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Abstract to run sophisticated mapping algorithms. In this paper, we
suggest a minimalist approach: we wish to achieve the goal
Three methods are described for exploring a continuous unknovgf covering with a minimum of sensing and computing, even
planar region by a group of robots having limited sensors and nif some performance reduction is implied. Our first algo-
explicit communication. We formalize the problem, prove that iteithm uses a trail-laying mechanism and trail-following sen-
off-line version is NP-hard, and show a lower bound on the length &fors, while the second (randomized) one uses only collision-
any solution. Then a deterministitark and cove(MAC) algorithm  detection sensors. The third method is a hybrid of the first two,
is described for the on-line problem using short-lived navigationatombined to achieve a better trade-off between performance
markers as a means of navigation and indirect communication. Thghd robustness.
convergence of the algorithm is proved, and its cover time is shown to Existing methods for graph search (e.g., BFS and DFS)
be the asymptotically optim@l(A /a), whereA isthe totalareaand  cannot be directly used for our purpose, since no vertices or
is the area covered by the robot in a single step. The MAC algorithedges exist in our setting; a robot can move to arbitrary points
is tested against an alternative randomizembbabilistic covering on the continuum, while the BFS and DFS algorithms assume
(PC) method, which does not rely on sensors but s still able to coverdiscrete and finite set of possible locations. Yetthe approach
an unknown region in an expected time that depends polynomially gfi“forward” and “backward” steps (used in DFS in a discrete
the dimensions of the region. Both algorithms enable cooperatiagnanner) can and will be used as an inspiration to our first

of several robots to achieve faster coverage. Finally, we show thatgorithm, in which the discretization is achieved on-line by
the two methods can be combined to yield a third, hybrid algorithithe robot.

with a better trade-off between performance and robustness. Ouir first method, the deterministic MAC (mark and cover)
algorithm, is similar in spirit to the famouwepth-first search
1. Introduction (DFS) algorithm. 1t is a local rule of motion that attempts

to discover an uncovered point around the current location.

Exploring unknown terrain is an important issue in roboticdf such a point exists, the robot goes over there. Otherwise,
The problem has already been investigated, and several mdttacktracks to its previous location, using the marked trail.
ods have been suggested and implemented. Most of thodg prove that this method guarantees a complete covering of
methods, however, rely on complex, expensive, and fragifeconnected regioR in no more than P42 4 2 units of
systems of sensors (e.g., odometers, infra-red sensors, ultf@e, whereA is the area of?, P is its perimeter, and is

sound radar, or GPS), and extensive computational resourd@@ covering radius of the (circular) robot. In most real-life
casesy P << A, and the cover time amounts ®(A/a),
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Unfortunately, fully deterministic algorithms cannot be aooperation of a team of robots by an explicit level of inter-
complete answer for realistic robotic problems, since bottobot communication. Each robot could choose one of multi-
sensors and effectors are extremely vulnerable to noise gpld possible behaviors, according to its specific conditions. In
failures. As opposed to purely computational problems, thene of these behaviors, the robot played the role of a janitorial
environment of the robot is not known in advance, and evenskrvice man by cleaning the dust around itself.
it were, it may change during operation. Another limitation
follows from the use of short-lived marks. The lifetime of 2. S| NMs: Short-Lived Navigational Marks
the marked trail severely limits the amount of area that can
be covered in a single shot of the deterministic MAC algol he idea of using marked trails for searching is inspired by
rithm. One way to tackle these problems is to make the robdte Greek myth of Ariadne, the granddaughter of Zeus, who
itself nondeterministic by introducing randomness into its béised a thread to escape from Dedalus’s maze (Virgil 1971).
havior. This motivates our second algorithm for the coverin§ne way to mark a trail is by using odor, like the pheromones
problem. We call this second method PC—probabilistic cowdsed by various insects. Experiments with an insect-inspired
ering. The basic rule of behavior here is to make a short stéppot were reported by Russell (1995), where the robot had an
and then a random turn. Somewhat surprisingly, the expect@éor-marking and -detection system. Another way of mark-
performance of the PC approach is not so bad; it coversiig is by heating the floor. According to several experiments
convex region in average tim@(d(A/a) 10g(A/a)), where reported by Borenstein, Everett, and Feng (1996), the tem-
d is the diameter oR. perature distributioll” at a distancé from the trail and at a

A third approach is a combination of the first two. Welime? after laying the trail can be approximated by

show that a hybrid algorithm achieves an improved trade-off
between the performance of the first method and the robust-

ness of the second one. . . wherel (¢) is a time-variant intensity function of the thermal
Some related work has already been done in various areagth’ andw is a constant. In a later work (Russell 1997), an
experimental study was reported that showed how a thermal
1.1. Robotic Covering trail can be traced several tens of minutes after being marked.
In some cases, leaving a thread on the floor or marking it
In previous work (Dudek et al. 1991; Deng and Mirzaiamyherwise, even temporarily, is not possible or is not suffi-
1996), a discrete problem of graph exploration was solvegently accurate. In such a case, we can replace the marking
using markers. More recently, the problem of covering at“egperation by similar “marks” in the robot’s memory, where a
floor was addressed in two different ways: in Wagner anghap of the covered region is incrementally created. Such a
Bruckstein's (1997) work, the dirt on the floor served as memyevice, however, would need very accurate (i.e., expensive)
ory to help the robot’s navigation, while in the works of Wagpdometric or GPS sensors, as well as sophisticated methods of
ner, Lindenbaurm, and Bruckstein (1996, 1997), a vanishingror correction, like the method described by Borenstein and
trace was used for that purpose. Balch and Arkin (1994) aftang (1996) for correcting odometric errors by occasionally
dressed the issue of inter-robot communication in the conteXding an external positioning system. Other researchers (e.g.,
of various missions, among thegrazing i.e., visiting ev-  Bessiere etal. 1995) used robot-placed landmarks to help path
ery point of a region for purposes of object-fetching. Thergyanning in the presence of dynamic obstacles. In the current

a reactive model of behavior was presented, and simulatigyrk, however, we will use traces so that our robots can be
showed that detailed communication does not contribute t@gther cheap and simple.

much to the performance. Ciralt and Weisbin (1995) pre-
sented many experimental works for planetary explorati0f
by autonomous robots. Heuristic navigation methods were
given by Hofner and Schmidt (1995) for path planning of atUncertainty is an inherent factor in any real-life action, in par-
autonomous mobile cleaning robot, and by Kuipers and Byuitular, one that relies on the information gained from sensors
(1981) for a robot exploration and mapping strategy. Howand manipulations performed by actuators. One way to cope
ever, no rigorous analysis was given in the above referencegth uncertainty isandomizatior—introducing a random se-
Hert, Tiwari, and Lumelsky (1996) presented an algorithm fdection into the robot's control. In the works of Erdmann
exploration of an undersea terrain, using exact location sef1992) and La Valle and Hutchinson (1996), randomization
sors and internal mapping. Practical implementations of cowas used to (partially) overcome uncertainty in various robotic
ering algorithms have been demonstrated by Yaguchi (199&¥sks. In a sense, our PC algorithm is an extreme case of ran-
and Parker (1996). Yaguchi (1996) described a set of robatemization, whereas no sensors are used. The case of ran-
that help clean a railway station, using magnetic lines on tltmized robotic covering (e.g.,the PC method discussed in
floor as guidelines. This method seemed to work well, buidur work) is different, however, because the probability of a
was limited to premapped regions. Parker (1996) createdpaint to be chosen as the next location of the robot depends on

T, 1) = I(1)e /™7, (1)

3. Randomization and Uncertainty in Robotic Tasks
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both the previous location and the shape of the region beidgr. A Decentralized Approach

explored. Gage (1993) made a comparison between cog-

dinated and random-search strategies, based on simulati ﬁ’l? probl(lim. Wteha?dress |sf.d|fferent fLOT t?osetaddrttaslsed II n
and on a limited analysis of convex domains. In this pape? er works in that we confine our robots to (at most) loca

we attempt to continue the effort using a rigorous analysis gler:jﬂln%_, SUCh;h?t tge groupi |_s?d§central|ze%otne, ﬁnd adil;]ng
deterministic and random strategies. or deleting robots does not introduce a need to change the

protocol. Also we prove the convergence of our algorithms
and evaluate their performance by upper bounds on the cover
1.4. Stochastic Coverage Processes time.

The rest of the paper is organized as follows. In Section 2
The rate of coverage of graphs by random walk has begg define the basic problems and terms, prove the hardness
studied intensively (e.g., Aleliunas et al. 1979; Barnes angk the off-line covering problem, and show a lower bound on
Feige 1993; Broder et al. 1994). Representative results in thige time required by any solution. In Section 3 we describe
context are the upper bounds @fmn) on the cover time of the MAC algorithm, prove its convergence, and analyze its
a graph withm edges and vertices, and (m R logn) where  performance. Then, in Section 4 we describe and analyze the
R is the resistance of the graph, assuming all edges to bede algorithm for convex and nonconvex regions. Section 5
Ohm resistors. On the other hand, coverage of COﬂtinUO'.éSdevoted to the hybrid MAC + PC approach, and in Section
domains is less investigated. The most comprehensive tgxiye show simulations of the three algorithms. Section 7

known to us is that of Hall (1988), where a coverage proceggncludes with a discussion and some open questions.
is considered as a sequence of patches whose centers comprise

a standard random process. This approach does not assume. . . .
any correlation between the locations of consecutive patches; Preliminaries

hence it is not directly applicable to robotics, where motion . . .
has a significant cost. We attempt to improve the situation i thiS section, we define some basic terms to be used through-

our PC approach, which is an extension of random walk froUt the paper, show that our basic problem is NP-hard, and
graphs to the continuum. prove a lower bound on the time of coverage for any covering

algorithm.
A rule of motion islocal if it relies on the information
1.5. Locating a Robot available in the robot’s near neighborhood. Our problem is to

find a local rule of motion that will cause the robot to follow a
The reason we suggest using external traces rather than mesce-covering curvsuch that every point of the given region
orizing the path in the robot's internal storage, is that the latt@hoy|d be in some prespecifieaheighborhood of the robot’s
method requires a precise positioning system, whichis hardg@;|. such a rule, if obeyed faF units of time, should lead
achieve. Neither odometric (“dead reckoning”) or commokhe rohot to follow a piecewise polygonal curve) defined

GPS (Global Positioning System) methods are as yet sufﬁy the pointsz(1), z(2), . .. , z(T), thatcoversa connected
ciently accurate for an indoor small-scale application. (Segﬁanar regiorg; i.e.,

Borenstein and Feng’s (1996) work for an analysis of the ef-

fects of odometric errors on motion planning, and a method of T
correcting them using an external positioning system.) In the R = U B, (z(2)), (2)
work of Enge and colleagues (1996), the precision achieved =0

by GPS so far is estimated by 8 m, which is far below the level ) ) ) _ .
of precision required for covering indoor regions by robots of/eréB: (2) is the intersection ok and a disk of radius that

radius 20—40 cm. is visible fromz.
A visible circle is defined in the following way:

DerINITION 1. Ifz = (x, y)isapointandR isaregioninthe
Euclidean plane, then a visibtecircle around; is defined as

An off-line version of the problem as well as approximation
algorithms for it are presented by Arkin and Hassin (1994).

The r_elated (NP-hard) pro_blem of the optimal watchman r.ouﬁhereL(z, 7’) is the straight line betweenandz’. In other

is to find the shortest path in a polygon such that every point 0 : . . .
L . . words, this refers to those points on the circle that are vis-

the polygon is visible from a point of the path. This prObIerT|]ble from z; we do not assume seeing through obstacles or

is investigated by Chin and Ntafos (1986). The problem i N 9 9

also NP-hard where the watchman has limited visibility; suc
a problem is calledd-sweeper,” and is discussed by NtafoDEFINITION 2. A visible openr-disk (or r-neighborhood)
(1992). aroundz in regionR is

1.6. Off-Line Covering

C/(z) £ {</suchthatL(z,z) e R and |z —Z|=r},

ﬁoundaries. Similarly,
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1. The sequencsg is anr-step path inR; i.e.,
B,(z) £ {'suchthatL(z,z) e R and |z—Z/| <r}. Vtstl<t<m:L(z, 241 €R

T : and —zl=r,
DEFINITION 3. Anr-step path inR is a sequence of points G —al =
Z=z122..., 2n Such that 2. The regionR is covered by the path, i.e.,

foralli,1<i <m:L(z,z+1) € R and |z; — zipal =r. Vze R, Joef{l,2,...,m} suchthat € B,(zy).

DEFINITION 4. A setR is r-path-connected if for any two

points z,, z4 € R there exists a finite-step pathz;, — HEOREM1. Off-line SCis NP-hard.

21,22, -+ » Zm SUCh thaky € B, (z). In other words, each proof. We shall show that our problem is at least as hard as
point in R can be covered by somestep path started from the problem of finding a Hamiltonian patim a grid graph,
any other point inR. which is known to be NP-complete (Itai, Papadimitrious, and

r%zwareﬁter 1982). This purpose will be obtained by show-
ing that if one knows how to solve any instance of the SC
problem in polynomial time, then any given instance of the
» The space-filling curve(Sagan 1994) is a continu- Hamiltonian path problem can also be solved in polynomial
ous one-dimensional curve that fills a two-dimensionalme. Assume that we get an instance of the Hamiltonian
space. IfR is the 2-D space to be covered, then eaclrid-graph problem, made @ (V, E) where the vertices in
and every point of® should be on the curve. Such av are grid points and the edges fhare grid lines, and we
curve is arr-step-covering path with — 0. are asked to find whether there is a Hamiltonian patt¥in
We build an instance for SC by embedding the given graph
on a grid of size 1, and drawing a cross with edges of length
0.5 centered on each vertex. The reg®wof the SC instance

Note that a space-covering path (like the one we are looki
for) is related to two famous curves:

« On the other extreme of this spectrum, we haveoire
timum watchman cury€hin and Ntafos 1986), where

each point of a polygonal regioR should be visible will be the union of all the crosses (see Fig. 1).

by some point on the curve. This is a space-covering We now claim that there is a Hamiltonian pathGnf and

Eg\r,\g{nbuzgif;mle with & variable step size and WltQ)nly if there is a b-covering path oR with exactly 22 — 1
9 o0 points, wheren = |V|. To see it, consider the following

Let us now define the problem we are going to deal witAbservations:

in this paper: « If G is Hamiltonian, then the Hamiltonian path is also
DEFINITION 5. A step-covering (SC) problem: a 05-covering path oR with 2n — 1 points, which are
Given: a real number and arnv-path-connected sét. then original vertices plus — 1 points in the middle
Find: a sequence of points, zo, ... , zr that are an--step of traversed edges— recall that the grid size is 1 while
path inR such that r =0.5.

T « Assume that there is a minimaBcovering path ofe,
R = U B, (z). and denoteitbythesequenger =1,2,...,2n—1.
i=1 Now observe that a minimal covering should visit each
vertex at least once; otherwise, it could be shortened.
Hence, by removing the — 1 nonvertex points from
the sequence, one gets a Hamiltonian patfi.irsee an
example in Figure 1. Hence, a path owepoints can
Our algorithms ar@n-line methods; i.e., they decide on cover a length of at mostr2 with this maximum ob-
the next step without having the full details of the problem, tained only when the vertex points are visited. On the
which in our case could be a complete map of the region.  other hand, & is exactly the size oR; hence am-long
Clearly, the on-line version of a problem is at least as hard as  0.5-covering path inR corresponds to a Hamiltonian

Such a problem is referred to as off-line if the Keis known
in advance, and as on-line if at timgthe only known part of
R is the neighborhood of the path traversed so far.

the off-line one; hence, we first discuss the hardness of the path inG. O
off-line SC problem, formally defined as follows:

Given: a real numberr, an integerm, and anr-path- The theorem implies that finding an optimal covering path
connected seR (not necessarily simple). is a hard problem, (unlesB = N P). In addition, we can

L ) 5
Question: is there a step path of Iengﬂm that-coversR* 1. AHamiltonian paths a sequence of vertices in a graisuch that there is

Namely, is there a sequence of points ¢t = 1,2,...,m a5 edge between any two consecutive vertices, and each vereamgears
such that exactly once in the path.
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Fig. 1. G (left), an instance of the Hamiltonian grid-graph problem, is transformedRnfaght), an instance of the step-
covering problem with- = 0.5. The Hamiltonian path ii; (dashed line) corresponds to th&@overing sequence iR
(dots), whose first and last covering circles are also sketched.

also show a lower bound on the length of any covering pathbility to react to changes in the geometry and topology of the
independent of the algorithm used to create the path. environment, and the flexible mode of cooperation that can
anly be achieved via the on-line approach, while the prepro-

LEMMA 1. The number of points in a covering sequence . i Lo T
gramming one is severely limited in this respect.

-circles, sayZ = z1, z2, ... , z1,, such thatz;+1 — z;| <r, . ) C

r Y2 =21, 22 L biva =zl =r In this paper, we shall consider bottdaterministiccov-

is bounded from below . . . . T

ering algorithm, in which the cover time is guaranteed, and a

- ( 6 (AJa) — 1—‘ ’ randomized one, in which we bound the expected cover time
| 47 +3J3 from above.

whereA is the region’s area and = 7 r>—the area covered

by the robot in a single step. 3. MAC (Mark and Cover): A Deterministic,

Proof. In each step (except, perhaps, the first one), the robdtail-Based Algorithm for the On-Line SC

jumps a distance of, and hence (due to overlapping) addProblem

at most(+/3/2 + 27/3)r? to the covered area. Thus, after

T points, the covered area is at magt = (7' — _1)_(~/§_/2 Consider a group of robots with very limited sensors that
+27/3)r?+mr?. By equatingsy, to A, the lemmais implied. cooperate to cover a continuous, bounded, connected region.
U The robots have no means to calculate their locations or to
o communicate with each other directly. Their only means of
REMARK 1. It is intuitively reasonable to assume thatras S .

. . s = chmumcatmn are short-lived marks they draw on the floor
decreases, the “quality of covering” improves; i.e., the amour) . . .
Y (e.9., heator smell), which enable themto recognize alocation
of overlap reduces. This intuition is made clear by the follow:

ing resultfrom Kershner (1939). Defingr) asthe minimum as alread_y .VISIt.ed' The '“tef‘s_'ty of the mar_k enablgs_ the
. . robot to distinguish recently visited from previously visited
number ofr-circles needed to cover a region of areaThen

points. The task of the robot(s) is to cover the whole region
lim N(r) = 2r/v27)(A/a), (3) using the ability to follow a marked trail on the floor. If
r—0 an odometric sensor of high precision is available, visited
and the minimum is attained in the “honeycomb” (hexagonalpcations can be recorded in the robot’s memory rather than
arrangement of the circles, obtained by tiling the plane witmarked on the floor. Our assumed robot covers a disk of radius
congruentregular hexagons and circumscribing each hexagoaround its center, and can move in an arbitrary direction
with acircle. Note thatthe eq. (3) result from Kershner (193%ither in a “forward” manner, where a new segment is marked

implies that, asymptotically], cannot go below 209... down, orin a “backward” manner, at which time a previously
x (A/a), while Lemma 1 implies that faanyvalue ofr, 7. > marked segment is followed in a direction opposite to the
1.06... x (A/a). direction of its marking. The robot can identify the direction

In many practical situations, the on-line version of the S©f the trail by its intensity—if a point was marked later than
problem is more relevant than the off-line version, since an e&nother point, its mark will be stronger. Beingatve assume
ficient on-line solution enables an autonomous robot to covtre robot to be able to cove®,. (z)—an open disk of radius
a region without the need to be preprogrammed with a daround;, and to sense (e.g., see or smell) the status of covering
tailed map. Other advantages of the on-line approach are e C, (z)— the boundary of the disk. For that purpose, the
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robot should be able to sense trails as faraavay fromz to The idea behind this algorithm is similar to a depth-first
recognize a point o', (z) as “uncovered.” Itis also assumedsearch (DFS): in a “forward” motion (steps B and C), the
that the marked trails remain detectable during the executiombot finds a new, uncovered area and covers it. In the pro-
of the algorithm, an assumption that will later be relaxed in eess, it marks the path from the previous point to the new
randomized version of the algorithm. point. The direction of this mark can later be recognized,
We now consider a reactive rule of motion such that a seince if the linez — 7z’ has been marked, the intensity at
of robots that obey this rule will eventually cover the region’ will always be stronger than at Once no new point
in the sense defined by eq. (2). The algorithm is called MAExists in the near neighborhood (i.e., on the cir€l&z)),
for “mark and cover.” the robot “backtracks” using the marked path (step E), or, if
* MAC—Mark and Cover */ no unc_overed point nor backV\_/ard mark exist arognd_he
. . - robot finally stops (step F), being aware that its mission has
/* r = covering radius */
) . been completed. Note that the robot should be able to sense
Rule MAC(z: current location) ) : . N
) i trails as far as 2away to recognize a point as “uncovered” in
A) cover B, (z), the openr-disk around;;
B)ifthereisapoint’ € C,(z) suchthat’is yetuncovered step B. o . .
(i.e., there is no marketrzl oint i, (') As for the heuristic in step C, we experimented with the
o P vz following three heuristics for breaking the tie:

then

C) gotoz’, while marking the ling; — z/; Random. Choose;’ at random from the uncovered points on
/* break ties by a heuristic */ Cr(2).

else

Peeling/Milling. Choose the uncovered point which is
“rightmost” with respect to the lin€z;, z;—1). Then,
if the robot starts on a boundary point, the uncovered
region is “peeled” from the outside inward, similar to
the process of Wagner and Bruckstein (1997). Starting

D) ifthereis a point’ € C,(z) such that
the linez’ — z is marked
/* line direction is detected by intensity, see eq. (1) */
then /* backtrack */

5 gotoc th f internal (nonboundary) point
F) else STOPR is covered). . e.sa‘l‘me pf,ocess romanin erna.(pon oun ary) point,
end MAC. it will “grow” a clean area around it in a spiral process

of milling.
See Figure 2 for an example. ) , . - .
Stay Straight. Keep going straight, as long as it is possi-

ble according to the MAC rule. This approach has the
advantage of saving turns, thus reducing time and me-
chanical degradation in a realistic robotic setting.

Judging from our (limited) simulations, all three heuristics
seem to have similar effects on the performance.

In the sequel, we show that the covering mission is indeed
achieved by the algorithm, and we then analyze its timing
performance.

3.1. Performance Analysis of the MAC Rule

Assume that the robot has stopped at tifheand let us call

the points where the robot has stopped, i.e., the sequence
z(D), z(2), ..., z(T), vertices and the lines that were marked

in one time or anotheedges It is clear that the graph
G(V, E), whereV are the vertices and are the edges, is
connected, since upon the creation of a new vertegstep

B), an edge is always being marked (step C) that connécts

to the rest of the graph. Let us first show that each edge in
G is visited exactly twice during the execution of the MAC
algorithm.

Fig. 2. Seven steps of the MAC procedure (bold arrows), usifig-MMA 2. Under MAC, amarked segment- z'is visited
the “stay straight” heuristic to resolve ties. Note the step bad&actly once in each direction.

from Zs to Z4, due to the total coverage of theeircle around  Proof. The segment — z’ may be visited either upon de-
Zs. tectingz’ as a new point, at which time the mark is laid on
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the segment, or in the course of backtracking frgnto z.
Once the segment is marked, itsieighborhood is consid-
ered “marked” (by step B); hence, the only way to go over |
again is by backtracking. But backtracking can happen on
only, since after it happens once, the neighborhood is cover
and won't be entered again. Hence it is the second (and la
traversal of this segment. O

Using the above result, we now proceed to show that tt
time of coverage can be bounded from above by a geomet R
function of R. To derive this result, we need an upper boun
on the amount of area addedRadby extending it outward.

LEMMA 3. If a planar regionR is expanded by a strip of
width r to all directions (see Fig. 3), then its area increases
at mostr (P + nr), whereP is the total perimeter oR.

Proof. Let us first assume that is a simply connected do-
main, and its boundary is defined by: [0, P] — RZ a
planar, regular, simple, closed curve, parameterizead, lblye
arc length alon@ R. Now consider a dwarf going along theFig. 4. An infinitesimal part of the-wide strip aroundR
boundary in the positive direction (i.e., with the inside to hiss approximated as a trapezoid (bold line) with argals
left); an infinitesimal straight step iés long. Then the in- +rk(s)ds/2 + o((ds)?)).

finitesimal part of the expanded area is just a trapezoid with

one base equal s and the other basés (1 + rk(s)), where o ] o
k(s) is the local curvature af(s). See Figure 4. The last equality is obtained from the rotation index theofem.

The increment in the strip’s area is at mostds Note that inequality (4) also holds for a nonsimple region if
+rk(s)ds /2 + o((ds)?)), and hences, the total area of the P is the total perimeter, including the perimeters of the holes
strip, is bounded as follows (terms dependentdn? can be N R if there are obstacles in it. 0
ignored asls — 0):

REMARK 2. Inequality (4) becomes an equalityRfis con-

vex, and then it is a case of the Steiner-Minkowski formula

P for polytopes (see, e.g., Berger 1987, p. 18).
S < / r(1+rk(s)/2)ds Now we use Lemma 3 and a geometric observation on the
s—0 MAC process to show an upper bound on the number of points
P P visited in MAC.
= r f ds + = / k(s)ds (4) LEMMA 4. If aregionR has aread and perimeterP, then
o 2s:0 the graphG(V, E) whose vertices are the visited points and
= P +7r). whose edges are the lines marked by the MAC algorithm has

at most 2/1_3%;”’2 edges.

Proof. According to the algorithm, a point can never become

a vertex if it is less than distance from any existing marked
point. That s, if(z, z’) is an edge irE, then no third vertex
of V can be withinB,(z) | B, (z/). (At this point we ignore
the boundaries oR; this will be fixed in the sequel.) Hence,
if we draw a rhombus made of tw@0°, 120°, 30°) triangles
around each edge ifi, no two rhombuses will intersect; oth-
erwise (if two rhombuses do intersect) itis implied that a third
visited point exists in the vicinity of a vertex of the rhombus.

See Figure 5 for an example.

The area of such a unique quadrilateral regiorfj&+/3,

2. The rotation index theorem (see, e.g., Do-Carmo 1976, p. 396) says: If
[0, P] — R? is a plane, regular, simple, closed curve, t!ﬁé)nk(s)ds =2m,

. wherek(s) is the curvature of(s) and the curve is traversed in the positive
Fig. 3. Anr-expanded shape. direction (i.e., with the inside to the left of the walker).
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LEMMA 5. The sets, zo, ... , z7 of vertices defined by the
MAC algorithm covers the regioR; i.e.,

T
R=JB ).
i=1

Proof. Assume, on the contrary, that upon termination there
still exist uncovered points iR. Considerz., the uncovered
point that is closest to a point of the st say toz;. Now

the distancgz. — z;| cannot be less than or equal tpor
otherwise no backtracking fromwas possible (i.ez, should
have been detected during one of the visitg;fo Let us
denote|z. — z;| = r 4+ € with € > 0; however only ampen

Fig. 5. Four steps of the MAC procedure (bold arrows), the N€ighborhood ot; is covered. Hence, there must be an
covered area (dashed line), and the unique area around ed8fRovVered pointim that s closer to the sét thanz. (e.g.,
edge (gray rhombus). Note that only the circles around tfePCInt on the linel(z;, z.) that lies in distance + 5 from
stopping points are covered, not those around the edges; fob N contradiction to our assumption. .

example, the area is as yet uncovered in this case. Also Now, as the edge set 6f is bounded and each edge is tra-

note that an angle between two edges in the path cannot\R§sed twice, one can show tifatthe cover time, is bounded,
smaller than 68 hence all rhombuses are disjoint. t0o:

THEOREM2. The time needed to cover a regiBmwith area

A and perimete® by the MAC algorithm, denoteﬂrMAC,

. . . is bounded as follows:
so if we had a region with no boundary (e.g., a torus or a

sphere), we would have that 67 (AJa) — 1-‘ - 7MAC _ ,A+rP+ r2
4z + 343 - - r2
E| < 234
El = P2 Proof. The robot goes over an edge per unit of time. Accord-

_ L . ing to Lemma 2, each edge is traversed exactly twice, and
However, in most realistic situations there are some additio

q the boundary Bf th ber of such ed m Lemma 4, we know that the number of edges is bounded
edges near the boundary e number of such edges can Atr Pr?
be bounded from above by assuming that the regidmas above by 7z Hence, the upper bound results. For the

been expanded by a strip of width The area of such a strip lower bound, We.f'rSt _apply L?mma 1fora Iower_bound on
Lo the number of points (i.e., vertices) before covering, and
does not exceefl = r(P + xr), as is implied by Lemma 3 . )
then use the fact that the graph{V, E) is connected; hence
above. Hence, we get

there are atlea$V | — 1 edges irE, each of which is traversed
2 twice. N

E| < 232 TP (5) o -
r REMARK 4. Our algorithm is “nearly optimal” in the sense

0 that its covering time does not exceed a constant times the

minimum possible covering time by any robotic cleaner with
REMARK 3. The weight of the perimete? in eq. (5) may radiusr, which is { 57 __(A/a) — 1-‘, as was shown in
become significant; for example, if the area has the shape 4n+3V3
9 ; pie, P fmma 1 above.
an extremely acute triangle, the number of vertices may be
arbitrarily large, although the area &fis bounded. Another REMARK 5. Our analysis gives upper and lower bounds, but
extremal example is a fractal shape (i.e., bounded area but time exact time of covering depends on the number of vertices
bounded perimeter) where the angles are not too small but thenerated in the process, which in turn depends on the start-
visibility is limited to a small area due to the infinite numbeling point(s), the shape of the region, and the heuristic used
of corners. in step C of the algorithm to choose the next point among
So far, we have shown that the cardinality of the edge setsgveral uncovered points @) (z). In the course of our simu-

bounded from above, and each edge is traversed twice; herhations, we experimented with several heuristics for breaking
the algorithm should eventually stop. Let us now show thahe tie; namely, the “random,” the “peeling/milling,” and the
upon termination, the vertices of the graph are indeed a covestay straight” approaches that were explained in the previ-
of the regionR in the sense of eq. (2). ous subsection. According to our simulations, there is no
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great difference in cover time between the heuristics. Hence,
we believe that in practice the best approach is the third one,
which is more efficient due to the reduced number of turns.

REMARK 6. It is quite easy to see that the path obtained t
MAC is not necessarily optimal (i.e., shortest). An optima
path may be found if the whole map is given; such a problel
is an off-line problem (as shown above, even this problel
may be hard to solve). However, as shown by Theorem
the on-line path achieved by MAC when only local data i
available is not longer than a constant times the optimal pat
hence, a MAC solution has a property known as a consta
competitive ratio

REMARK 7. The trace resulting from a run of the MAC algo-
rithm can serve as a kind of roadmap to the unknown regio
By counting steps, the robot(s) may put (at every node du
ing the backtracking stage) the path length and maybe otf
information on the subtree, which may be useful for the ne:
robots/people to come. In this way the robot contributes in
plicitly to a global plan, without being aware of anything be-
yond its own part.
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3.2. Multi-Robot MAC: Collisions and Cooperative Fig. 6. Four robots using the MAC algorithm in four rooms:
Covering preliminary stage.

There is a good potential for cooperation when several robots

apply the MAC rule, and there is no need for additional hard-

ware or communication protocols. As can be easily seen,

collisions are not a problem under the MAC protocol (assum-

ing the hardware is not vulnerable to bumps), since a robot

can consider its fellow as a “wall.” Still, some performance AT R AR AN e S DN R T i erite
degradation is likely to occur if too many of the robots art
cluttered in a small neighborhood. Also, there is no dang:
of deadlock, since a robot never “waits"—it either goes bacl
ward or forward, (or makes a final stop if neither kind of ste|
is possible). Recall that according to the rule, a marked lir
never intersects either itself or another robot’s thread; henc
several robots will perform at least as well as one. See Fi
ures 6 and 7.

However, the exact degree of speedup is dependent on
geometry of the region and the initial location of robots. Thi
basic problem is that if several robots are initially located ver
closely, one may put its thread around another and block
thus reducing the speedup ratio. We suggest two possit
ways to overcome the perpetual blocking problem:

The deterministic method. As an initial step, all robots
should make a tour around the region and distribut
equidistantly along the boundary. Then each robc

should follow the MAC rule, and in case of a tie (i.e., FEMETEEEEEEEEGGE R R R

several possible continuations to uncovered IOOIntS&’ig. 7. Four robots using the MAC algorithm in four rooms:

chpose tc_) go to the point th_at Is closest to 't.s Star.t'nﬁnal stage. Note that their traces are four separate trees.
point. This way, each robot first takes care of its neigh-

borhood before interfering with others, thus postponing
blockages to a later time.
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The randomized method. Once a blockage is created, a
blocked robot, rather then going into “rest” state, can
start walking around randomly until it finds an uncov- i ImimimiainisiINiEiR]NININiE]E]sIN]N]NI"
ered area. This kind of step, however, should be take
only if all area is not yet covered; for this awareness
we’llneed some limited form of global communication.

3.3. Drawbacks of MAC

The MAC algorithm has two important advantages: it is ef
ficient in time, and aware of completion. However, it ha: i§ ;
its drawbacks, such as its dependence on sensors and tra Imim
which results in a sensitivity to noise in both sensors ar
the environment. Another shortcoming is that multi-robo
cooperation is rather limited unless the geometry is know
is advance. In the next section, we propose a compl
mentary approach: an almost sensorless covering algorith
which uses random decisions to guarantee coverage with hi
probability.

4. PC (Probabilistic Covering): A Randomized

Approach to the Covering Problem _
Fig. 8. A lonesome PC robot; the gray area has not yet been
In this section, we consider a robot that acts without any sefgyered.

sory inputs; it makes a step, chooses a random new direction,

and then makes another step. Clearly, the average perfor-
mance of this method is lower than MAC, but it has the advan-

tage of being sensorless, so it can serve as a complementary
approach to the deterministic one. In the sequel we shall refer

to ther disk arounc; by B, (z), and to the circle around; ~ E]Mjmjm
by C,(z). We shall also denote hy(z) the maximumx such u
thatx < r andBz,(z) € R. Actually, calculatingu(z) is the N
only place where we need sensors in the system. Forma|=
the rule of motion is defined as follows:

/* PC - Probabilistic Covering */
[* r = covering radius */
Rule PC¢: current location)
A) cover B, (z);
B) setu(z) = min {r, maxs,.,:)cr) {r'}} ;
I* u(z) is half the maximum radius */
/* (not exceeding) */
[* of a circle around; within R */
C) choose a random neighborfrom C,, ;) (2);
D) go tow;
end PC.

See Figures 8, 9, and 10 for examples of the protes:®
As opposed to the previous algorithm, PC has no stoppit B
criterion. In practice, one can use the analytical bound ¢

m[uin(n{ninininEnnisininininin]uininin

LI C 3 T DI L e LI 1 BT L]

the expected cover time (to be derived in the sequel) as ffy. 9. Four PC robots working together. A fellow robot is

estimation of the time at which the robot can be stopped. Noggnsidered as an obstacle; hence no collisions should occur
that if C, (z) intersects the boundary &, then the duration according to the PC rule.

3. A JAVA simulator of the PC process is available on the web at
http://www.cs.technion.ac.il/” wagner/pub/mac.html.
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e wherep is the electrical resistance & (assuming a

oot material of unitsheet resistangdo be defined in the

I I I sequel). Note that the resistanee= p(R) can some-
S times be bounded in terms of the geometrical properties

I ! ! of the shape, and can always be numerically approxi-
. C 0T T mated. For example, iR is a /n x +/n square, then
T ! ! its resistance i® (logn), when measured between the

: T bottom-left and a top-right squares. In case ofianb

-2 - rectangle witha << b, p = O(b/a). Recall from

Lo Lemma 1 thatny covering path should have at least

I
Lo (%i’;ﬁ(A/a) - 1—‘ steps.

Variance in the Cover Time. The variance in time of com-
plete coveragey [TPC], is bounded from above:

2u(z3)

—— V[TPC] 521111,0,
Fig. 10. A grid-polygonr, partitioned into unit squares, and _ _ o
a possible sequence of PC steps that take random continuous Which yields an upper bound on the standard deviation

locationsz1, z2, z3, thus covering the dashed circles. In this of the cover time:
caseu(z2) > (z3), and hence the step size at time: 2 is
greater than at time = 3. The dashed circles designate the o [TPC] =V [TPC] < 32y 2np.

covered area. Note that since the covering radius is always
212 while the grid size is 1, it is sufficient to visit all squares

Our results can be extended to more general shapes, but
to guarantee a coverage Bf

this involves various types of cumbersome details that will be
omitted in this paper. Note that the above results are achieved
of a PC step shall be shorter than one unit of time, since tiéthout using any sensors except collision detectors (the robot
step length igi(z) < r. In each step, the robot scans aroungannot distinguish “tiles” or “grid squares”), and thus have
to see if a boundary exists within distangenence, we shall almost no vulnerability to noise. They can be used as is, or
assume that the time spentzats proportional to(i(z))%, combined with a sensor-based algorithm to achieve a trade-off
wherepu(z) is half the maximum radius not exceedingfa  between cover time and coverage guarantee.
circle around within R. Thus, the time spentin traversing the
sequence of pointszy, z2, - S0 Tk is_ equal tto:l w2 (@), 4.1. Analysis of the Cover Time by PC
wherez; 1 = z; + u(z)e/%, 0; being the angle chosen at
theith step. The reason for making the step length half thEhere are a wealth of results in the literature for cover times
possible maximum is to avoid the chance of the robot goirlgy random walk on graphs, a sample of which was mentioned
to dR, where it will get stuck forever singe(z) (i.e., the step in the introduction. Our case is different, however, since the
size) vanishes on the boundary. robot can be in any point in the continuum of the region,
We model the robot as a point that covers a circle of radiugther than being bounded to a finite set of such points. One
r around itself. Because of the random nature of PC, noay wish to partition the region into squares, considering a
deterministic bound can be stated on the cover time; we shatindom walk on a graph with the set of squares asiits vertex set;
however, draw some bounds on thpectedovertime and its however, this will not do, because the transition probabilities
variance and both will be given as functions of the electricahre not constant; rather, they depend on the precise location of
resistance of a conductive material in the shap&ofThis  the robot within a square® Hence, we shall use continuous
resistance can be further related to the geometrical propert@guments to analyze the process.
of the robot and the region. More specifically, we prove the We first observe that the PC process is a strong Markov
following: process, since the probability of visiting a location in the
next step depends only on the current location but not on
- i I earlier history—the robot has no memory at all. For such
pec’Fed time until full coverage &f (a umt-grl_d polygpn a process, it was proved by Matthews (1989) thaif=
of sizen by a PC robot that covers a radius@® in {q1. 42 .. , qn} is a collection of subsets of a s&t then

each step), is bounded by E[T(q1 g2, ... ,qn)], the expected time for visiting some

Expected time of complete coverage ErPC].  The ex-

PC
np <E [T ] < 2nplogn, 4. In other words, the process is fimhe homogeneous.



point of every subset i (starting from anywhere iR) is
bounded as follows:

n
hmax < E[T(q1, 92, ..., 4] < hmaxy_1/i, ()
i=1
where

max
x€(R\Q),1<i<n

{hi(x)},

andn;(x) is the expected time to first reach subgetipon
starting fromx € R. Let us now assume th&tis partitioned
into a set of unit squares,= {s1, s2, ... , s, }. This partition

is not known to the robot, but will serve us in our analysis. To hi(z) =
establish bounds on the average cover time of the PC process,
we further observe that (since the robot's covering radius is

r = +/2) if the robot has visited all the squares irR, then
R is totally covered. See Figure 10 for an example.
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uniform material with unit sheet resistante.

Proof. Let us denote the maximum step sizerhyin a step,

the PC robot selects a random angle and goes in that direction.
The length of the step ig(z), half the maximum radius not
exceedingr of a circle around; within R. As explained
before, we assume the time spent & be(w(z)/r)2, which

is one unitin an internal point @t (i.e., whereu(z) = r), and

less near the boundary, whet€z) < r and steps are shorter
(seeFig. 10). It ¢ s;, then the expected time to reach square
s; from z is just the average of the step length plus the access
time over au(z) circle around;; i.e.,

2
1 .
(u(z)/r)2+g f hjz+ u)e®do,  (8)
=0

wherez + u(z)e'? refers to a point at distange(z) from z
and angle to thex axis, in the complex notation. Clearly, if

Clearly, ifarobotis located anywhere within such asquare, _ s;, thenh;(z) = 0.

the whole square is covered (actually, some of the neighbo

"Now considerR as a flat surface of a uniformly resistive

squares are also partially covered, but this does not harm Qub.aial with unit sheet resistance, and assume that a current

upper-bound result). Thus, visiting all the small squares
sufficient to guaranFee a full coverage @f On the other jected intoR, and 4/ r
hand, to coveRr starting from any pointin it, the robot should
make, at least once, the tour between the two farthest squ
in R. Let us define thaitting time(also known as thaccess

timeor first-passage timefrom a pointx € R to a square;,

BF 1o = 4/r2 Amperes (A) per unit of area is uniformly in-

2 A are taken fronR via the square; .

Let us also denote the electric potential at pain¢lative to
aéﬁﬁarevj by ¢;(z). Since there are no current sources within
R, we know from the divergence theorem (see, e.g., Kaplan
1984, p. 319) that the amount of current entering the boundary

denoted:;(z), as the expected time of a PC process that Start$ g should equal the current exiting through it (i.e., the total

atz and ends upon first reaching a point in squaré\Ve also
defineC (x, y), theeffective commute timeetween points

current through the boundary should vanish). Due to sym-
metry and uniformity of the resistance, the average potential

andy, as the suni, ) (y) + ks (x), wheres(z) stands for
the unit square that includes It is thus implied by eq. (6)
(using}_"_,(1/i) < 2logn) and the above observations thalPROPOSITION1. The average potential difference between
the expected cover time &f can be bounded: the center and the circumference of a circle of radiumn a
uniform surface with unit sheet resistance, into whigh of
current are uniformly injected per unit area, is

around a circle of radiug can be calculated:

1 P
5 Max (Cex. ) < E[77C] < 200gm max (Cr. )
@)

To find the maximum effective commute tind&x, y) in R,

we now show that this time is proportional to the product of the
number of squares iR and the electrical resistance between N ) .
x andy, to be defined in the sequel. The following lemmais, The proof of Proposition 1 is deferred to the Appendix.
in a sense, a continuous analog to the work of Chandra aR#100singlo = 4/r2, one getsp (1) — ¢(0) = (1/r)?, and
colleagues (1997), which related the hitting time of a randofence (writing. for 11(z) andg (2) for the potential at when
walk on a graph with its electrical resistance, considering ead Potential in square; is kept at zero):

edge as a 1-Ohm resistor.

2
—— . TIou2
d(w) —¢0) = > f(qb(ue"’) — ¢(0)do = oKk
T 4

0=0

2
LEMMA 6. C(x,y), the effective commute time between 1 / i0 2
) . : . — i(2) — ¢ do = ;
pointsx andy in R, obeys the following equation: o | @i @) =i+ pne)) /)
6=0

C(x,y) =np(x,y), , —
x, ) px, ) 5. Thesheet resistancef a material is defined as the voltage across a square

. . . . of the material caused by one unit of current (i.e., 1 Ampere) that is flowing
wheren is the area O_R ando(x, y) is th_e electrical resistance petween two parallel edges of the square. The sheet resistance is commonly
between square pointsandy, assumingR to be made of a expressed in units of Ohms per square.
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or THEOREM 3.

1 2 . np <E [TPC] < 2nplogn,

6@ = /r?+ o [ 6@ ueio. (@)

6=0 wheren is the size of® andp, its maximum resistance defined

asp = max yer {p(x, y)}.

From the equivalence of egs. (8) and (9), and the uniquéness . . .
of the expectation functioh;(z), we see thak ; (z) is equal Proof: Immgd|ate, by taking maximum on Lemma 6 and
to the potentiakp; (z) if 4r~=2 units of current are injected substituting in eq. (7). O
into each unit of area, andid~2 units of current are taken A corollary is implied for a square room:
from square;, which is held in potential 0. In a similar way,
one can show thal;(z) = ¢i(z), if 4/r2 units of current
are injected into each unit of area, ang/4? units of current ) pC .
are rejected frons;. Now if we reverse the direction of all cia®loga < E [T ] < c2a”log”a,
currents in the second case, we find that) = —¢;(z), if
4/r2 units of current are taken from each unit of area ackyss Whereci andc; are small constants.
and 4 /r _2 units of currentare injected intp. Duetolinearity - proof (Sketch) We use the fact that the resistance of a square
of resistive eIectrlcgl systems, we can superpose both shelgf@aoga)_s Then we also note that for anxa room,n = a2,
together, thl_JS_ making all currents cancel eagh other, exceflich, substituted into Theorem 3, implies the corollaiyl
the 41/r2 A injected ats; and taken frony;. This, together

with Ohm’s law! implies thatC (x, y) (the effective commute ~ Note that the upper bound on the expected cover time in

COROLLARY 1. If Ris asquare x a room, then

time between points andy) obeys this case is only lofu times the optimal possiblé (a2).
C(x, = hgoy)(x) + hy .
(x.7) s+ s () 4.2. An Upper Bound on the Variance df ¢
= ¢s(y)(x) - ¢s(x)()’)
_ 4n For our results to be useful, we now show that the variance of
r the cover time, denotéd [T C] is also bounded from above

and hence there is only a limited spread of the covering time
around its average. It has been proved by Aldous (1991) that
the variance in the cover time of a seis at most constant
times the expected time of covering the last item in the set:

wheres(z) is the square including andp (x, y) is the elec-

trical resistance between point@ndy in R. This resistance

is measured as the potential difference betweandy while

injecting a 1-A current into one square, sdy), and taking

it from s(y). i i
Substituting = +/2 in eq. (10) and considering the fact ¥ [Tcover OfS] =co-E [Tcover ofthe last ftem ”S]

that superposing the two sheets implies half the original re-

sistance yields the lemma. 0 wherec, is a constaritless than 2. Applying it to our case,

e can use the maximum access time as an upper bound to

We now combine the above results to obtain the foIIowinﬁQ ) ) . -
theorem. e cover time of the last item (i.e., a yet-unvisited square), so
we get

3

6. The functior ; (z) is uniquely determined by
o0 i [TPC] < 29 max {C(x, y)} < 2%np,
hj(z) = / t- F’rob{squaresj is reached fronz in atime in(z, ¢ +dt)} dt xyeR

’:o(i which implies that the standard deviation is at mosy/22p.
- / ‘
=0 4.3. A Universal Traversal Sequence of Angles

2t 2rn 2 . . L.
Interestingly, we can prove the existence of a deterministic

o0
1
. — s | A8, 02, ... 6)d01d6; ... d6y| dt, ; . : ;
kg;) @, /09 /0 . /0 01,0 k10102 - B (derandomized) version of the PC algorithm that is also sen-
G sorless and guarantees covering within a polynomial number

whereA; (61, 6o, ... , 6;) = lifthe sequence of anglés, 6, ... , 6; leads
from point z to (some point of) square; in a time in(z,7 + dt), and 0 8. It is of interest to mention a lumped circuit analogy: a squarg m
otherwise. mesh of 1-Ohm resistors is known (Chandra et al. 1997) to have resistance

7. Ohm’s law says that the voltage drop between two points is equal to tiexlogn).
product of the current flowing between the points and the point-to-poir@. This value of the constant does not appear in Aldous’s (1991) work, but
resistance. can be calculated based on the analysis done there.



Wagner, Lindenbaum, and Bruckstein / MAC versus PC 25

of time units. This process, in our opinion, is mostly of theoef a sequence that does not cover all polygon§ imithin an
retical value, as practically, one would like to use the sensor:t period is less than one; i.e., there exists such a sequence
less PC or the sensor-based MAC algorithm, which achievieat does guarantee covering of all polygongirand hence
much better times. Although the process described in thiere is a (2% logn)-time sequence of angles that is a UTSA
subsection is less efficient than the two previous algorithmfgr . g

it still seems to carry a theoretical insight as an interesting Note that finding a universal sequence of lengti") is

case of derandom|zat|qn. easy: justtraverse the ternary tree of heightith the starting
Let us define a universal traversal sequence of angl€s:

(UTSA) for a family of planar set& as a sequence of real point as the root and with four neighbors to each vertex, each
numberse = a1, 02,...,0,..., alin [0, 2r), such that repre_sen_ting atgrning angle frof@, /2, =, 3r/2}. Back-
if 2 PC robot tal;es }he {ura; in 'stept it i’s gu:aranteed to tracking is possible thanks to the “compass” that our robot

cover any shape fror, independent of the starting point.has' Clearly, not all steps will be oflengthbe.cause of walls
. . and obstacles, but eventually all squares will be reached.
In other words, the robot starts at an arbitrary paintand

follows the rulez; 1 = z; + 1(z;)e/*, o; being theith angle
in the UTSA. In this section, we shall show thatffis the 4.4. An Example
set of alln-size unit-grid polygons, (i.e., polygons made ofAs an example, consider a square room of 2-m sides and a
n attached 1x 1 squares), then such a sequence exists afepot of 40-cm radius. We haveg/r = 5and 25 < p <5,
has a cover-time polynomial in.1° For this purpose, we SOm = 24 andn = 176. Substituting in Theorem 3, one
follow the probabilistic method invented by Erdés and use@letsE [T] < 10,976. Assuming a robot's speed of 10 cm/sec,
by Aleliunas and colleagues (1979) to prove that a sequent®,976 steps take about 732 min. With the MAC algorithm
of length O (n*logn) exists that covers any edge-labeled and the same setting, our bound is 90 steps or 6 min. In
regular grapht with n vertices. reality, a single MAC step is much slower than a single PC

) step, since the MAC robot has to spend enough time along
THEOREM 4. There exists a sequence of angles that COyhe path to properly mark and sense it. It should also be noted
ers, within time 4*logn, any rectilinear gridded polygon of that our upper bound oR [TPC] is probably loose, since
Sizen. simulations show (for the above case) an average cover time

Proof. First let us observe thatifis the set of alh-size unit- Of 234 steps with standard deviation of 74 steps, which, in the
grid polygons, then#| < 2" (since all polygons of sizecan  above setting, amounts to an average cover time of 15.5 min,
obtain an upper bound of= 212 logn on the expected cover Covertime and standard deviation againstthe number of robots
time of any polygon inf, using the fact that the resistancdS depicted in Figure 16.

p obeysp < n for such polygons. Hence, after @nits of

time, the probability of complete coverage is at leg® ¥ 5. MAC-PC: A Hybrid Algorithm
and aftemr units of time, it is at least + 2=™. On the other

hand, The MAC algorithm has the advantages of a guaranteed cover-
age within timeO (A /a) and awareness of completion, but is
Prob {3R € Fs.t. R is not covered by a random vulnerable to physical problems, e.g., vanishing of the traces
sequence at timer} with time and sensory errors. The random PC procedure, on
i the other hand, is almost free of dependency on sensors (an
< ) Prob{ Risnot covered by arandom SEQUENCEy ception is its need to identify a collision), but has no aware-
ReF ness of completion and is slower: its average cover time is
attimemt } at mostO (Ad/a) for region of diameter. In this section,
< 2M|F < on®—m_ we suggest a combination of the two methods that gives a

5 reasonable trade-off between performance and robustness.
Hence, ifwe choose > n<, thenthe probability forexistence  One way to combine the algorithms is to have the robot
10. Note that in our setting, the time taken by a sequence of steﬁgllowaran.dom pC procedure; "e"afner'reCt'oms selected
21,22, ...,z Is not necessarily equal to, the number of steps; rather, at random in each step, but the radius of coverage (and step
itis equal toY ~_; 1e(z1)%. size) isr’ > r, using the (short-lived) marks to cover a circle

11. A graph isk-regular if exactlyk edges emanate from every vertex. Itis of sych an extended radius. Formally, the rule of motion is

edge-labeled the edges emanating from each vertex are numbered in somg.__. . i .
order. similar to our previous PC algorithm:

12. This is due to Markov's inequality (Motwani and Raghavan 1995, p. 46), /* MAC-PC - Semi-Probabilistic Covering */
which says that it is a nonnegative random variable, then forcat Rt o= . dius: */

it holds that ProljY > ¢} < ﬂeﬂ Substitutinge = 2E[Y], one finds that " r/_ covering radius, . %
after twice the expected cover time, the probability of full coverage is at least /* 7" = €xtended coverage radius, */
1/2. [* depending on the trace’s lifetime */
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Rule MAC-PC(z: current location)

A) cover B,/ (z) by applying a local MAC process from
B) choose a random neighbarfrom R N C,/(2);

C) go tow;

endMAC-PC.

See Figure 11 for an example.

Note that each step of the MAC-PC algorithm take
O((r'/r)? units of time. Hence, using Theorem 3 (bul
this time with squares of sid€/+/2 rather than-/+/2), the
expected time to cover a region by the hybrid algorithm i
bounded from above:

E [TMAC'PC] =0 (—'O(r:,rz/)A (r'/r)?log (%))

Ap A
=0 (5o (33)).

which is more tharO (r’/r) times faster than the bound on a
simple PC.
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6. Simulation and Experiments sinininlsinininisiaiwiais]niduininisinininininisininininisin]s:

. . . Fig. 12. A simulation of the MAC algorithm with one robot.
A simulation program (Wagner 1997) that animates the algqhe marks appear as a thin line, while gray denotes the un-
rithms in this paper was written in JAVA (see the examples covered (“dirty”) region '

in Figs. 12 and 13). In addition to visualization of the dy-
namics of the algorithms, our simulator can also be used to

13. The reader is encouraged to try the simulator, which is web accessible
via http://www.cs.technion.ac.il/” wagner/pub/mac.html.

gooooennons

-

D DO C 0

Fig. 11. A hybrid of MAC and PC: the covering radius is |
widened by using short-lived trails to traverse #Hecircle
aroundz, as compared to thecircle covered by the conven-
tional PC rule. After covering, (z), the robot goes te, a  Fig. 13. Upon completion, the final trace induced by MAC is
randomly chosen point at a distancdrom z. Working this  a tree that spans the region.

way, the average performance improves significantly, while

using only short-lived traces.
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study those properties of the algorithms for which we have rinspiration for further research in several directions, some of
satisfactory analysis; e.g., the dependency of cover time @rhich are described below:
the n_u_ml_aer of robo;s.hln Flg;re 16, a fom_pt?rlsqn gf the d . Covering without positioning. In our MAC algorithm,
Lerm:'sgﬁmpt‘%ig 015 cir:?r}e?enlgirzggrg[f ar?gc;g roeoprlr::te ' we assume that the robot is able_to either follow apre-
y;/]v yd ith ! lsini ph -overage ot o h viously laid trace, or recall a previous location from its
e et ayamsto o TeTor BaSed on s postonin mechans e
rob(;ts Note that inall MA,C simulations we assume that the odometric positioning or GPS). These positioning sys-
trails rémain detectable during the whole time of execution; tems are both expensive and error-prone. It seems,
. . ’ however, that to guarantee coverage, we only need our
in the worst case (e.g., that <_3f a robqt starting n_ear_the edge of positioning system to be unique, and not necessarily
a very long and narrow corridor), this as;umpﬂon IS requ_lred precise; i.e., if the position isand our system returns
\t/(;e%gzr\(/aenrfe Zoverng(.) Fpr tlhe. PC algorlth(;’nhthe co;erélr;eg_ P(z) as a position, we only need to haR¢z) # P(z)

) gedover 2L simu at|qn Funs, an the standar Vit # 7z'. The open question here is how to define the
ation was plotted as well. The S|_mulat|ons show thf';\t MAC_ls precise conditions on the positioning functiBic) that
much faster_, and that both algorlthms benefit from increasing 0 2 MAC-like algorithm to cover the region.
the population of robots, up to a point where robots begin to
disturb rather than help each other. 2. Better mode of cooperation.In our multi-robot setting,
we just add robots and let them all follow the same
rule. It is intriguing to see what will happen if a more
significant communication is enabled; e.g., considering
the MAC algorithm, if a robot that has finished its mis-
sion could get a call from a robot that is still working
and come to help. Such an approach may yield a better
speedup by increasing the number of robots.

7. Summary

We have analyzed two ways of covering a continuous region,
using the deterministic MAC and the random PC. The set-
ting of continuous space is more relevant to robotics than the
discrete structure of graphs, since robots move continuously,
and even if a discrete partition is dictated by some externdl Cooperating PC robots. As we just add robots and let
signs (e.g., a tiled floor), it is still hard for a low-cost robot them all follow the same PC rule, it would be intriguing
to precisely identify those signs. The problem of continuous  to see what would happen if a more significant commu-
covering has various implications for both theory and prac-  nication were enabled; e.g., if a collision with another
tice. The analysis suggested in this paper can serve as an robot or with the wall would make the future steps bi-
ased againstthe (alleged) location of other robots/walls.

Fig. 14. A case of one wall for MAC/PC simulations. Fig. 15. A case of two walls for MAC/PC simulations.
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(a) MAC - time vs. population
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Fig. 16. A comparison of the deterministic MAC and the random PC algorithms. Times of complete coveragexo8@ 30

room, with one wall (“-x-" points), two walls (“-*-" points), and without walls (“-o-" points), by MAC- (a) and PC-simulated

(b) robots are plotted against the number of robots. Note the difference in scaleyabtbs. For the PC algorithm, the cover

times were averaged over 20 simulation runs, and the standard deviation is plotted (c). The simulator is accessible via the web
at http://www.cs.technion.ac.il/” wagner/pub/mac.html.

4. Finding a “short” universal traversal sequence of an-

gles. We have shown the existence of a polynomial-
length universal sequence of angles (UTSA) for grid-
ded polygons. However, we do not know how to find
one. The similar question for graphs is also wide open,
with the only exceptions (known to us) being paths and
cycles (Bridgland 1987; Bar-Noy et al. 1989). Intu-
itively, one may think that finding a UTSA in our case
is easier, since the robot is assumed to have a kind of
“compass,” while in the UTS problem for graphs, edges
are arbitrarily ordered.

cover a region. Counting the total amount of memory
used as marks on the floor, our MAC robots néx@)

an integer length, then a minimum covering with radius
r — Ois equivalentto a Euler pathin the graph, if one
exists. Hence both Hamilton and Euler paths are special
cases of the covering path. Thus we have shown that
the question, “Is there a®-covering of length¢ (G)|

in a grid-graphG,” is hard, while the other extreme,
“Is there a 0-covering of lengthE (G)| in a grid-graph

G," is easy; so how hard is the question “Is there an
r-covering of lengthL, |¢(G)| < L < |E(G)| ina
grid-graphG,” where O< r < 0.5?

5. The minimum memory neededto deterministically Appendix: Potential Difference across a
Uniformly Resistive Circle

memory ¢ being equal toA/a). Can an algorithm Proof of Proposition 1
be devised that covers a finite region with a constatonsider a circle of radiua and unit sheet resistance, and

amount of memory?

assume thata currentBfA per unitareais uniformly injected

6. Parametric step-coverage problemlf a graph is em- 14 agyler pathis a tour of the graph in which each edge is traversed exactly

bedded such that each edge is a zero-width line wibhce. A graph i€ulerianif such a path exists.
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into the circle. We seek for the average potential difference du 2r
(or “voltage drop”) between the center of the circle and its = o0 I(u,0)do
circumference, defined by T
du 5 Toudu
= — Ip = .
2na 0T T2

2
e 1 i0
¢ =G = 27 / @0 = @ ue))do. Note that the voltage drop across the ring due to the current
=0 flowing into the ring itself is proportional to the product of
this current, ¢((u + du)? — u?) = o(udu)), and the ring’s
Consider aring of radius and infinitesimal widthiu (see  resistance,(¢(du/u)), and hence itis ((du)?), and vanishes

Fig. 17). We know (from the theorem of divergence) that sinc@ integration. Thus, the total voltage difference can be found
there are no sources or sinks of current on the surface, all th¢ integrating along:

current injected into the circle should flow out across its

boundary and into the ring. This amount of currenkis . K K Tou Tou?
Let us denote by (u, 6) the centrifugal current flowing at ¢(0) — ¢(n) = / do(u)du = / —du = — .
ue'? in directiond, by d¢ (u, ) the voltage drop between the 2 4
inner and outer edges of an infinitesimal trapezoid of the ring,

and byd¢ (u) the average voltage drop across the ring. One O
can now write

u=0 u:O
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