is generally heteroscedastic since each sensor has dif-
ferent noise characteristics. If, in addition, the fusion process involves coordinate system
transformations, in particular rotation, the noise in thex andy coordinates will be corre-
lated. Heteroscedastic regression problems in computer vision are studied in [13]. Efficient
solutions to problems of this type are in high demand.

Line fitting based on ML estimation of the line parameters, in particular the LS and TLS
methods, fails when the data set contains outliers that do not satisfy the assumed statistical
noise model. Several approaches to robust regression, with various statistical properties,
have been suggested; see, e.g., [1, 5, 12, 14, 20]. In early studies, the computational cost of
robust regression received little attention. Later, significant efforts were aimed at developing
computationally efficient robust regression methods; see, e.g., [3, 15].

The Hough transform [7, 11] is an effective way to fit a line to data points in the presence
of (possibly many) outliers. In its standard form [2], each data point is transformed to a
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sinusoidal voting pattern in an accumulator array that represents the normal parameters
plane. The Hough transform will fail if errors in the position of the genuine (nonoutlier)
points are present, since the sinusoids in the parameter plane will not intersect, as required, in
a point. The resulting spreading of “votes” implies that if the errors are large, the maximum
in the accumulator array will no longer correspond to the parameters of the true line.

Shapiro [17] and Thrift and Dunn [19] extended the Hough transform to deal with er-
rors in the position of the genuine data points. See also Princenet al. [16]. Kiryati and
Bruckstein [8, 9] showed that the Hough transform can be tuned to perform M-estimation,
to accommodate repulsive data points, and to allow for heteroscedastic noise, but only if
the noise is not correlated, i.e., only if the main axes of the equal noise density ellipses are
parallel to the coordinate system axes.

In this paper we present an efficient method for robust line fitting in the heteroscedastic
‘errors in the variables’ problem, with correlated noise. It is assumed that the covariance
matrix associated with each data point is known. The method suggested is easy to imple-
ment and fast to compute and provides a systematic solution to this important practical
problem. The organization of the paper is as follows. In Section 2 the problem is defined
and formulated as a global optimization problem and the general approach to solving it
is outlined. In Section 3 it is shown that the objective function can be simplified and has
a special structure. It is further shown that this special structure leads to an elegant, effi-
cient computational solution. Experimental results are presented in Section 4. In Section 5
an alternative definition of the problem is considered and limitations of the method are
discussed.

2. PROBLEM STATEMENT

Let S= {(Xi ,Yi ) | i = 1, . . . ,M} be an unknown set of collinear points in the plane, but
suppose that measurements of the coordinates of the points are available:s= {(xi , yi ) | i =
1, . . . ,M}. Due to noise,s 6= S. The measurement noise is assumed to be additive and
independent between points. Its probability density is modeled as a 2-D Gaussian with zero
mean and a point-specific covariance matrix,

p(xi , yi | Xi ,Yi ) = 1

2π|Σi | 12
exp
(−∆̄T

i Σ−1
i ∆̄i

/
2
)
, (1)

where

∆̄i ≡
(
1xi ,1yi

)T ≡ (Xi − xi ,Yi − yi )
T,

Σi is the covariance matrix

Σi ≡
[
σ 2

xi
σxyi

σxyi σ 2
yi

]
,

and|Σi | is the determinant of the covariance matrix,

|Σi | ≡ σ 2
xi
σ 2

yi
− σ 2

xyi
.

This is, due to the dependence of the covariance matrix oni , a heteroscedastic Gaussian
noise model, with correlated noise.
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The line-fitting task may therefore be regarded as finding the maximum likelihood esti-
mator for the set of collinear pointsS. This can be expressed as

Ŝ= arg max
S∈S∗

p{s | S}, (2)

whereS∗ is the set of all collinear sets ofM points in the plane. The independence of the
noise between points leads to

Ŝ= arg max
S∈S∗

M∏
i=1

p[(xi , yi ) | (Xi ,Yi )]. (3)

The logarithm function is monotonic, so

Ŝ= arg max
S∈S∗

M∑
i=1

log p[(xi , yi ) | (Xi ,Yi )]. (4)

Substituting Eq. (1) and discarding constants that are irrelevant for the minimization we
obtain

Ŝ= arg min
S∈S∗

M∑
i=1

∆̄T
i Σ−1

i ∆̄i . (5)

The points inS are collinear; thus all the points (Xi ,Yi )∈ S must lie on a linel in the
plane. Given a linel , the fitting of the individual points can be carried out independently.
Let Ci quantify the fitting error between the data point (xi , yi )∈ s and the matched point
(Xi ,Yi )∈ l ,

Ci (l ) = min
(Xi ,Yi )∈l

∆̄T
i Σ−1

i ∆̄i . (6)

Let l ∗ be the set of straight lines in the plane. The line-fitting problem is now that of finding
the linel that leads to the smallest total fitting cost:

l̂ = arg min
l∈l ∗

C(l ) = arg min
l∈l ∗

M∑
i=1

Ci (l ). (7)

Note that the TLS method is a special case where∀i σ 2
xi
= σ 2

yi
= σ 2 andσxyi = 0. The LS

method is the limiting case in which∀i σ 2
yi
= σ 2, σxyi = 0, andσ 2

xi
= 0 (singular covariance

matrix).
We have so far assumed that there are no outliers in the set of data pointss. In the

presence of outliers, the above formulation of the line-fitting problem is inadequate. Since
the contributionCi of any data point to the total cost is unbounded, even a single outlier can
throw the fitted linêl arbitrarily far from its true position. To alleviate the problem, a robust
approach similar to M-estimation can be taken, limiting the contribution of each point to
the total cost. Formally,Ci , is replaced by%(Ci ), where%(·) is some saturation function
such as

%(Ci ) = min
{

Ci ,a
2
i

}
. (8)
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If a descent-type optimization technique were to be used, a smoother differentiable saturation
function%(·) would be preferable.

The algebraic form of the constraint (Xi ,Yi )∈ l , i.e., that the matched point is on the line,
depends on the parameterization chosen for straight lines. The slope–intercept parameteri-
zation is common, but has several drawbacks, primarily the singularity of vertical lines. We
use the normal parameterization (ρ, θ ), which is generally well behaved and has the advan-
tage that all lines passing through a bounded domain in thex–y plane are represented by
normal parameters that belong to a bounded domain in theρ–θ parameter plane. Robust line
fitting with heteroscedastic correlated noise is thus the solution of the optimization problem

arg min
(ρ,θ )

C(ρ, θ ) = arg min
(ρ,θ )

M∑
i=1

%[Ci (ρ, θ )], (9)

where

Ci (ρ, θ ) = min
(Xi ,Yi )

∆̄T
i Σ−1

i ∆̄i (10)

and the minimization in Eq. (10) is subject to the constraint that the “adjusted point” (Xi ,Yi )
is on the line defined by (ρ, θ), i.e., that its coordinates satisfy

ρ = Xi cosθ + Yi sinθ i = 1, . . . ,M. (11)

As discussed above, least squares (LS) and total least squares (TLS) line fitting admit
analytic solutions. The correlated heteroscedastic line-fitting problem without outliers, i.e.,
where we can simply use%(Ci )=Ci , does not generally admit an analytic solution. However,
in this case the objective functionC(ρ, θ ) can be sufficiently well behaved to allow solution
by a descent-type algorithm. When outliers have to be accounted for, the% function has to
be a saturation function (as in Eq. (8)). The robust, correlated heteroscedastic line-fitting
problem, as defined by Eqs. (9)–(11), is generally a global optimization problem, often with
many local minima. Then, descent-type optimization techniques usually fail unless a very
good starting point is provided. Such good initial approximations are normally not available.

It is well known that the general global optimization problem, i.e., that of finding the
global minimum of a general function above a continuous bounded domain, cannot be
solved by a finite number of function evaluations. However, if the objective function is
not too badly behaved, in particular if its variations are small within small neighborhoods,
various global optimization approaches can yield good results [21].

In this paper an algorithm to solve the robust line-fitting problem with correlated het-
eroscedastic noise is developed. The general approach is coarse-to-fine grid search. In
principle, a rectangular grid is placed in the domain of the objective function. The objective
function is evaluated at all the grid points. Finer local grids are then positioned around sig-
nificant minima locations. The process continues until the required precision is obtained.
In the context of the standard Hough transform, coarse-to-fine search has been suggested
in [6].

The viability of this approach depends on two issues. One is the level of certainty that the
coarse-to-fine grid search converges to the true global minimum of the objective function,
i.e., to the best line. Convergence analysis of coarse-to-fine grid search in a similar robust
line-fitting problem has been studied in [18]. The other issue is computational. In particular,
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if it had been necessary to compute the objective function from scratch at every grid point, the
overall computational cost would have been rather high. We show that efficient systematic
evaluation of the objective function on a rectangular grid is possible, leading to rapid robust
line fitting.

In a previous paper [9] we studied a special degenerate case of the line-fitting problem.
There it was assumed that the correlation termsσxyi in the covariance matricesΣi in Eq. (10)
are all zero. In this paper an efficient systematic way to solve the general problem, with
correlated noise, as defined by Eqs. (9)–(11) is presented and demonstrated.

3. EFFICIENT COMPUTATION ON A GRID

Consider a single term

Ci (ρ, θ ) = min
(Xi ,Yi )

∆̄T
i Σ−1

i ∆̄i (12)

where the minimization is subject to the constraint (11). Inverting the covariance matrix
and performing the vector–matrix multiplications, we obtain

Ci (ρ, θ ) = min
(Xi ,Yi )

1

|Σi |
(
12

xi
σ 2

yi
+12

yi
σ 2

xi
− 21xi1yi σxyi

)
. (13)

In order to carry out the minimization subject to (11), we define the Lagrangian

8i = 1

|Σi |
(
12

xi
σ 2

yi
+12

yi
σ 2

xi
− 21xi1yi σxyi

)+ λ(ρ − Xi cosθ − Yi sinθ ) (14)

and require that∂8i /∂λ= 0, ∂8i /∂Xi = 0, and∂8i /∂Yi = 0. The first requirement yields
the constraint (11). The second and third requirements lead to

1xi σ
2
yi
−1yi σxyi =

λ|Σi |
2

cosθ (15)

1yi σ
2
xi
−1xi σxyi =

λ|Σi |
2

sinθ (16)

Equations (15) and (16) can be solved for1xi ≡ Xi − xi and1yi ≡Yi − yi . We obtain

1xi =
λ

2

(
σ 2

xi
cosθ + σxyi sinθ

)
(17)

1yi =
λ

2

(
σ 2

yi
sinθ + σxyi cosθ

)
. (18)

Now, Eq. (13) can be rewritten as

Ci (ρ, θ ) = min
(Xi ,Yi )

[
1

|Σi |1xi ·
(
1xi σ

2
yi
−1yi σxyi

) + 1

|Σi |1yi ·
(
1yi σ

2
xi
−1xi σxyi

)]
. (19)

By substituting Eqs. (15) and (16) it is seen that

Ci (ρ, θ ) = λ

2

(
1xi cosθ +1yi sinθ

)
(20)
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subject to (11). Substituting (11) in Eq. (20), we obtain

Ci (ρ, θ ) = λ

2
(ρ − xi cosθ − yi sinθ ). (21)

Define

ρi (θ ) ≡ xi cosθ + yi sinθ

and

ri (ρ, θ ) ≡ ρ − ρi (θ ).

We can now write

Ci (ρ, θ ) = λ

2
[ρ − ρi (θ )] = λ

2
ri (ρ, θ ). (22)

Note thatρi (θ ) is the sinusoid that corresponds to the data point (xi , yi ) in the Duda and
Hart formulation of the Hough transform [2] and that|ri (ρ, θ )| is the distance between the
data point (xi , yi ) and the line parameterized by (ρ, θ) [8].

It is also possible to substitute Eqs. (17) and (18) into Eq. (20). We get

Ci (ρ, θ ) = λ2

4
· vi (θ ), (23)

where

vi (θ ) ≡ σ 2
xi

cos2 θ + σ 2
yi

sin2 θ + 2σxyi sinθ cosθ.

By comparing the expressions forCi (ρ, θ ) in Eqs. (22) and (23), we obtain that

λ

2
= ri (ρ, θ )

vi (θ )
,

so finally

Ci (ρ, θ ) = r 2
i (ρ, θ )

vi (θ )
= (ρ − xi cosθ − yi sinθ )2

σ 2
xi

cos2 θ + σ 2
yi

sin2 θ + 2σxyi sinθ cosθ
. (24)

Using this result, robust line-fitting with heteroscedastic correlated noise, as defined by
Eqs. (9)–(11), takes the simpler form

arg min
(ρ,θ )

M∑
i=1

%

[
(ρ − xi cosθ − yi sinθ )2

σ 2
xi

cos2 θ + σ 2
yi

sin2 θ + 2σxyi sinθ cosθ

]
. (25)

We proceed to show that coarse-to-fine grid search is a very efficient computational approach
to solving this global minimization problem, assuming that the covariance matrix associated
with each data point is known.
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Without loss of generality, assume that all data points{(xi , yi )} lie within a circle of
radiusR centered at the origin of thex–y plane. In practice, it is advisable to minimizeR
by translating the coordinate system origin to, say, (x̄, ȳ), where

x̄ ≡
(

min
i

xi +max
i

xi

)/
2

ȳ ≡
(

min
i

yi +max
i

yi

)/
2.

Since all the data points lie within the circle, the fitted line must pass through the circle.
Therefore, the line can be represented by normal parameters (ρ, θ ) that are within the
rectangular parameter space domain

A(0) = {(ρ, θ ) : −R< ρ < R , 0 ≤ θ < π}

in theρ–θ plane. A rectangular grid withNρ × Nθ grid points is placed in this domain, and
each grid point is represented by an accumulator in an accumulator array.

Naive brute-force evaluation of the objective function on all the grid points according to
Eqs. (9)–(11) is computationally expensive. However, as expressed by Eq. (25), the objective
function has a special structure that can be used to dramatically reduce the computing time.
The general form of a fast algorithm, guided by Eq. (25), to computeC(ρ, θ ) on a rectangular
set of grid points is as follows.

Store a discrete approximation of the

function r 2 in a vector D0

Reset the accumulator array

For each data point (xi , yi )
For each discrete value θ j of θ

Let D1 be D0 shifted by ρi (θ j )
Let D2 be D1/Vi (θ j )
Let D3 be D2 clipped by a2

i (Eq. 8)

Add D3 to the θ j column of A(0)

Next θ

Next data point

The operations in the inner loop are very simple. Thus, while the time needed for com-
putingC(ρ, θ ) is asymptotically proportional toM · Nθ · Nρ , the proportionality constant
is very small. Furthermore, the time critical operations (division and clipping) involve a
vector and a scalar, hence any type of pipelining or parallel hardware can be fully utilized
to obtain maximal speedup.

The next step is to find the minimum [ρ(0), θ (0)] (or a few significant minima) in the
accumulator array. These parameters are a discrete approximation of the parameters of the
best line that can be fitted to the data. [ρ(0), θ (0)] can be used as an excellent starting point
for a descent-type line-fitting algorithm. Alternatively, a fine rectangular grid can be placed
in a small domainA(1) centered at [ρ(0), θ (0)]. The objective function can be efficiently
calculated in higher resolution inA(1), its minimum [ρ(1), θ (1)] can be found by search and
so on until convergence is achieved.



HETEROSCEDASTIC HOUGH TRANSFORM 77

4. EXAMPLES

The suggested algorithm for heteroscedastic robust line-fitting with correlated errors in
the variables has been implemented. The input is a list of data points, each represented by
a record that includes the following items:

• The coordinates of the data point (xi , yi ).
• The standard deviationsσxi andσyi of the errors in thex andy coordinates.
• The correlation corri ≡ σxyi /σxi σyi between the errors in thex andy coordinates.
• The upper bounda2

i on the fitting cost (saturation level), see Eq. (8).

The output is the equation of the line fitted to the data.
The coordinates of the data points in the four parts of Fig. 1 are the same, but the standard

deviations, the correlation and the saturation levels differ. In the top-left part, line-fitting
according to the conventional least-squares criterion, with errors in they coordinate only, is

FIG. 1. (Top-left) Least-squares line fitting with errors in they values only. The fitted line is horizontal. (Top-
right) Total least squares (TLS) line fitting, as a special case of the suggested algorithm. (Bottom-left) Robust
TLS. A data point has no influence beyond the circular contour. (Bottom-right) The standard Hough transform is
obtained as a special case by setting the saturation level to a small value.
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implemented using the suggested algorithm. This corresponds toσxi = 0,σyi = σ , corri = 0
anda2

i →∞ (high saturation level, no clipping) for all points. The horizontal line fitted
demonstrates that the conventional least-squares criterion is not suitable for the given data
set. In the top-right part, for all points,σxi = σyi = σ , corri = 0, anda2

i →∞. The algorithm
in this case finds the total least squares (TLS) line. The damaging effect of the outlier is
apparent. Robust line-fitting is made possible in the bottom-left part by settinga2

i = 2 for
all points (σxi = σyi = 0.1, corri = 0). The circular contour around each data point shows
the locus of points (Xi ,Yi ) for which

(X − xi ,Y − yi )

(
σ 2

xi
σxyi

σxyi σ 2
yi

)−1(
X − xi

Y − yi

)
= a2

i .

This means that the fitting cost is clamped toa2
i outside the circle, eliminating the damaging

effect of the outliers. The bottom-right part of the figure shows that, by reducinga2
i to some

small value (0.1) for all points, any point that is not exactly on the line is regarded as an
outlier and the algorithm degenerates to the standard Hough Transform [2]. Note that in all
parts of Fig. (1) there is no correlation between the errors in thex andy directions.

Robust line-fitting with correlated heteroscedastic noise is demonstrated in Fig. 2. The
coordinates of the data points in both parts of Fig. 2 are the same and the standard deviations
and saturation level for all the points are equal:σxi = σyi = 0.1, a2

i = 2. The correlation
values differ, however. In the left part, the points in the larger collinear group are all with
corri = −0.7, the points in the smaller collinear group are with corri = 0.9, and the noise in
the remaining outlier is uncorrelated: corri = 0. The elliptical (or circular) contour around
each point again represents the influence region of that point, as explained above. In the
right part of the figure, the noise correlation for the points in the large collinear group is
taken as+0.7. The effect on the fitted line is apparent.

In the top-left part of Fig. 3, for all points,σxi = σyi = 0.1, corri = 0, anda2
i = 0.1. This

leads to line fitting as in the standard Hough transform. In the top-right part, witha2
i = 2.0 for

FIG. 2. Robust heteroscedastic line fitting with correlated noise. The differences in the records of the data
points in these examples are only in the correlation values. (Left) The points in the smaller collinear group are
regarded as outliers. (Right) The points in both collinear groups exert influence on the fitted line.
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FIG. 3. (Top-left) Tuning the algorithm to compute the standard Hough transform. (Top-right) Robust TLS
line-fitting. (Bottom-left) Robust heteroscedastic line fitting, without correlation. All points contribute to the fitted
line, i.e., the saturation level is not reached in any point. (Bottom-right) Robust line fitting with heteroscedastic
correlated noise.

all points, robust TLS line fitting is obtained. In the bottom-left part, for all pointsσyi = 0.1,
corri = 0 anda2

i = 1.0. Here, however,σxi varies between the points. Observe that all the
data points have influence on the fitted line in this case. Finally, in the bottom-right part, the
standard deviations and the correlation values vary between the points. The saturation level
is equal for all points,a2

i = 2.0, so the elliptical contour around each point, that represents
the influence boundary, also illustrates the standard deviation and correlation.

Consider the gray-level image shown in Fig. 4. The top-left part of Fig. 5 is the corre-
sponding edge image, with about 5000 edge points. The line fitted to this data set depends
on the assumed standard deviations, correlations and saturation levels. The top-right part
of Fig. 5 is obtained withσxi = σyi = 0.01, corri = 0 anda2

i = 0.01 for all points. As can
be seen, due to the small errors assumed, the line is fitted to the smooth edge of the saw.
When the standard deviations and saturation levels are increased,σxi = σyi = 0.05, corri = 0
anda2

i = 0.05 for all points, the line is fitted to the jagged edge of the saw, as seen in the
bottom-left part of the figure. In the bottom-right part of Fig. 5, the saturation levela2

i
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FIG. 4. A gray-level image.

associated with each edge point is made individually proportional to the absolute value of
the sine of the gradient direction angle (provided by the edge detector). This has the effect
of attenuating vertical and near-vertical edges, and, as seen, leads the algorithm to fit the
line to the horizontal edge.

FIG. 5. (Top-left) An edge image obtained from the gray-level image shown in Fig. 4. (Top-right) With
σxi = σyi = 0.01, corri = 0, anda2

i = 0.01 for all points, the line is fitted to the smooth edge of the saw. (Bottom-
left) When larger errors are admitted, the longer (but jagged) edge is selected. (Bottom-right) By individually
setting the saturation level associated with each point to be proportional to the absolute value of the sine of the
gradient direction angle, the algorithm is made biased towards horizontal edges.
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5. DISCUSSION

In this paper, we presented an efficient method for robust line-fitting in the heteroscedastic
‘errors in the variables’ problem, with correlated noise, based on the problem statement
presented in Section 2. Suppose that the line fitting task were redefined as finding the
maximum likelihood estimator for the linel on which the set of pointsS lies, i.e.,

l̂ = arg max
l

p{s | S∈ l }. (26)

This is different from the definition in Eq. (2), since here all the possible positions of each
point (Xi ,Yi ) on the linel , rather than only the best one, are taken into account. From the
independence of the noise between points and the monotonicity of the logarithm function
it follows that

l̂ = arg max
l

M∑
i=1

log p[(xi , yi ) | (Xi ,Yi ) ∈ l ]. (27)

Let l (t) = [X(t),Y(t)] denote the arc-length parameterization of the linel . We get

p[(xi , yi ) | (Xi ,Yi ) ∈ l ] =
∫ ∞
−∞

p{(xi , yi ) | [X(t),Y(t)]} dt. (28)

It is now recognized thatp[(xi , yi ) | (Xi ,Yi ) ∈ l ] is equal toR{p[(xi , yi ) | (X,Y)]}, the
Radon transform of the noise probability density with respect to the spatial variablesX and
Y, wherep[(xi , yi ) | (X,Y)] is as defined by Eq. (1). Using the normal parameterization of
the linel , it can also be expressed as

p[(xi , yi ) | (Xi ,Yi ) ∈ l ] = R{p[(xi , yi ) | (X,Y)](ρ, θ )}
=
∫ ∫

δ(ρ − X cosθ − Y sinθ )p{(xi , yi ) | (X,Y)} d X dY (29)

Using the rotation property of the Radon transform and additional algebraic steps, it can
be shown that the line fitting problem, as defined by Eq. (26), is reduced to

arg min
(ρ,θ )

M∑
i=1

Ci (ρ, θ ), (30)

whereCi (ρ, θ ) is exactly as given in Eq. (24). We conclude that this alternative formulation
of the problem (Eq. 26) is equivalent to the one followed in the body of this paper (Eq. (2)).

Awareness of the following limitations of the suggested technique provides important
insights and directions for future research.

• The line-fitting method presented here is suitable for planar data sets. Computationally
efficient extensions to higher dimensions require further investigation [13].
• It is necessary to provide the noise covariance matrix and the saturation level (a2

i )
associated with each data point. If these are not available, the algorithm should be applied
as a computational mechanism within a larger statistical estimation framework.
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• The analysis is based on a (2-D heteroscedastic) Gaussian noise model for the inliers.
The algorithm can be expected to provide useful (though not optimal) results in many other
cases. Generally, extensions to non-Gaussian inlier noise models need to be developed.
• The method is based on solving a global optimization problem by coarse-to-fine grid

search. Convergence is based on the well-behavedness of the objective function. Theoretical
convergence properties in a related case were studied in [18]. Extension of their results is
necessary.

The algorithm presented in this paper can be easily generalized to deal with “repulsive”
data points, i.e., points from which the line should keep a distance [8]. Fitting several lines
to the same data set can be accomplished using straightforward extensions of known Hough
transform practices, e.g., [4, 10]. Beyond its applications in image analysis, the suggested
algorithm is an example of a method rooted in computer vision theory that can be useful in
various other scientific domains.
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