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ABSTRACT: In previous work, we designed space fiducials with the

aim of making camera pose determination as noise-insensitive as

possible. These fiducials turned out to be sets of points that formed

concentric regular polyhedra. Here, we apply an idea of Dementhon
and Davis and test and analyze an iterative linear algorithm in con-

junction with our optimal fiducials to increase the accuracy of the

computed camera pose. We also analyze under what circumstances

this iterative algorithm is guaranteed to converge to the correct solu-
tion. Comprehensive computer simulations illustrate the behavior of

the algorithm and the degree of improvement in pose determination

in case of convergence. VVC 2009 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 19, 27–36, 2009; Published online in Wiley InterScience (www.

interscience.wiley.com). DOI 10.1002/ima.20175

Key words: iterative algorithm; fiducials; weak perspective; computer

vision

I. INTRODUCTION

In Bruckstein et al. (1999), we investigated the problem of deciding

where a given fixed number of points in space should be located so

that the pose of a camera viewing them from unknown locations

can be analyzed with the greatest accuracy. Under the assumption

that image points were obtained by weak perspective projection, we

found that the optimal point configurations formed concentric regu-

lar polyhedra. In the process of drawing this conclusion we used a

straightforward matrix inversion based algorithm to calculate the

camera pose.

In this article we consider an iterative pose recovery algorithm

of Dementhon and Davis (1995) and adapt it to our setting of opti-

mal fiducials to improve pose recovery performance in regions

where the weak perspective projection is a poor approximation to

the true perspective. This happens when the object is near the cam-

era; in particular when the distance from the object to the camera is

less than 20 times the diameter of the object. This iterative algo-

rithm starts with the weak perspective assumption for pose recovery

and then successively improves the estimates of pose by using the

current estimate of the 3D structure to shift the position of feature

points in the image plane towards what would be their ‘‘correct’’

weak perspective projection. We note that the algorithm of Demen-

thon and Davis, (1995) was further analyzed and improved by Hor-

aud et al. (1997), incorporating paraperspective approximation in

the iteration process. Also, the Dementhon and Davis algorithm

was modified in a different manner by Chang and Tsai, (2002) in

developing a technique for determining facial pose and expression.

In this article, we first analyze under what circumstances the

algorithm is guaranteed to converge monotonically to the correct

solution, and then present simulation results showing that the itera-

tive pose recovery process works very well, even beyond the mono-

tone convergence region.

II. FORMULATION

For purposes of fiducial design for efficient pose recovery we

assume that we can designate where we place several feature points

Pi 5 [Xi Yi Zi]
T in the environment. Hence, we assume that the

coordinates of the Pi are known in the world coordinate system.

These points may be observed from a camera in any position, and

thus the camera coordinate system is related to the world coordinate

system by an arbitrary rotation R and translation T. A point P0
i 5

[X0
i Y

0
i Z

0
i ]

T in the camera system corresponding to Pi in the world

system thereby satisfies

P0
i ¼ RPi þ T ; ð1Þ

with

R ¼
r1 r2 r3
r4 r5 r6
r7 r8 r9

2
4

3
5 and T ¼

t1
t2
t3

2
4

3
5:

We let p0i 5 [x0i y
0
i]
T denote the corresponding image point in the

image plane of the camera. Under true perspective viewing with a

camera having a focal length f, the projection equations are
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x0i ¼
f X0

i

Z0
i

¼ f

½ r7 r8 r9 � � Pi þ t3
½ r1 r2 r3 � � Pi þ t1ð Þ

y0i ¼
f Y0

i

Z0
i

¼ f

½ r7 r8 r9 � � Pi þ t3
½ r4 r5 r6 � � Pi þ t2ð Þ;

and these equations can be rewritten as follows (see Dementhon

and Davis, (1995); Horaud et al., (1997)):

ð1þ eiÞx0i ¼
f

t3
X0
i

ð1þ eiÞy0i ¼
f

t3
Y0
i ;

where

ei ¼
D 1

t3
½ r7 r8 r9 � � Pi:

If t3 displaces the configuration of points far away from the camera,

as we assume, ei is very small. Setting ei to zero, we obtain the

weak perspective projection equations. Denote the image points

obtained by the weak perspective projection as p00i 5 [x00i y
00
i ]

T. Then

under the weak perspective projection assumption, which holds

when the configuration of points is viewed from a sufficiently large

distance, we have

x00i ¼ sX0
i; y00i ¼ sY0

i ð2Þ

for some positive constant s (s5 f/t3). Alternatively, we can write

p00i ¼ SP0
i ¼
D s 0 0

0 s 0

� �
P0
i: ð3Þ

The weak perspective image points can be expressed directly in

terms of the 3D feature points by combining Eqs. (1)and (3) as

x00i
y00i

� �
¼ s 0 0

0 s 0

� � r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

2
4

3
5

Xi

Yi
Zi
1

2
664

3
775

or

p00i ¼ S½RjT� Pi

1

� �
� ð4Þ

If we now denote by X the row vector [X1 . . . XN], and similarly

for Y, Z, x0, y0, and let 1 5 [1 . . . 1], a vector of N ‘‘1’’s, where N is

the number of known points, then Eq. (4) can be readily augmented

to

x00

y00

� �
¼ S½RjT�

X

Y

Z

1

2
664

3
775 � ð5Þ

This relation clearly shows that for various rotations and transla-

tions, the N-vectors x0, y0 all live in a subspace of the N-dimensional

space spanned by the four vectors X, Y, Z, 1. This observation is

the key to the developments of Tomasi and Kanade (1992) and Ull-

man and Basri (1991), which assume weak perspective observation

of a rigid configuration of points in space from different points of

view, or from moving cameras. We shall however concentrate in

the sequel on the problem of recovering a single rotation R and

translation T, when the vectors X, Y, Z are known a priori, from

given, single snapshots of the fiducial providing (x0, y0).

III. DETERMINING WEAK PERSPECTIVE IMAGES

In this section, we describe and slightly modify the iterative algo-

rithm of Dementhon and Davis, (1995) that determines where the

image points would be if they actually were obtained under weak

perspective instead of true perspective projection. Had we the actual

weak perspective projections of the points Xi, Yi, and Zi, we would

recover the pose as described below (Bruckstein et al. (1999);

Dementhon and Davis (1995)).

The computation based on Eq. (5) is somewhat simplified if we

consider ‘‘normalized coordinates,’’ where each coordinate of the

Pi is replaced by its difference with the average value of that coor-

dinate for all the points. For example, we define X̂i ¼
Xi �

PN
i¼1 Xi

� �.
N, and let X̂ be the row vector containing all the

X̂i. Similarly, we define Ŷ, Ẑ, x̂00, and ŷ00. In the present situation,

because we are going to analyze in detail an optimal fiducial, which

is a regular tetrahedron, we can, in the object coordinate system,

readily choose to have its center at the origin, and its vertices at

(a,a,a), (a,2a,2a), (2a,a,2a), and (2a,2a,a). Therefore, here we
have X̂5 X, Ŷ5 Y, X̂5 Z (but not x̂00 ¼ x, ŷ00 ¼ y).

The pose recovery is based on solving Eq. (5). Defining

k ¼ ½ k1 k2 k3 � ¼ ½ s 0 0 �R ¼ ½ sr1 sr2 sr3 �;
c ¼ ½ g1 g2 g3 � ¼ ½ 0 s 0 �R ¼ ½ sr4 sr5 sr6 �;

and

C ¼
X

Y

Z

2
4

3
5;

Equation (5) can be rewritten as follows:

x̂00

ŷ00

� �
¼ k

g

� �
C

From this, the vectors k and c are obtained using the transpose of

the pseudo-inverse of C, namely (CCT)21 C, as follows:

~kT ¼ ðCCTÞ�1
Cðx̂00ÞT and ~cT ¼ ðCCTÞ�1

Cðŷ00ÞT;

where ~k and ~c denote the computed values of k and c. Now, we
compute the scale s of the projection as ½ð ~k

�� ��2 þ ~ck k2Þ=2�1=2 fol-

lowed by Bruckstein et al. (1999) instead of ð ~k
�� ��þ ~ck kÞ=2 as in

Dementhon and Davis (1995). The former saves one square root

computation per iteration, and we found that it is more accurate in

some cases.
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Because we don’t have the actual weak perspective projections,

we will seek quantities ei that will move the true perspective projec-

tions into the weak perspective projection positions, according to

p00i 5 (1 1 ei) p
0
i. It is here that the iterative Dementhon and Davis

procedure begins. For these correction variables ei, the initial esti-

mates ei
(0) are all zero. The iterative algorithm then proceeds into

the following loop. Based on the recovered pose via ~k and ~c, new
ei
(n) are computed as ½1=ðsf Þ�½ð~k 3 ~cÞ � Pi�. This works because the

exact k and c satisfy

1

sf
ðk 3 cÞ ¼ 1

sf
ðs½ r1 r2 r3� 3 s ½ r4 r5 r6 �Þ

¼ s

f
½ r7 r8 r9 � ¼

1

t3
½ r7 r8 r9 �:

Let pi
(n) 5 (xi

(n), yi
(n)) denote the nth approximation to the weak per-

spective projection of the ith image point, and ei
(n) the corresponding

relative error, that is, the difference between the true perspective

and weak perspective image point locations. Also let p̂
ðnÞ
i ¼

x̂
ðnÞ
i ; ŷ

ðnÞ
i

� �
denote the corresponding normalized coordinates. The

image-point vectors are updated as follows:

x̂ðnÞ
h iT

¼

x̂
ðn�1Þ
1 ½1þ e

ðn�1Þ
1 �

x̂
ðn�1Þ
2 ½1þ e

ðn�1Þ
2 �

x̂
ðn�1Þ
3 ½1þ e

ðn�1Þ
3 �

x̂
ðn�1Þ
4 ½1þ e

ðn�1Þ
4 �

2
6664

3
7775 and ŷðnÞ

h iT
¼

ŷ
ðn�1Þ
1 ½1þ e

ðn�1Þ
1 �

ŷ
ðn�1Þ
2 ½1þ e

ðn�1Þ
2 �

ŷ
ðn�1Þ
3 ½1þ e

ðn�1Þ
3 �

ŷ
ðn�1Þ
4 ½1þ e

ðn�1Þ
4 �

2
6664

3
7775:

Note that, we use the origin as the reference point instead of one

of the feature points as was done in Dementhon and Davis, (1995).

Next we compute the updated vectors ~kT ¼ ðCCTÞ�1
C½x̂ðnÞ�T and

~cT ¼ ðCCTÞ�1
C½ŷðnÞ�T, and s is updated as before. Then we refine

the ei estimates based on the updated quantities k, c, and s.

Initially, the image point coordinates are rounded to the nearest

pixel. We continue the iteration process until the sum of the abso-

lute differences of the computed image point coordinates in succes-

sive iterations is less than one-tenth of a pixel, and only then round

the final results to the nearest pixel. We found that when we tried

rounding the image points coordinates at each loop in the iteration

as in Dementhon and Davis (1995), on several occasions we

reached an infinite loop, with one of the image point coordinates

oscillating back and forth between two consecutive integers

whereas all the others remained constant.

Typically, the computed vector quantities ~k and ~c will not be or-

thogonal and of equal length, especially with noisy data. Conse-

quently, at the end of the iteration process, we adjust ~k and ~c to the

closest orthonormal pair ~k and ~c. Formally, we solve the minimiza-

tion problem:

Minimize k̂� ~k
��� ���2 þ ĉ� ~k

�� ��2 ¼
X3
i¼1

ðk̂i � ~kiÞ2 þ ðĝi � ~giÞ2
h i

subject to k̂1ĝ1 þ k̂1ĝ1 þ k̂1ĝ1 ¼ 0

k̂21 þ k̂22 þ k̂23 ¼ ĝ21 þ ĝ22 þ ĝ23:

In Bruckstein et al. (1999), it was shown that the solution to this

minimization is given by

k̂ ¼
~k

�� ��þ ~ck k
2 ~k
�� �� þ ~ck kð~k � ~cÞ2

2 ~k
�� ��d2

" #
~k�

~k � ~g
2d1

~c

ĉ ¼ �
~k � ~c
2d1

~kþ
~k

�� ��þ ~ck k
2 ~ck k þ

~k
�� ��ð~k � ~cÞ2

2 ~ck kd2

" #
~c

where

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k

�� ��2 ~ck k2 � ð~k � ~cÞ2
q

d2 ¼ ~k
�� ��2 ~ck k2þ ~k

�� �� ~ck kd1 � ð~k � ~cÞ2:

From this we obtain the scale factor, which is the length of k̂ and ĉ,

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k

�� ��2 þ ~ck k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k

�� ��2 ~ck k2 � ð~k � ~cÞ2
qr
2

:

Thus, we obtain the first two rows of the rotation R by dividing k̂
and ĉ by s, and the third row by taking the cross product of the first

two. The translation is then

T ¼ 1

s

1

N

XN
i¼1

x00i
1

N

XN
i¼1

y00i f

" #T

;

using the last computed values of x00 and y00. These expressions are

those on which the numerical results obtained in Section 5 are

obtained.

IV. CONVERGENCE OF ITERATIVE METHOD FOR
OPTIMAL FIDUCIALS

In this section, we analyze conditions under which the iterative

algorithm is guaranteed to converge to the correct solution. That is,

we start with a set of points in the image plane that are true perspec-

tive projections of the vertices of a regular tetrahedron, and show

that the points obtained after successive iterations of the loop con-

verge to the positions they would be if they were obtained by weak

perspective projection. We allow arbitrary rotations, unlike in

Dementhon and Davis (1995) where the authors only consider rota-

tions about the optic axis.

Let the vertices of a regular tetrahedron (an optimal fiducial

according to Bruckstein et al. (1999)) in the world coordinate sys-

tem be (a,a,a), (a,2a,2a), (2a,a,2a), and (2a,2a,a), where a is a

positive real number. The rotation and translation are as in Eq. (1),

with t3 5 D, where D is the distance from the center of the tetrahe-

dron to the focal point of the camera. The ratios a/D, t1/D, and t2/D
will be the quantities which analyze whether or not the algorithm

will converge.

The image points under true perspective projection are given by

Eq. (1) as

p01 ¼
f ½ðr1 þ r2 þ r3Þaþ t1�
ðr7 þ r8 þ r9Þaþ D

;
f ½ðr4 þ r5 þ r6Þaþ t2�
ðr7 þ r8 þ r9Þaþ D

� �

p02 ¼
f ½ðr1 � r2 � r3Þaþ t1�
ðr7 � r8 � r9Þaþ D

;
f ½ðr4 � r5 � r6Þaþ t2�
ðr7 � r8 � r9Þaþ D

� �

p03 ¼
f ½ð�r1 þ r2 � r3Þaþ t1�
ð�r7 þ r8 � r9Þaþ D

;
f ½ð�r4 þ r5 � r6Þaþ t2�
ð�r7 þ r8 � r9Þaþ D

� �

p04 ¼
f ½ð�r1 � r2 þ r3Þaþ t1�
ð�r7 � r8 þ r9Þaþ D

;
f ½ð�r4 � r5 þ r6Þaþ t2�
ð�r7 � r8 þ r9Þaþ D

� �
:
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The image points under the weak perspective projection, with

the scale factor s equaling f/D, are given by Eq. (2) as

p001 ¼
f ½ðr1 þ r2 þ r3Þaþ t1�

D
;
f ½ðr4 þ r5 þ r6Þaþ t2�

D

� �

p002 ¼
f ½ðr1 � r2 � r3Þaþ t1�

D
;
f ½ðr4 � r5 � r6Þaþ t2�

D

� �

p004 ¼
f ½ð�r1 þ r2 � r3Þaþ t1�

D
;
f ½ð�r4 þ r5 � r6Þaþ t2�

D

� �

p004 ¼
f ½ð�r1 � r2 þ r3Þaþ t1�

D
;
f ½ð�r4 � r5 þ r6Þaþ t2�

D

� �

The idea behind the method in Dementhon and Davis, (1995) is to

find quantities ei such that p00i 5 (1 1 ei) p
0
i. The exact values for the

ei are

e1 ¼
ðr7 þ r8 þ r9Þa

D

e2 ¼
ðr7 � r8 � r9Þa

D

e3 ¼
ð�r7 þ r8 � r9Þa

D

e4 ¼
ð�r7 � r8 þ r9Þa

D
:

There are two main steps in determining the rate of convergence of

the ei to the correct values. First, we will show that after one itera-

tion, the values of the e differ from the correct values by less than a

constant K, whose value is �0.316, when a � D/4 and a 1 T �
D/2, where T is the maximum allowed translation in either the x or
y direction. Second, if at the start of an iteration the sum of the

squared errors in the ei differ from the correct values by at most

K2C2n, then at the end of the iteration the sum of the squares of the

errors for the new values of the ei differ from the correct values by

at most K2C2n12, For the above delineated region for the parameter

values, we show that C � 0.9, and hence the geometric convergence

to the true values is ensured.

We will analyze the error e1 as we proceed through iterations of

the algorithm. The other ei behave the same way, with the only dif-

ferences being in the signs of some of the coefficients of the rota-

tion components. After one loop of the algorithm, we find that

e
ð1Þ
1 ¼

ffiffiffi
2

p
a numer

ð1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð1Þ
p e

ð1Þ
2 ¼

ffiffiffi
2

p
a numer

ð1Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð1Þ
p

e
ð1Þ
3 ¼

ffiffiffi
2

p
a numer

ð1Þ
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð1Þ
p e

ð1Þ
4 ¼

ffiffiffi
2

p
a numer

ð1Þ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð1Þ
p

ð6Þ

where

numer
ð1Þ
1 ¼ ½Dþ ðr7 þ r8 þ r9Þa�½ðr7 þ r8 þ r9ÞD

þ ðr1 þ r2 þ r3Þt1 þ ðr4 þ r5 þ r6Þt2 � a�

numer
ð1Þ
2 ¼ ½Dþ ðr7 þ r8 þ r9Þa�½ðr7 � r8 � r9ÞD

þ ðr1 � r2 � r3Þt1 þ ðr4 � r5 � r6Þt2 � a�

numer
ð1Þ
3 ¼ ½Dþ ð�r7 þ r8 � r9Þa�½ð�r7 þ r8 � r9ÞD

þ ð�r1 þ r2 � r3Þt1 þ ð�r4 þ r5 � r6Þt2 � a�

numer
ð1Þ
4 ¼ ½Dþ ð�r7 � r8 þ r9Þa�½ð�r7 � r8 þ r9ÞD

þ ð�r1 � r2 þ r3Þt1 þ ð�r4 � r5 þ r6Þt2 � a�

and

denomð1Þ ¼ 2D6 þ 12r7r8r9aD
5 þ bð4ÞD4 þ bð3ÞaD3

þ bð2Þa2D2 þ bð1Þa3Dþ bð0Þa4;

where the coefficients b(j) are quite complicated polynomials in a
and the components of R and T. These coefficients, along with all

the others in this article, were computed through the use of the sym-

bolic manipulation program Maple.

We wish to show that the sum of the four squared errors in the

ei
(1) is bounded by some constant. To this end it can be shown that

e
ð1Þ
1 �ðr7 þ r8 þ r9Þa

D

� �2
þ e

ð1Þ
2 �ðr7� r8� r9Þa

D

� �2

þ e
ð1Þ
3 �ð�r7 þ r8� r9Þa

D

� �2
þ e

ð1Þ
4 �ð�r7þ r8 � r9Þa

D

� �2

¼ 4a2

D2

�
4D6 þ 36r7r8r9 aD

5 þð2uð2Þ þ bð4ÞÞD4 þð2uð1Þ þ bð3ÞÞaD3

	

þ ð2uð0Þ þ bð2ÞÞa2D2 þ bð1Þa3Dþ bð0Þa4
�

� 2
ffiffiffi
2

p
D½D2þ 6r7r8r9 þ vð0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
denomð1Þ

p 

; ð7Þ

where the coefficients u(j) and v(0) are more complicated polyno-

mials in given a and the components of R and T.

When [denom(1)]1/2 is expanded into a series in descending

powers of D, it becomes
ffiffiffi
2

p
D3 þ 3

ffiffiffi
2

p
r7r8r9aD

2 þ OðDÞ, and con-

sequently the terms of order D6 and D5 within the braces in the last

line of Eq. (7) vanish. To get a sharp bound on the magnitude of

this remaining term, we express the rotation in Euler angle form as

cos u cos/ � sin u coswþ cos u sin/ sinw sin u sinwþ cos u sin/ cosw
sin u cos/ cos u coswþ sin u sin/ sinw � cos u sinwþ sin u sin/ cosw
� sin/ cos/ sinw cos/ cosw

2
4

3
5;

and find the maximum value of Eq. (7) when a, t1, and t2 are at

extreme values, and y, /, and w range over all possible angles. For-

tunately, the search space is reduced by making the observations

that Eq. (7) is unchanged when (t1, t2, y, /, w) is replaced by (t1, t2,
y, p 1 /, p 2 w), (t1, t2, y, /, p 1 w), (t1, t2, p 1 y, 2/, 2w),
(2t1, 2t2, p 1 y, /, w), or (2t1, 2t2, p 2 y, /, p/2 2 w). This
implies that we only need to search the region 0 � t1, t2 � T, 0 � y,

/, w � p subject to the previous conditions that a � D/4 and a 1

T � D/2. By taking partial derivatives with respect to the several

variables, the maximum was found to occur when t1 5 t2 5 T, y 5

w 5 p/4, and / satisfies a large polynomial of degree 12 in {D, a,
T} and degree 14 in {sin /, cos /}. This equation has to be solved

numerically, and we can construct a table of the maximum values

of Eq. (7) as shown in Table I.
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The global maximum of the sum of the squared errors subject to

the conditions that a � D/4 and a 1 T � D/2 occurs when a 5 D/4
and T 5 D/4, and is found to be 0.09989. Therefore, this will be the

value of K2 in the remainder of this section, and K5 0.31605.

We now assume that at the end of the (n 1 1)st iterative loop,

the sum of the squared errors of the ei
(n11) is less than K2C2n.

Then the error in each ei
(n11) can be described as ki

(n11)Cn where

each of the ki
(n11) is less than K in absolute value, andP4

i¼1 k
ðnþ1Þ
i

h i2
� K2, so that

e
ðnþ1Þ
1 ¼ ðr7 þ r8 þ r9Þa

D
þ k

ðnþ1Þ
1 Cn

e
ðnþ1Þ
2 ¼ ðr7 � r8 � r9Þa

D
þ k

ðnþ1Þ
2 Cn

e
ðnþ1Þ
3 ¼ ð�r7 þ r8 � r9Þa

D
þ k

ðnþ1Þ
3 Cn

e
ðnþ1Þ
4 ¼ ð�r7 � r8 þ r9Þa

D
þ k

ðnþ1Þ
4 Cn:

ð8Þ

Then at the end of the next iteration, we find that

e
ðnþ2Þ
1 ¼ 2

ffiffi
2

p
a numer

ð2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð2Þ
p e

ðnþ2Þ
2 ¼ 2

ffiffi
2

p
a numer

ð2Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð2Þ
p

e
ðnþ2Þ
3 ¼ 2

ffiffi
2

p
a numer

ð2Þ
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð2Þ
p e

ðnþ2Þ
4 ¼ 2

ffiffi
2

p
a numer

ð2Þ
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

denomð2Þ
p

ð9Þ

where

numer
ð1Þ
1 ¼ 2Bðr7 þ r8 þ r9Þa

þ CnDð½Dþ ðr7 þ r8 þ r9Þa�½numer
ð3Þ
1 þ CnD numer

ð4Þ
1 �

numer
ð1Þ
2 ¼ 2Bðr7 � r8 � r9Þa

þ CnDð½Dþ ðr7 � r8 � r9Þa�½numer
ð3Þ
2 þ CnD numer

ð4Þ
2 �

numer
ð1Þ
3 ¼ 2Bð�r7 þ r8 � r9Þa

þ CnDð½Dþ ð�r7 þ r8 � r9Þa�½numer
ð3Þ
3 þ CnD numer

ð4Þ
3 �

numer
ð1Þ
4 ¼ 2Bð�r7 � r8 þ r9Þa

þ CnDð½Dþ ð�r7 � r8 þ r9Þa�½numer
ð3Þ
4 þ CnD numer

ð4Þ
4 �

with

B ¼ ½Dþ ðr7 þ r8 þ r9Þa�½Dþ ðr7 � r8 � r9Þa�
3 ½Dþ ð�r7 þ r8 � r9Þa�½Dþ ð�r7 � r8 þ r9Þa�

numer
ð3Þ
i ¼ c

ðnþ1Þ
i D2 þ c

ðnÞ
i aDþ c

ðn�1Þ
i a2

numer
ð4Þ
i ¼ c

ð1Þ
i Dþ c

ð0Þ
i a;

and

denomð2Þ ¼ 32a2B2 þ 8CnaDBðdðnþ2ÞD3 þ dðnþ1ÞaD2 þ dðnÞa2D

þ dðn�1Þa3Þ þ C2nD2ðdð6ÞD6 þ dð5ÞaD5 þ dð4Þa2D4

þ dð3Þa3D3 þ dð2Þa4D2 þ dð1ÞaD5 þ dð0Þa6Þ;

where the coefficients ci
(j) and di

(j) are complicated polynomials in

the ki and the components of R and T.

Because we show that the sum of the squared errors in the ei
(n12)

is less than K2C(2n12), we will show that the expression

1

K2C2nþ2
e
ðnþ2Þ
1 � ðr7 þ r8 þ r9Þa

D

� �2
þ e

ðnþ2Þ
2 � ðr7 � r8 � r9Þa

D

� �2(

þ e
ðnþ2Þ
3 � ð�r7 þ r8 � r9Þa

D

� �2
þ e

ðnþ2Þ
4 � ð�r7 � r8 þ r9Þa

D

� �2)

is less than 1. This expression can be shown to equal

4a2

K2C2nþ2D2 denomð2Þ 2½16a2B2
�

þ 4CnaDB wðnþ4ÞD3 þ wðnþ3ÞaD2 þ wðnþ2Þa2Dþ wðnþ1Þa3
� �

þ C2nD2 wð2nþ8ÞD6 þ wð2nþ7ÞaD5 þ wð2nþ6Þa2D4 þ wð2nþ5Þa3D3
�

þ wð2nþ4Þa4D2 þ wð2nþ3Þa5Dþ wð2nþ2Þa6
�

þ C3nD3 wð3nþ8ÞD5 þ wð3nþ7ÞaD4 þ wð3nþ6Þa2D3 þ wð3nþ5Þa3D2
�

þ wð3nþ4Þa4Dþ wð3nþ3Þa5
�
þ C4nD4 wð4nþ8ÞD4 þ wð4nþ7ÞaD3

�
þ wð4nþ6Þa2D2 þ wð4nþ5Þa3Dþ wð4nþ4Þa4Þ�

�
ffiffiffi
2

p
8aBþ CnD wðnþ4ÞD3 þ wðnþ3ÞaD2 þ wðnþ2Þa2D

�h
þ wðnþ1Þa3

�
þ C2nD2 hð2nþ4ÞD2 þ hð2nþ3ÞaDþ hð2nþ2Þa2

� �i
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
denomð2Þ

p
þ denomð2Þ

o
; ð10Þ

where the coefficients w(j) and h(j) are more complicated polyno-

mials in the ki and the components of R and T.

Note the repetition of the w(j) as the coefficients of the Cn term

in both terms enclosed in brackets in the last line of Eq. (10). When

[denom2
(2)]1/2 is expanded into a series in ascending powers of C, it

becomes 4
ffiffiffi
2

p
aBþ ð1=

ffiffiffi
2

p
ÞCnD½dðnþ2ÞD3þdðnþ1ÞaD2 þ dðnÞa2D

þ dðn�1Þa3� þ OðC2nÞ, and consequently the terms of order C0 and

Cn within the braces in Eq. (10) vanish.

Table I. Maximum values of Eq. (7)

A T / max

0.25D 0.25D 0.29023 0.09989

0.25D 0.25D 0.30164 0.06291

0.25D 0.25D 0.31300 0.03528

0.25D 0.25D 0.32395 0.01580

0.25D 0.25D 0.33429 0.00401

Figure 1. Pyramidal volume in which our algorithm is guaranteed to
converge monotonically.

ffiffiffi
3

p
a is the radius of the circumscribing

sphere of the regular tetrahedral fiducial, D is the distance from the

center of the tetrahedron to the camera plane, and t1 and t2 are the

components of the translation of the tetrahedron in the x and y
directions (orthogonal to the optic axis).
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As after the first iteration, we find a bound on the value of

Eq. (10) by converting the rotation components into Euler angle form.

The search space is reduced by making the observations that

Eq. (10) is unchanged when (t1, t2, y, /, w) is replaced by (t1, t2,
p 1 y, p 2 /,p 1 w), (2t1, 2t2, p 1 y, /, w), or (t1, 2t2, p/2 1

y,/, w). This implies that we only need to search the region 0 � t1,
t2 � T, 0 � y, /, w � p subject to the previous conditions that a 5

D/4 and T 5 D/4. The maximum value was found to occur when

a 5 D/4 and the |ti| and
P

½kðnþ2Þ
i �2 are as large as possible. The

ki
(n11) were then expressed as k1

(n11) 5 K cos a, k2
(n11) 5 K sin a

cos b, k3
(n11) 5 K sin a sin b cos g, k4

(n11) 5 K sin a sin b sin g to

enforce the condition
P

½kðnþ2Þ
i �2 ¼ K2, and then the expression

within the braces in the last line of Eq. (10), divided by denom(2),

was maximized over y, /, w, a, b and g. This expression is

unchanged when (a, b, g) is replaced by (a, 2 b, p 1 g). (2a,

p 2 b, p 1 g). or (2a, p 1 b, g), so we just need to search the

region where 0 � a, b, g � p. A place where the expression within

the braces in Eq. (10) divided by demon(2) is maximized is when

Figure 2. Average (with error bars of length 2r) and maximum errors in the computed direction of the viewing angle as functions of D for the

tetrahedral fiducial: (a–f), with no translation in the x- and y-directions; (g–l), with translation in the x- and y-directions randomly chosen from
[-0/4, 0/4]. (a), (c), and (e) give the final results for the iterative algorithm, and (b), (d), and (f) show the results after a single iteration. In (a) and (b)

e 5 0, in (c) and (d) e 5 1, and in (e) and (f) e 5 2. (g), (i), and (k) give the final results for the iterative algorithm, and (h), (j), and (l) show the results

after a single iteration. In (g) and (h) e 5 0, in (i) and (j) e 5 1, and in (k) and (l) e 5 2.
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(t1, t2, a, b, g, y, /, w) 5 (1/4, 1/4, 2.90, 1.46, 1.39, 2.30, 2.30,

1.61) and that maximum value is 0.221. Taking into consideration

the remaining factors 4a2/(K2C2n12 D2) of Eq. (10), the maximum

value of Eq. (10) is less than [4(1/4)2/(K2C2) [0.221 < 0.69 < 1].

Therefore at the end of the (n 1 2)nd iteration, the sum of the

squared errors of the ei
(n12) is less than C2 5 0.81 times the sum of

the squared errors of the ei
(n11).

To summarize, we have proved the following:

A. Theorem. For a regular tetrahedral (optimal) fiducial with cir-

cumradius
ffiffiffi
3

p
a whose center is at distance D from the camera plane

which may also be translated up to distance T in the x and y direc-

tions (perpendicular to the optic axis), if a � D/4 and a 1 T � D/2,
then the iterative pose estimation algorithm described in this article

converges monotonically to the correct pose.

For fixed a, this region in Dt1 t2-space is a pyramid, with vertex

at (4a, 0, 0) and edges whose projections onto the Dt1- and Dt2-
planes are rays with slope �1/2. This volume is depicted in Figure 1.

V. NUMERICAL RESULTS

To compare our results fairly with those of Dementhon and Davis

(1995), we use similar (distance to camera)/(object size) ratios. In

Dementhon and Davis (1995), one feature point, called the

Figure 2. (Continued )
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reference point, was taken to be on the optic axis. In their (rectangu-

lar) tetrahedron fiducial, the size of the object was taken to be the

length of one of the edges. Specifically, the size was equal to the

greatest possible distance from any of the other feature points to

the reference point. Consequently, we use that measure for deter-

mining our object size. For a regular tetrahedron inscribed in the

unit sphere ða 5 1=
ffiffiffi
3

p
Þ, with the center of the sphere being the ref-

erence point, that maximum distance is 1. Thus D is taken to be the

distance from the center of the tetrahedron to the focal point. The

focal length F is taken to be 760 pixels as in Dementhon and Davis,

(1995).

In Figures 2 and 3 the errors in the computed viewing angle and

translation are recorded as functions of D, with noise of e 5 0, 1

and 2 pixels added, and compared with the results obtained after

just one iteration. In Figure 2, the tetrahedron is only rotated about

its center, with no translation added, whereas in Figure 3, a

Figure 3. Average (with error bars of length 2r) and maximum errors in the computed direction of the translation as functions of D for the tetra-

hedral fiducial: (a–f), with no translation in the x- and y-directions; (g–l), with translation in the x- and y-directions randomly chosen from [-0/4,
0/4]. (a), (c), and (e) give the final results for the iterative algorithm, and (b), (d), and (f) show the results after a single iteration. In (a) and (b) e 5 0,

in (c) and (d) e 5 1, and in (e) and (f) e 5 2. In all of these there is no translation in the x- and y-directions. (g), (i), and (k) give the final results for

the iterative algorithm, and (h), (j), and (l) show the results after a single iteration. In (g) and (h) e 5 0, in (i) and (j) e 5 1, and in (k) and (l) e 5 2.

34 Vol. 19, 27–36 (2009)



translation chosen randomly and uniformly from [2D/4, D/4] is

added to the x- and y-coordinates of each image point.

We now give examples of monotone convergence, and of non-

monotone convergence and divergence when the object is too far

from the optic axis. First, an example where the algorithm con-

verges monotonically near the edge of the region of monotone con-

vergence occurs when a 5 D/4, t1 5 t2 5 D/2, and (y, /, w) 5 (p/4,
0.28, p/4). In this case the sum of the squared errors follows this

sequence as shown in Table II

There is a region where the algorithm converges, but not monot-

onically. For instance, if a 5 D/4, t1 5 t2 5 3D/4, and (y, /, w) 5

Figure 3. (Continued )

Table II. Position Errors

Iteration Sum of Squared Errors

1 0.196553

2 0.012368

3 0.000616

4 0.000440

5 0.000064

6 0.000036

7 0.000007

8 0.000002

9 0.000001

Vol. 19, 27–36 (2009) 35



(p/4, 0.28, p/4), then the sum of the squared errors follows this

sequence as shown in Table III.

As the |ti| increase, we reach a region where the algorithm

does not converge at all. For example, if a 5 D/4, t1 5 t2 5 D,
and (y, /, w) 5 (p/4, 0.28, p/4), then the sum of the squared

errors follows this sequence with no discernible pattern as shown

in Table IV.

Thus, there definitely are limits to the region where the iterative

algorithm pose recovery is useful.

VI. CONCLUSIONS

We have shown that a slightly modified iterative algorithm of

Dementhon and Davis, (1995) significantly improves the pose

determination performance in conjunction with optimal fiducials.

We have analyzed the behavior of the algorithm and showed that

in the absence of noise it converges monotonically to the correct

solution under certain conditions. These conditions are that the

distance of the center of the fiducial, a regular tetrahedron, to the

camera plane is at least 4=
ffiffiffi
3

p
times the radius of the circumscrib-

ing sphere of the tetrahedron, and that the sum of that radius and

the distance of the center of the tetrahedron to the optic axis is less

than half the distance of the center of the tetrahedron to the camera

plane.
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Table III. Position Errors

Iteration Sum of Squared Errors
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Table IV. Position Errors

Iteration Sum of Squared Errors

5 0.014407

10 0.009068

15 0.030425

20 0.023515

25 0.003676

30 0.006113

35 0.014708

40 0.008637

45 0.020369

50 0.033141

55 0.008210

60 0.003401

65 0.012148

70 0.011922

75 0.011623
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