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Abstract

Three methods are described for exploring a continuous unknown
planar region by a group of robots having limited sensors and no
explicit communication. We formalize the problem, prove that its
off-line version is NP-hard, and show a lower bound on the length of
any solution. Then a deterministicmark and cover(MAC) algorithm
is described for the on-line problem using short-lived navigational
markers as a means of navigation and indirect communication. The
convergence of the algorithm is proved, and its cover time is shown to
be the asymptotically optimalO(A/a), whereA is the total area anda
is the area covered by the robot in a single step. The MAC algorithm
is tested against an alternative randomizedprobabilistic covering
(PC) method, which does not rely on sensors but is still able to cover
an unknown region in an expected time that depends polynomially on
the dimensions of the region. Both algorithms enable cooperation
of several robots to achieve faster coverage. Finally, we show that
the two methods can be combined to yield a third, hybrid algorithm
with a better trade-off between performance and robustness.

1. Introduction

Exploring unknown terrain is an important issue in robotics.
The problem has already been investigated, and several meth-
ods have been suggested and implemented. Most of those
methods, however, rely on complex, expensive, and fragile
systems of sensors (e.g., odometers, infra-red sensors, ultra-
sound radar, or GPS), and extensive computational resources
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to run sophisticated mapping algorithms. In this paper, we
suggest a minimalist approach: we wish to achieve the goal
of covering with a minimum of sensing and computing, even
if some performance reduction is implied. Our first algo-
rithm uses a trail-laying mechanism and trail-following sen-
sors, while the second (randomized) one uses only collision-
detection sensors. The third method is a hybrid of the first two,
combined to achieve a better trade-off between performance
and robustness.

Existing methods for graph search (e.g., BFS and DFS)
cannot be directly used for our purpose, since no vertices or
edges exist in our setting; a robot can move to arbitrary points
on the continuum, while the BFS and DFS algorithms assume
a discrete and finite set of possible locations. Yet the approach
of “forward” and “backward” steps (used in DFS in a discrete
manner) can and will be used as an inspiration to our first
algorithm, in which the discretization is achieved on-line by
the robot.

Our first method, the deterministic MAC (mark and cover)
algorithm, is similar in spirit to the famousdepth-first search
(DFS) algorithm. It is a local rule of motion that attempts
to discover an uncovered point around the current location.
If such a point exists, the robot goes over there. Otherwise,
it backtracks to its previous location, using the marked trail.
We prove that this method guarantees a complete covering of
a connected regionR in no more than 2dA+rP

r2 e + 2 units of
time, whereA is the area ofR, P is its perimeter, andr is
the covering radius of the (circular) robot. In most real-life
cases,rP << A, and the cover time amounts toO(A/a),
wherea = πr2 is the area covered by a robot of radiusr in a
single step.
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Unfortunately, fully deterministic algorithms cannot be a
complete answer for realistic robotic problems, since both
sensors and effectors are extremely vulnerable to noise and
failures. As opposed to purely computational problems, the
environment of the robot is not known in advance, and even if
it were, it may change during operation. Another limitation
follows from the use of short-lived marks. The lifetime of
the marked trail severely limits the amount of area that can
be covered in a single shot of the deterministic MAC algo-
rithm. One way to tackle these problems is to make the robot
itself nondeterministic by introducing randomness into its be-
havior. This motivates our second algorithm for the covering
problem. We call this second method PC—probabilistic cov-
ering. The basic rule of behavior here is to make a short step
and then a random turn. Somewhat surprisingly, the expected
performance of the PC approach is not so bad; it covers a
convex region in average timeO(d(A/a) log(A/a)), where
d is the diameter ofR.

A third approach is a combination of the first two. We
show that a hybrid algorithm achieves an improved trade-off
between the performance of the first method and the robust-
ness of the second one.

Some related work has already been done in various areas.

1.1. Robotic Covering

In previous work (Dudek et al. 1991; Deng and Mirzaian
1996), a discrete problem of graph exploration was solved
using markers. More recently, the problem of covering a tiled
floor was addressed in two different ways: in Wagner and
Bruckstein’s (1997) work, the dirt on the floor served as mem-
ory to help the robot’s navigation, while in the works of Wag-
ner, Lindenbaurm, and Bruckstein (1996, 1997), a vanishing
trace was used for that purpose. Balch and Arkin (1994) ad-
dressed the issue of inter-robot communication in the context
of various missions, among themgrazing; i.e., visiting ev-
ery point of a region for purposes of object-fetching. There,
a reactive model of behavior was presented, and simulation
showed that detailed communication does not contribute too
much to the performance. Ciralt and Weisbin (1995) pre-
sented many experimental works for planetary exploration
by autonomous robots. Heuristic navigation methods were
given by Hofner and Schmidt (1995) for path planning of an
autonomous mobile cleaning robot, and by Kuipers and Byun
(1981) for a robot exploration and mapping strategy. How-
ever, no rigorous analysis was given in the above references.
Hert, Tiwari, and Lumelsky (1996) presented an algorithm for
exploration of an undersea terrain, using exact location sen-
sors and internal mapping. Practical implementations of cov-
ering algorithms have been demonstrated by Yaguchi (1996)
and Parker (1996). Yaguchi (1996) described a set of robots
that help clean a railway station, using magnetic lines on the
floor as guidelines. This method seemed to work well, but
was limited to premapped regions. Parker (1996) created a

cooperation of a team of robots by an explicit level of inter-
robot communication. Each robot could choose one of multi-
ple possible behaviors, according to its specific conditions. In
one of these behaviors, the robot played the role of a janitorial
service man by cleaning the dust around itself.

1.2. SLNMs: Short-Lived Navigational Marks

The idea of using marked trails for searching is inspired by
the Greek myth of Ariadne, the granddaughter of Zeus, who
used a thread to escape from Dedalus’s maze (Virgil 1971).
One way to mark a trail is by using odor, like the pheromones
used by various insects. Experiments with an insect-inspired
robot were reported by Russell (1995), where the robot had an
odor-marking and -detection system. Another way of mark-
ing is by heating the floor. According to several experiments
reported by Borenstein, Everett, and Feng (1996), the tem-
perature distributionT at a distanceδ from the trail and at a
time t after laying the trail can be approximated by

T (δ, t) = I (t)e−(δ/w)2
, (1)

whereI (t) is a time-variant intensity function of the thermal
path, andw is a constant. In a later work (Russell 1997), an
experimental study was reported that showed how a thermal
trail can be traced several tens of minutes after being marked.
In some cases, leaving a thread on the floor or marking it
otherwise, even temporarily, is not possible or is not suffi-
ciently accurate. In such a case, we can replace the marking
operation by similar “marks” in the robot’s memory, where a
map of the covered region is incrementally created. Such a
device, however, would need very accurate (i.e., expensive)
odometric or GPS sensors, as well as sophisticated methods of
error correction, like the method described by Borenstein and
Feng (1996) for correcting odometric errors by occasionally
using an external positioning system. Other researchers (e.g.,
Bessiere et al. 1995) used robot-placed landmarks to help path
planning in the presence of dynamic obstacles. In the current
work, however, we will use traces so that our robots can be
rather cheap and simple.

1.3. Randomization and Uncertainty in Robotic Tasks

Uncertainty is an inherent factor in any real-life action, in par-
ticular, one that relies on the information gained from sensors
and manipulations performed by actuators. One way to cope
with uncertainty israndomization—introducing a random se-
lection into the robot’s control. In the works of Erdmann
(1992) and La Valle and Hutchinson (1996), randomization
was used to (partially) overcome uncertainty in various robotic
tasks. In a sense, our PC algorithm is an extreme case of ran-
domization, whereas no sensors are used. The case of ran-
domized robotic covering (e.g.,the PC method discussed in
our work) is different, however, because the probability of a
point to be chosen as the next location of the robot depends on
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both the previous location and the shape of the region being
explored. Gage (1993) made a comparison between coor-
dinated and random-search strategies, based on simulations
and on a limited analysis of convex domains. In this paper,
we attempt to continue the effort using a rigorous analysis of
deterministic and random strategies.

1.4. Stochastic Coverage Processes

The rate of coverage of graphs by random walk has been
studied intensively (e.g., Aleliunas et al. 1979; Barnes and
Feige 1993; Broder et al. 1994). Representative results in this
context are the upper bounds ofO(mn) on the cover time of
a graph withm edges andn vertices, andO(mR logn) where
R is the resistance of the graph, assuming all edges to be 1-
Ohm resistors. On the other hand, coverage of continuous
domains is less investigated. The most comprehensive text
known to us is that of Hall (1988), where a coverage process
is considered as a sequence of patches whose centers comprise
a standard random process. This approach does not assume
any correlation between the locations of consecutive patches;
hence it is not directly applicable to robotics, where motion
has a significant cost. We attempt to improve the situation in
our PC approach, which is an extension of random walk from
graphs to the continuum.

1.5. Locating a Robot

The reason we suggest using external traces rather than mem-
orizing the path in the robot’s internal storage, is that the latter
method requires a precise positioning system, which is hard to
achieve. Neither odometric (“dead reckoning”) or common
GPS (Global Positioning System) methods are as yet suffi-
ciently accurate for an indoor small-scale application. (See
Borenstein and Feng’s (1996) work for an analysis of the ef-
fects of odometric errors on motion planning, and a method of
correcting them using an external positioning system.) In the
work of Enge and colleagues (1996), the precision achieved
by GPS so far is estimated by 8 m, which is far below the level
of precision required for covering indoor regions by robots of
radius 20–40 cm.

1.6. Off-Line Covering

An off-line version of the problem as well as approximation
algorithms for it are presented by Arkin and Hassin (1994).
The related (NP-hard) problem of the optimal watchman route
is to find the shortest path in a polygon such that every point of
the polygon is visible from a point of the path. This problem
is investigated by Chin and Ntafos (1986). The problem is
also NP-hard where the watchman has limited visibility; such
a problem is called “d-sweeper,” and is discussed by Ntafos
(1992).

1.7. A Decentralized Approach

The problem we address is different from those addressed in
other works in that we confine our robots to (at most) local
sensing, such that the group is a decentralized one, and adding
or deleting robots does not introduce a need to change the
protocol. Also we prove the convergence of our algorithms
and evaluate their performance by upper bounds on the cover
time.

The rest of the paper is organized as follows. In Section 2
we define the basic problems and terms, prove the hardness
of the off-line covering problem, and show a lower bound on
the time required by any solution. In Section 3 we describe
the MAC algorithm, prove its convergence, and analyze its
performance. Then, in Section 4 we describe and analyze the
PC algorithm for convex and nonconvex regions. Section 5
is devoted to the hybrid MAC + PC approach, and in Section
6 we show simulations of the three algorithms. Section 7
concludes with a discussion and some open questions.

2. Preliminaries

In this section, we define some basic terms to be used through-
out the paper, show that our basic problem is NP-hard, and
prove a lower bound on the time of coverage for any covering
algorithm.

A rule of motion is local if it relies on the information
available in the robot’s near neighborhood. Our problem is to
find a local rule of motion that will cause the robot to follow a
space-covering curve, such that every point of the given region
should be in some prespecifiedr-neighborhood of the robot’s
trail. Such a rule, if obeyed forT units of time, should lead
the robot to follow a piecewise polygonal curvez(t) defined
by the pointsz(1), z(2), . . . , z(T ), that coversa connected
planar regionR; i.e.,

R =
T⋃

t=0

Br(z(t)), (2)

whereBr(z) is the intersection ofR and a disk of radiusr that
is visible fromz.

A visible circle is defined in the following way:

DEFINITION 1. If z = (x, y) is a point andR is a region in the
Euclidean plane, then a visibler-circle aroundz is defined as

Cr(z) ,
{
z′ such thatL(z, z′) ∈ R and

∣∣z − z′∣∣ = r
}
,

whereL(z, z′) is the straight line betweenz andz′. In other
words, this refers to those points on the circle that are vis-
ible from z; we do not assume seeing through obstacles or
boundaries. Similarly,

DEFINITION 2. A visible openr-disk (or r-neighborhood)
aroundz in regionR is
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Br(z) ,
{
z′ such thatL(z, z′) ∈ R and

∣∣z − z′∣∣ < r
}
.

DEFINITION 3. An r-step path inR is a sequence of points
Z = z1, z2, . . . , zm such that

for all i, 1 ≤ i < m : L(zi, zi+1) ∈ R and |zi − zi+1| = r.

DEFINITION 4. A setR is r-path-connected if for any two
points zs, zd ∈ R there exists a finiter-step pathzs =
z1, z2, . . . , zm such thatzd ∈ Br(zm). In other words, each
point in R can be covered by somer-step path started from
any other point inR.

Note that a space-covering path (like the one we are looking
for) is related to two famous curves:

• The space-filling curve(Sagan 1994) is a continu-
ous one-dimensional curve that fills a two-dimensional
space. IfR is the 2-D space to be covered, then each
and every point ofR should be on the curve. Such a
curve is anr-step-covering path withr → 0.

• On the other extreme of this spectrum, we have theop-
timum watchman curve(Chin and Ntafos 1986), where
each point of a polygonal regionR should be visible
by some point on the curve. This is a space-covering
curve, but this time with a variable step size and with
covering radiusr → ∞.

Let us now define the problem we are going to deal with
in this paper:

DEFINITION 5. A step-covering (SC) problem:
Given: a real numberr and anr-path-connected setR.
Find: a sequence of pointsz1, z2, . . . , zT that are anr-step
path inR such that

R =
T⋃

i=1

Br(zi).

Such a problem is referred to as off-line if the setR is known
in advance, and as on-line if at timet , the only known part of
R is the neighborhood of the path traversed so far.

Our algorithms areon-line methods; i.e., they decide on
the next step without having the full details of the problem,
which in our case could be a complete map of the region.
Clearly, the on-line version of a problem is at least as hard as
the off-line one; hence, we first discuss the hardness of the
off-line SC problem, formally defined as follows:
Given: a real numberr, an integerm, and anr-path-
connected setR (not necessarily simple).
Question: is there a step path of lengthm that r-coversR?
Namely, is there a sequence of pointszt , t = 1, 2, . . . , m

such that

1. The sequencezt is anr-step path inR; i.e.,

∀t s.t. 1≤ t < m : L(zt , zt+1) ∈ R

and |zt+1 − zt | = r,

2. The regionR is covered by the path, i.e.,

∀z ∈ R, ∃t0 ∈ {1, 2, . . . , m} such thatz ∈ Br(zt0).

THEOREM1. Off-line SC is NP-hard.

Proof. We shall show that our problem is at least as hard as
the problem of finding a Hamiltonian path1 in a grid graph,
which is known to be NP-complete (Itai, Papadimitrious, and
Szwarefiter 1982). This purpose will be obtained by show-
ing that if one knows how to solve any instance of the SC
problem in polynomial time, then any given instance of the
Hamiltonian path problem can also be solved in polynomial
time. Assume that we get an instance of the Hamiltonian
grid-graph problem, made ofG(V, E) where the vertices in
V are grid points and the edges inE are grid lines, and we
are asked to find whether there is a Hamiltonian path inG.
We build an instance for SC by embedding the given graph
on a grid of size 1, and drawing a cross with edges of length
0.5 centered on each vertex. The regionR of the SC instance
will be the union of all the crosses (see Fig. 1).

We now claim that there is a Hamiltonian path inG if and
only if there is a 0.5-covering path ofR with exactly 2n − 1
points, wheren = |V |. To see it, consider the following
observations:

• If G is Hamiltonian, then the Hamiltonian path is also
a 0.5-covering path ofR with 2n − 1 points, which are
then original vertices plusn − 1 points in the middle
of traversed edges— recall that the grid size is 1 while
r = 0.5.

• Assume that there is a minimal 0.5-covering path ofR,
and denote it by the sequencezt , t = 1, 2, . . . , 2n−1.
Now observe that a minimal covering should visit each
vertex at least once; otherwise, it could be shortened.
Hence, by removing then − 1 nonvertex points from
the sequence, one gets a Hamiltonian path inG. See an
example in Figure 1. Hence, a path overn points can
cover a length of at most 2n, with this maximum ob-
tained only when then vertex points are visited. On the
other hand, 2n is exactly the size ofR; hence ann-long
0.5-covering path inR corresponds to a Hamiltonian
path inG. �

The theorem implies that finding an optimal covering path
is a hard problem, (unlessP = NP ). In addition, we can

1. A Hamiltonian pathis a sequence of vertices in a graphG such that there is
an edge between any two consecutive vertices, and each vertex ofG appears
exactly once in the path.
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Fig. 1. G (left), an instance of the Hamiltonian grid-graph problem, is transformed intoR (right), an instance of the step-
covering problem withr = 0.5. The Hamiltonian path inG (dashed line) corresponds to the 0.5-covering sequence inR
(dots), whose first and last covering circles are also sketched.

also show a lower bound on the length of any covering path,
independent of the algorithm used to create the path.

LEMMA 1. The number of points in a covering sequence of
r-circles, sayZ = z1, z2, . . . , zTc , such that|zi+1 − zi | ≤ r,
is bounded from below

Tc ≥
⌈

6π

4π + 3
√

3
(A/a) − 1

⌉
,

whereA is the region’s area anda = πr2—the area covered
by the robot in a single step.

Proof. In each step (except, perhaps, the first one), the robot
jumps a distance ofr, and hence (due to overlapping) adds
at most(

√
3/2 + 2π/3)r2 to the covered area. Thus, after

T points, the covered area is at mostST = (T − 1)(
√

3/2
+2π/3)r2+πr2. By equatingSTc toA, the lemma is implied.
�

REMARK 1. It is intuitively reasonable to assume that asr

decreases, the “quality of covering” improves; i.e., the amount
of overlap reduces. This intuition is made clear by the follow-
ing result from Kershner (1939). DefineN(r)as the minimum
number ofr-circles needed to cover a region of areaA. Then

lim
r→0

N(r) = (2π/
√

27)(A/a), (3)

and the minimum is attained in the “honeycomb” (hexagonal)
arrangement of the circles, obtained by tiling the plane with
congruent regular hexagons and circumscribing each hexagon
with a circle. Note that the eq. (3) result from Kershner (1939)
implies that, asymptotically,Tc cannot go below 1.209. . .

×(A/a), while Lemma 1 implies that foranyvalue ofr, Tc ≥
1.06. . . × (A/a).

In many practical situations, the on-line version of the SC
problem is more relevant than the off-line version, since an ef-
ficient on-line solution enables an autonomous robot to cover
a region without the need to be preprogrammed with a de-
tailed map. Other advantages of the on-line approach are the

ability to react to changes in the geometry and topology of the
environment, and the flexible mode of cooperation that can
only be achieved via the on-line approach, while the prepro-
gramming one is severely limited in this respect.

In this paper, we shall consider both adeterministiccov-
ering algorithm, in which the cover time is guaranteed, and a
randomized one, in which we bound the expected cover time
from above.

3. MAC (Mark and Cover): A Deterministic,
Trail-Based Algorithm for the On-Line SC
Problem

Consider a group of robots with very limited sensors that
cooperate to cover a continuous, bounded, connected region.
The robots have no means to calculate their locations or to
communicate with each other directly. Their only means of
communication are short-lived marks they draw on the floor
(e.g., heat or smell), which enable them to recognize a location
as “already visited.” The intensity of the mark enables the
robot to distinguish recently visited from previously visited
points. The task of the robot(s) is to cover the whole region
using the ability to follow a marked trail on the floor. If
an odometric sensor of high precision is available, visited
locations can be recorded in the robot’s memory rather than
marked on the floor. Our assumed robot covers a disk of radius
r around its center, and can move in an arbitrary direction
either in a “forward” manner, where a new segment is marked
down, or in a “backward” manner, at which time a previously
marked segment is followed in a direction opposite to the
direction of its marking. The robot can identify the direction
of the trail by its intensity—if a point was marked later than
another point, its mark will be stronger. Being atz, we assume
the robot to be able to coverBr(z)—an open disk of radiusr
aroundz, and to sense (e.g., see or smell) the status of covering
on Cr(z)— the boundary of the disk. For that purpose, the
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robot should be able to sense trails as far as 2r away fromz to
recognize a point onCr(z) as “uncovered.” It is also assumed
that the marked trails remain detectable during the execution
of the algorithm, an assumption that will later be relaxed in a
randomized version of the algorithm.

We now consider a reactive rule of motion such that a set
of robots that obey this rule will eventually cover the region
in the sense defined by eq. (2). The algorithm is called MAC
for “mark and cover.”

/* MAC—Mark and Cover */
/* r = covering radius */
Rule MAC(z: current location)
A) coverBr(z), the openr-disk aroundz;
B) if there is a pointz′ ∈ Cr(z) such thatz′ is yet uncovered
(i.e., there is no marked point inBr(z

′))
then
C) go toz′, while marking the linez → z′;

/* break ties by a heuristic */
else
D) if there is a pointz′ ∈ Cr(z) such that

the linez′ → z is marked
/* line direction is detected by intensity, see eq. (1) */
then /* backtrack */

E) go toz′;
F) else STOP (R is covered).
end MAC.

See Figure 2 for an example.

Fig. 2. Seven steps of the MAC procedure (bold arrows), using
the “stay straight” heuristic to resolve ties. Note the step back
fromZ5 toZ4, due to the total coverage of ther-circle around
Z5.

The idea behind this algorithm is similar to a depth-first
search (DFS): in a “forward” motion (steps B and C), the
robot finds a new, uncovered area and covers it. In the pro-
cess, it marks the path from the previous point to the new
point. The direction of this mark can later be recognized,
since if the linez → z′ has been marked, the intensity at
z′ will always be stronger than atz. Once no new point
exists in the near neighborhood (i.e., on the circleCr(z)),
the robot “backtracks” using the marked path (step E), or, if
no uncovered point nor backward mark exist aroundz, the
robot finally stops (step F), being aware that its mission has
been completed. Note that the robot should be able to sense
trails as far as 2r away to recognize a point as “uncovered” in
step B.

As for the heuristic in step C, we experimented with the
following three heuristics for breaking the tie:

Random. Choosez′ at random from the uncovered points on
Cr(z).

Peeling/Milling. Choose the uncovered pointz′ which is
“rightmost” with respect to the line(zt , zt−1). Then,
if the robot starts on a boundary point, the uncovered
region is “peeled” from the outside inward, similar to
the process of Wagner and Bruckstein (1997). Starting
the same process from an internal (nonboundary) point,
it will “grow” a clean area around it in a spiral process
of milling.

Stay Straight. Keep going straight, as long as it is possi-
ble according to the MAC rule. This approach has the
advantage of saving turns, thus reducing time and me-
chanical degradation in a realistic robotic setting.

Judging from our (limited) simulations, all three heuristics
seem to have similar effects on the performance.

In the sequel, we show that the covering mission is indeed
achieved by the algorithm, and we then analyze its timing
performance.

3.1. Performance Analysis of the MAC Rule

Assume that the robot has stopped at timeT , and let us call
the points where the robot has stopped, i.e., the sequence
z(1), z(2), . . . , z(T ), vertices, and the lines that were marked
in one time or anotheredges. It is clear that the graph
G(V, E), whereV are the vertices andE are the edges, is
connected, since upon the creation of a new vertexz′ (step
B), an edge is always being marked (step C) that connectsz′
to the rest of the graph. Let us first show that each edge in
G is visited exactly twice during the execution of the MAC
algorithm.

LEMMA 2. Under MAC, a marked segmentz → z′ is visited
exactly once in each direction.

Proof. The segmentz → z′ may be visited either upon de-
tectingz′ as a new point, at which time the mark is laid on
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the segment, or in the course of backtracking fromz′ to z.
Once the segment is marked, itsr neighborhood is consid-
ered “marked” (by step B); hence, the only way to go over it
again is by backtracking. But backtracking can happen once
only, since after it happens once, the neighborhood is covered
and won’t be entered again. Hence it is the second (and last)
traversal of this segment. �

Using the above result, we now proceed to show that the
time of coverage can be bounded from above by a geometric
function ofR. To derive this result, we need an upper bound
on the amount of area added toR by extending it outward.

LEMMA 3. If a planar regionR is expanded by a strip of
width r to all directions (see Fig. 3), then its area increases by
at mostr(P + πr), whereP is the total perimeter ofR.

Proof. Let us first assume thatR is a simply connected do-
main, and its boundary is defined byα : [0, P ] → R2; a
planar, regular, simple, closed curve, parameterized byα, the
arc length along∂R. Now consider a dwarf going along the
boundary in the positive direction (i.e., with the inside to his
left); an infinitesimal straight step isds long. Then the in-
finitesimal part of the expanded area is just a trapezoid with
one base equal tods and the other baseds(1+ rk(s)), where
k(s) is the local curvature ofα(s). See Figure 4.

The increment in the strip’s area is at mostr(ds

+rk(s)ds/2 + o((ds)2)), and henceS, the total area of the
strip, is bounded as follows (terms dependent on(ds)2 can be
ignored asds → 0):

S ≤
P∫

s=0

r(1 + rk(s)/2)ds

= r




P∫
s=0

ds + r

2

P∫
s=0

k(s)ds


 (4)

= r(P + πr).

Fig. 3. Anr-expanded shape.

Fig. 4. An infinitesimal part of ther-wide strip aroundR
is approximated as a trapezoid (bold line) with arear(ds

+rk(s)ds/2 + o((ds)2)).

The last equality is obtained from the rotation index theorem.2

Note that inequality (4) also holds for a nonsimple region if
P is the total perimeter, including the perimeters of the holes
in R if there are obstacles in it. �

REMARK 2. Inequality (4) becomes an equality ifR is con-
vex, and then it is a case of the Steiner-Minkowski formula
for polytopes (see, e.g., Berger 1987, p. 18).

Now we use Lemma 3 and a geometric observation on the
MAC process to show an upper bound on the number of points
visited in MAC.

LEMMA 4. If a regionR has areaA and perimeterP , then
the graphG(V, E) whose vertices are the visited points and
whose edges are the lines marked by the MAC algorithm has

at most 2
√

3A+rP+πr2

r2 edges.

Proof. According to the algorithm, a point can never become
a vertex if it is less thanr distance from any existing marked
point. That is, if(z, z′) is an edge inE, then no third vertex
of V can be withinBr(z)

⋃
Br(z

′). (At this point we ignore
the boundaries ofR; this will be fixed in the sequel.) Hence,
if we draw a rhombus made of two(30◦, 120◦, 30◦) triangles
around each edge inE, no two rhombuses will intersect; oth-
erwise (if two rhombuses do intersect) it is implied that a third
visited point exists in ther vicinity of a vertex of the rhombus.

See Figure 5 for an example.
The area of such a unique quadrilateral region isr2/2

√
3,

2. The rotation index theorem (see, e.g., Do-Carmo 1976, p. 396) says: Ifα :
[0, P ] → R2 is a plane, regular, simple, closed curve, then

∫ P
0 k(s)ds = 2π ,

wherek(s) is the curvature ofα(s) and the curve is traversed in the positive
direction (i.e., with the inside to the left of the walker).
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Fig. 5. Four steps of the MAC procedure (bold arrows), the
covered area (dashed line), and the unique area around each
edge (gray rhombus). Note that only the circles around the
stopping points are covered, not those around the edges; for
example, the areas is as yet uncovered in this case. Also
note that an angle between two edges in the path cannot be
smaller than 60◦; hence all rhombuses are disjoint.

so if we had a region with no boundary (e.g., a torus or a
sphere), we would have that

|E| ≤ 2
√

3A

r2
.

However, in most realistic situations there are some additional
edges near the boundary ofR; the number of such edges can
be bounded from above by assuming that the regionR has
been expanded by a strip of widthr. The area of such a strip
does not exceedS = r(P + πr), as is implied by Lemma 3
above. Hence, we get

|E| ≤ 2
√

3
A + rP + πr2

r2
. (5)

�

REMARK 3. The weight of the perimeterP in eq. (5) may
become significant; for example, if the area has the shape of
an extremely acute triangle, the number of vertices may be
arbitrarily large, although the area ofR is bounded. Another
extremal example is a fractal shape (i.e., bounded area but un-
bounded perimeter) where the angles are not too small but the
visibility is limited to a small area due to the infinite number
of corners.

So far, we have shown that the cardinality of the edge set is
bounded from above, and each edge is traversed twice; hence
the algorithm should eventually stop. Let us now show that
upon termination, the vertices of the graph are indeed a cover
of the regionR in the sense of eq. (2).

LEMMA 5. The setz1, z2, . . . , zT of vertices defined by the
MAC algorithm covers the regionR; i.e.,

R =
T⋃

i=1

Br(zi).

Proof. Assume, on the contrary, that upon termination there
still exist uncovered points inR. Considerzc, the uncovered
point that is closest to a point of the setV , say tozi . Now
the distance|zc − zi | cannot be less than or equal tor, or
otherwise no backtracking fromzi was possible (i.e.,zc should
have been detected during one of the visits tozi). Let us
denote|zc − zi | = r + ε with ε > 0; however only anopen
r neighborhood ofzi is covered. Hence, there must be an
uncovered point inR that is closer to the setV thanzc (e.g.,
a point on the lineL(zi, zc) that lies in distancer + ε

2 from
zi), in contradiction to our assumption. �

Now, as the edge set ofG is bounded and each edge is tra-
versed twice, one can show thatT , the cover time, is bounded,
too:

THEOREM2. The time needed to cover a regionR with area
A and perimeterP by the MAC algorithm, denotedT MAC,
is bounded as follows:

2

⌈
6π

4π + 3
√

3
(A/a) − 1

⌉
≤ T MAC ≤ 2

A + rP + r2

r2
.

Proof. The robot goes over an edge per unit of time. Accord-
ing to Lemma 2, each edge is traversed exactly twice, and
from Lemma 4, we know that the number of edges is bounded

above by 2A+rP+r2

r2 . Hence, the upper bound results. For the
lower bound, we first apply Lemma 1 for a lower bound on
the number of points (i.e., vertices inG) before covering, and
then use the fact that the graphG(V, E) is connected; hence
there are at least|V |−1 edges inE, each of which is traversed
twice. �

REMARK 4. Our algorithm is “nearly optimal” in the sense
that its covering time does not exceed a constant times the
minimum possible covering time by any robotic cleaner with

radius r, which is
⌈

6π

4π+3
√

3
(A/a) − 1

⌉
, as was shown in

Lemma 1 above.

REMARK 5. Our analysis gives upper and lower bounds, but
the exact time of covering depends on the number of vertices
generated in the process, which in turn depends on the start-
ing point(s), the shape of the region, and the heuristic used
in step C of the algorithm to choose the next point among
several uncovered points inCr(z). In the course of our simu-
lations, we experimented with several heuristics for breaking
the tie; namely, the “random,” the “peeling/milling,” and the
“stay straight” approaches that were explained in the previ-
ous subsection. According to our simulations, there is no
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great difference in cover time between the heuristics. Hence,
we believe that in practice the best approach is the third one,
which is more efficient due to the reduced number of turns.

REMARK 6. It is quite easy to see that the path obtained by
MAC is not necessarily optimal (i.e., shortest). An optimal
path may be found if the whole map is given; such a problem
is an off-line problem (as shown above, even this problem
may be hard to solve). However, as shown by Theorem 2,
the on-line path achieved by MAC when only local data is
available is not longer than a constant times the optimal path;
hence, a MAC solution has a property known as a constant
competitive ratio.

REMARK 7. The trace resulting from a run of the MAC algo-
rithm can serve as a kind of roadmap to the unknown region.
By counting steps, the robot(s) may put (at every node dur-
ing the backtracking stage) the path length and maybe other
information on the subtree, which may be useful for the next
robots/people to come. In this way the robot contributes im-
plicitly to a global plan, without being aware of anything be-
yond its own part.

3.2. Multi-Robot MAC: Collisions and Cooperative
Covering

There is a good potential for cooperation when several robots
apply the MAC rule, and there is no need for additional hard-
ware or communication protocols. As can be easily seen,
collisions are not a problem under the MAC protocol (assum-
ing the hardware is not vulnerable to bumps), since a robot
can consider its fellow as a “wall.” Still, some performance
degradation is likely to occur if too many of the robots are
cluttered in a small neighborhood. Also, there is no danger
of deadlock, since a robot never “waits”—it either goes back-
ward or forward, (or makes a final stop if neither kind of step
is possible). Recall that according to the rule, a marked line
never intersects either itself or another robot’s thread; hence,
several robots will perform at least as well as one. See Fig-
ures 6 and 7.

However, the exact degree of speedup is dependent on the
geometry of the region and the initial location of robots. The
basic problem is that if several robots are initially located very
closely, one may put its thread around another and block it,
thus reducing the speedup ratio. We suggest two possible
ways to overcome the perpetual blocking problem:

The deterministic method. As an initial step, all robots
should make a tour around the region and distribute
equidistantly along the boundary. Then each robot
should follow the MAC rule, and in case of a tie (i.e.,
several possible continuations to uncovered points),
choose to go to the point that is closest to its starting
point. This way, each robot first takes care of its neigh-
borhood before interfering with others, thus postponing
blockages to a later time.

Fig. 6. Four robots using the MAC algorithm in four rooms:
preliminary stage.

Fig. 7. Four robots using the MAC algorithm in four rooms:
final stage. Note that their traces are four separate trees.
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The randomized method. Once a blockage is created, a
blocked robot, rather then going into “rest” state, can
start walking around randomly until it finds an uncov-
ered area. This kind of step, however, should be taken
only if all area is not yet covered; for this awareness,
we’ll need some limited form of global communication.

3.3. Drawbacks of MAC

The MAC algorithm has two important advantages: it is ef-
ficient in time, and aware of completion. However, it has
its drawbacks, such as its dependence on sensors and traces,
which results in a sensitivity to noise in both sensors and
the environment. Another shortcoming is that multi-robot
cooperation is rather limited unless the geometry is known
is advance. In the next section, we propose a comple-
mentary approach: an almost sensorless covering algorithm,
which uses random decisions to guarantee coverage with high
probability.

4. PC (Probabilistic Covering): A Randomized
Approach to the Covering Problem

In this section, we consider a robot that acts without any sen-
sory inputs; it makes a step, chooses a random new direction,
and then makes another step. Clearly, the average perfor-
mance of this method is lower than MAC, but it has the advan-
tage of being sensorless, so it can serve as a complementary
approach to the deterministic one. In the sequel we shall refer
to ther disk aroundz by Br(z), and to ther circle aroundz
by Cr(z). We shall also denote byµ(z) the maximumx such
thatx ≤ r andB2x(z) ∈ R. Actually, calculatingµ(z) is the
only place where we need sensors in the system. Formally,
the rule of motion is defined as follows:

/* PC - Probabilistic Covering */
/* r = covering radius */
Rule PC(z: current location)
A) coverBr(z);
B) setµ(z) = min

{
r, max(B2r′ (z)⊂R)

{
r ′}} ;

/* µ(z) is half the maximum radius */
/* (not exceedingr) */
/* of a circle aroundz within R */

C) choose a random neighborw from Cµ(z)(z);
D) go tow;
end PC.

See Figures 8, 9, and 10 for examples of the process.3

As opposed to the previous algorithm, PC has no stopping
criterion. In practice, one can use the analytical bound on
the expected cover time (to be derived in the sequel) as an
estimation of the time at which the robot can be stopped. Note
that if Cr(z) intersects the boundary ofR, then the duration

3. A JAVA simulator of the PC process is available on the web at
http://www.cs.technion.ac.il/˜ wagner/pub/mac.html.

Fig. 8. A lonesome PC robot; the gray area has not yet been
covered.

Fig. 9. Four PC robots working together. A fellow robot is
considered as an obstacle; hence no collisions should occur
according to the PC rule.
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Fig. 10. A grid-polygonR, partitioned into unit squares, and
a possible sequence of PC steps that take random continuous
locationsz1, z2, z3, thus covering the dashed circles. In this
case,µ(z2) > µ(z3), and hence the step size at timet = 2 is
greater than at timet = 3. The dashed circles designate the
covered area. Note that since the covering radius is always
21/2 while the grid size is 1, it is sufficient to visit all squares
to guarantee a coverage ofR.

of a PC step shall be shorter than one unit of time, since the
step length isµ(z) < r. In each step, the robot scans around
to see if a boundary exists within distancer; hence, we shall
assume that the time spent atz is proportional to(µ(z))2,
whereµ(z) is half the maximum radius not exceedingr of a
circle aroundz within R. Thus, the time spent in traversing the
sequence ofk pointsz1, z2, . . . , zk is equal to

∑k
i=1 µ2(zi),

wherezi+1 = zi + µ(zi)e
jθi , θi being the angle chosen at

the ith step. The reason for making the step length half the
possible maximum is to avoid the chance of the robot going
to ∂R, where it will get stuck forever sinceµ(z) (i.e., the step
size) vanishes on the boundary.

We model the robot as a point that covers a circle of radius
r around itself. Because of the random nature of PC, no
deterministic bound can be stated on the cover time; we shall,
however, draw some bounds on theexpectedcover time and its
variance, and both will be given as functions of the electrical
resistance of a conductive material in the shape ofR. This
resistance can be further related to the geometrical properties
of the robot and the region. More specifically, we prove the
following:

Expected time of complete coverage E
[
T PC

]
. The ex-

pected time until full coverage ofR (a unit-grid polygon
of sizen by a PC robot that covers a radius of

√
2 in

each step), is bounded by

nρ ≤ E
[
T PC

]
≤ 2nρ logn,

whereρ is the electrical resistance ofR (assuming a
material of unitsheet resistance, to be defined in the
sequel). Note that the resistanceρ = ρ(R) can some-
times be bounded in terms of the geometrical properties
of the shape, and can always be numerically approxi-
mated. For example, ifR is a

√
n × √

n square, then
its resistance isO(logn), when measured between the
bottom-left and a top-right squares. In case of ana × b

rectangle witha << b, ρ = O(b/a). Recall from
Lemma 1 thatany covering path should have at least⌈

6π

4π+3
√

3
(A/a) − 1

⌉
steps.

Variance in the Cover Time. The variance in time of com-
plete coverage,V

[
T PC

]
, is bounded from above:

V
[
T PC

]
≤ 211nρ,

which yields an upper bound on the standard deviation
of the cover time:

σ
[
T PC

]
=

√
V

[
T PC

] ≤ 32
√

2nρ.

Our results can be extended to more general shapes, but
this involves various types of cumbersome details that will be
omitted in this paper. Note that the above results are achieved
without using any sensors except collision detectors (the robot
cannot distinguish “tiles” or “grid squares”), and thus have
almost no vulnerability to noise. They can be used as is, or
combined with a sensor-based algorithm to achieve a trade-off
between cover time and coverage guarantee.

4.1. Analysis of the Cover Time by PC

There are a wealth of results in the literature for cover times
by random walk on graphs, a sample of which was mentioned
in the introduction. Our case is different, however, since the
robot can be in any point in the continuum of the region,
rather than being bounded to a finite set of such points. One
may wish to partition the region into squares, considering a
random walk on a graph with the set of squares as its vertex set;
however, this will not do, because the transition probabilities
are not constant; rather, they depend on the precise location of
the robot within a square.4 Hence, we shall use continuous
arguments to analyze the process.

We first observe that the PC process is a strong Markov
process, since the probability of visiting a location in the
next step depends only on the current location but not on
earlier history—the robot has no memory at all. For such
a process, it was proved by Matthews (1989) that ifQ =
{q1, q2, . . . , qn} is a collection of subsets of a setR, then
E [T (q1, q2, . . . , qn)], the expected time for visiting some

4. In other words, the process is nottime homogeneous.
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point of every subset inQ (starting from anywhere inR) is
bounded as follows:

hmax ≤ E [T (q1, q2, . . . , qn)] ≤ hmax

n∑
i=1

1/i, (6)

where

hmax = max
x∈(R\Q),1≤i≤n

{hi(x)} ,

andhi(x) is the expected time to first reach subsetqi upon
starting fromx ∈ R. Let us now assume thatR is partitioned
into a set of unit squares,S = {s1, s2, . . . , sn}. This partition
is not known to the robot, but will serve us in our analysis. To
establish bounds on the average cover time of the PC process,
we further observe that (since the robot’s covering radius is
r = √

2) if the robot has visited all then squares inR, then
R is totally covered. See Figure 10 for an example.

Clearly, if a robot is located anywhere within such a square,
the whole square is covered (actually, some of the neighbor
squares are also partially covered, but this does not harm our
upper-bound result). Thus, visiting all the small squares is
sufficient to guarantee a full coverage ofR. On the other
hand, to coverR starting from any point in it, the robot should
make, at least once, the tour between the two farthest squares
in R. Let us define thehitting time(also known as theaccess
timeor first-passage time) from a pointx ∈ R to a squaresj ,
denotedhj (z), as the expected time of a PC process that starts
atz and ends upon first reaching a point in squaresj . We also
defineC(x, y), theeffective commute timebetween pointsx
andy, as the sumhs(x)(y) + hs(y)(x), wheres(z) stands for
the unit square that includesz. It is thus implied by eq. (6)
(using

∑n
i=1(1/i) < 2 logn) and the above observations that

the expected cover time ofR can be bounded:

1

2
max
x,y∈R

{C(x, y)} ≤ E
[
T P C

]
≤ 2(logn) max

x,y∈R
{C(x, y)} .

(7)

To find the maximum effective commute timeC(x, y) in R,
we now show that this time is proportional to the product of the
number of squares inR and the electrical resistance between
x andy, to be defined in the sequel. The following lemma is,
in a sense, a continuous analog to the work of Chandra and
colleagues (1997), which related the hitting time of a random
walk on a graph with its electrical resistance, considering each
edge as a 1-Ohm resistor.

LEMMA 6. C(x, y), the effective commute time between
pointsx andy in R, obeys the following equation:

C(x, y) = nρ(x, y),

wheren is the area ofR andρ(x, y) is the electrical resistance
between square pointsx andy, assumingR to be made of a

uniform material with unit sheet resistance.5

Proof. Let us denote the maximum step size byr. In a step,
the PC robot selects a random angle and goes in that direction.
The length of the step isµ(z), half the maximum radius not
exceedingr of a circle aroundz within R. As explained
before, we assume the time spent atz to be(µ(z)/r)2, which
is one unit in an internal point ofR (i.e., whereµ(z) = r), and
less near the boundary, whereµ(z) < r and steps are shorter
(see Fig. 10). Ifz /∈ sj , then the expected time to reach square
sj from z is just the average of the step length plus the access
time over aµ(z) circle aroundz; i.e.,

hj (z) = (µ(z)/r)2 + 1

2π

2π∫
θ=0

hj (z + µ(z)eiθ )dθ, (8)

wherez + µ(z)eiθ refers to a point at distanceµ(z) from z

and angleθ to thex axis, in the complex notation. Clearly, if
z ∈ sj , thenhj (z) = 0.

Now considerR as a flat surface of a uniformly resistive
material with unit sheet resistance, and assume that a current
of I0 = 4/r2 Amperes (A) per unit of area is uniformly in-
jected intoR, and 4n/r2 A are taken fromR via the squaresj .
Let us also denote the electric potential at pointz relative to
squaresj by φj (z). Since there are no current sources within
R, we know from the divergence theorem (see, e.g., Kaplan
1984, p. 319) that the amount of current entering the boundary
of R should equal the current exiting through it (i.e., the total
current through the boundary should vanish). Due to sym-
metry and uniformity of the resistance, the average potential
around a circle of radiusµ can be calculated:

PROPOSITION1. The average potential difference between
the center and the circumference of a circle of radiusµ on a
uniform surface with unit sheet resistance, into whichI0 A of
current are uniformly injected per unit area, is

φ(µ) − φ(0) , 1

2π

2π∫
θ=0

(φ(µeiθ ) − φ(0))dθ = I0µ
2

4
.

The proof of Proposition 1 is deferred to the Appendix.
ChoosingI0 = 4/r2, one getsφ(µ) − φ(0) = (µ/r)2, and
hence (writingµ for µ(z) andφj (z) for the potential atz when
the potential in squaresj is kept at zero):

1

2π

2π∫
θ=0

(φj (z) − φj (z + µeiθ ))dθ = (µ/r)2,

5. Thesheet resistanceof a material is defined as the voltage across a square
of the material caused by one unit of current (i.e., 1 Ampere) that is flowing
between two parallel edges of the square. The sheet resistance is commonly
expressed in units of Ohms per square.
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or

φj (z) = (µ/r)2 + 1

2π

2π∫
θ=0

φj (z + µeiθ )dθ. (9)

From the equivalence of eqs. (8) and (9), and the uniqueness6

of the expectation functionhj (z), we see thathj (z) is equal
to the potentialφj (z) if 4r−2 units of current are injected
into each unit of area, and 4nr−2 units of current are taken
from squaresj , which is held in potential 0. In a similar way,
one can show thathi(z) = φi(z), if 4/r2 units of current
are injected into each unit of area, and 4n/r2 units of current
are rejected fromsi . Now if we reverse the direction of all
currents in the second case, we find thathi(z) = −φi(z), if
4/r2 units of current are taken from each unit of area acrossR,
and 4n/r2 units of current are injected intosi . Due to linearity
of resistive electrical systems, we can superpose both sheets
together, thus making all currents cancel each other, except
the 4n/r2 A injected atsi and taken fromsj . This, together
with Ohm’s law,7 implies thatC(x, y) (the effective commute
time between pointsx andy) obeys

C(x, y) = hs(y)(x) + hs(x)(y)

= φs(y)(x) − φs(x)(y)

= 4n

r2
ρ(x, y), (10)

wheres(z) is the square includingz andρ(x, y) is the elec-
trical resistance between pointsx andy in R. This resistance
is measured as the potential difference betweenx andy while
injecting a 1-A current into one square, says(x), and taking
it from s(y).

Substitutingr = √
2 in eq. (10) and considering the fact

that superposing the two sheets implies half the original re-
sistance yields the lemma. �

We now combine the above results to obtain the following
theorem.

6. The functionhj (z) is uniquely determined by

hj (z) =
∞∫

t=0

t · Prob
{
squaresj is reached fromz in a time in(t, t + dt)

}
dt

=
∞∫

t=0

t

·



∞∑
k=0

1

(2π)k

2π∫
θ1=0

2π∫
θ2=0

· · ·
2π∫

θk=0

1t (θ1, θ2, . . . , θk)dθ1dθ2 . . . dθk


 dt,

where1t (θ1, θ2, . . . , θk) = 1 if the sequence of anglesθ1, θ2, . . . , θk leads
from point z to (some point of) squaresj in a time in (t, t + dt), and 0
otherwise.
7. Ohm’s law says that the voltage drop between two points is equal to the
product of the current flowing between the points and the point-to-point
resistance.

THEOREM3.

nρ ≤ E
[
T PC

]
≤ 2nρ logn,

wheren is the size ofR andρ, its maximum resistance defined
asρ = maxx,y∈R {ρ(x, y)}.
Proof. Immediate, by taking maximum on Lemma 6 and
substituting in eq. (7). �

A corollary is implied for a square room:

COROLLARY 1. If R is a squarea × a room, then

c1a
2 loga ≤ E

[
T PC

]
≤ c2a

2 log2 a,

wherec1 andc2 are small constants.

Proof. (Sketch) We use the fact that the resistance of a square
is2(loga).8 Then we also note that for ana×a room,n = a2,
which, substituted into Theorem 3, implies the corollary.�

Note that the upper bound on the expected cover time in
this case is only log2 a times the optimal possibleO(a2).

4.2. An Upper Bound on the Variance ofT PC

For our results to be useful, we now show that the variance of
the cover time, denotedV

[
T PC

]
, is also bounded from above

and hence there is only a limited spread of the covering time
around its average. It has been proved by Aldous (1991) that
the variance in the cover time of a setS is at most constant
times the expected time of covering the last item in the set:

V
[
T cover ofS

]
≤ c0 · E

[
T cover of the last item inS

]
,

whereco is a constant9 less than 210. Applying it to our case,
we can use the maximum access time as an upper bound to
the cover time of the last item (i.e., a yet-unvisited square), so
we get

V
[
T PC

]
≤ 210 max

x,y∈R
{C(x, y)} ≤ 211nρ,

which implies that the standard deviation is at most 32
√

2nρ.

4.3. A Universal Traversal Sequence of Angles

Interestingly, we can prove the existence of a deterministic
(derandomized) version of the PC algorithm that is also sen-
sorless and guarantees covering within a polynomial number

8. It is of interest to mention a lumped circuit analogy: a squarem × m

mesh of 1-Ohm resistors is known (Chandra et al. 1997) to have resistance
2(logn).
9. This value of the constant does not appear in Aldous’s (1991) work, but
can be calculated based on the analysis done there.
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of time units. This process, in our opinion, is mostly of theo-
retical value, as practically, one would like to use the sensor-
less PC or the sensor-based MAC algorithm, which achieve
much better times. Although the process described in this
subsection is less efficient than the two previous algorithms,
it still seems to carry a theoretical insight as an interesting
case of derandomization.

Let us define a universal traversal sequence of angles
(UTSA) for a family of planar setsF as a sequence of real
numbersα = α1, α2, . . . , αt , . . . , all in [0, 2π), such that
if a PC robot takes the turnαt in stept , it is guaranteed to
cover any shape fromF, independent of the starting point.
In other words, the robot starts at an arbitrary pointz1 and
follows the rulezi+1 = zi +µ(zi)e

jαi , αi being theith angle
in the UTSA. In this section, we shall show that ifF is the
set of alln-size unit-grid polygons, (i.e., polygons made of
n attached 1× 1 squares), then such a sequence exists and
has a cover-time polynomial inn.10 For this purpose, we
follow the probabilistic method invented by Erdös and used
by Aleliunas and colleagues (1979) to prove that a sequence
of lengthO(n4 logn) exists that covers any edge-labeledk-
regular graph11 with n vertices.

THEOREM 4. There exists a sequence of angles that cov-
ers, within time 4n4 logn, any rectilinear gridded polygon of
sizen.

Proof. First let us observe that ifF is the set of alln-size unit-
grid polygons, then|F| < 2n2

(since all polygons of sizen can
be enclosed by ann×n square). We next apply Theorem 3 to
obtain an upper bound oft = 2n2 logn on the expected cover
time of any polygon inF, using the fact that the resistance
ρ obeysρ ≤ n for such polygons. Hence, after 2t units of
time, the probability of complete coverage is at least 1/2,12

and aftermt units of time, it is at least 1− 2−m. On the other
hand,

Prob {∃R ∈ F s.t. R is not covered by a random

sequence at timemt}
≤

∑
R∈F

Prob { R is not covered by a random sequence

at timemt }
≤ 2−m |F| ≤ 2n2−m.

Hence, if we choosem > n2, then the probability for existence

10. Note that in our setting, the time taken by a sequence of steps
z1, z2, . . . , zk is not necessarily equal tok, the number of steps; rather,
it is equal to

∑k
i=1 µ(zi )

2.
11. A graph isk-regular if exactlyk edges emanate from every vertex. It is
edge-labeledif the edges emanating from each vertex are numbered in some
order.
12. This is due to Markov’s inequality (Motwani and Raghavan 1995, p. 46),
which says that ifY is a nonnegative random variable, then for allε ∈ R+
it holds that Prob{Y ≥ ε} ≤ E[Y ]

ε . Substitutingε = 2E [Y ], one finds that
after twice the expected cover time, the probability of full coverage is at least
1/2.

of a sequence that does not cover all polygons inF within an
mt period is less than one; i.e., there exists such a sequence
that does guarantee covering of all polygons inF, and hence
there is a (2n4 logn)-time sequence of angles that is a UTSA
for F. �

Note that finding a universal sequence of lengthO(4n) is
easy: just traverse the ternary tree of heightn with the starting
point as the root and with four neighbors to each vertex, each
representing a turning angle from{0, π/2, π, 3π/2}. Back-
tracking is possible thanks to the “compass” that our robot
has. Clearly, not all steps will be of lengthr, because of walls
and obstacles, but eventually all squares will be reached.

4.4. An Example

As an example, consider a square room of 2-m sides and a
robot of 40-cm radius. We havea/r = 5 and 2.5 ≤ ρ ≤ 5,
so m = 24 andn = 176. Substituting in Theorem 3, one
getsE [T ] ≤ 10,976. Assuming a robot’s speed of 10 cm/sec,
10,976 steps take about 732 min. With the MAC algorithm
and the same setting, our bound is 90 steps or 6 min. In
reality, a single MAC step is much slower than a single PC
step, since the MAC robot has to spend enough time along
the path to properly mark and sense it. It should also be noted
that our upper bound onE

[
T P C

]
is probably loose, since

simulations show (for the above case) an average cover time
of 234 steps with standard deviation of 74 steps, which, in the
above setting, amounts to an average cover time of 15.5 min,
i.e., about 2.6 times the MAC period. A plot of the average
cover time and standard deviation against the number of robots
is depicted in Figure 16.

5. MAC-PC: A Hybrid Algorithm

The MAC algorithm has the advantages of a guaranteed cover-
age within timeO(A/a) and awareness of completion, but is
vulnerable to physical problems, e.g., vanishing of the traces
with time and sensory errors. The random PC procedure, on
the other hand, is almost free of dependency on sensors (an
exception is its need to identify a collision), but has no aware-
ness of completion and is slower: its average cover time is
at mostO(Ad/a) for region of diameterd. In this section,
we suggest a combination of the two methods that gives a
reasonable trade-off between performance and robustness.

One way to combine the algorithms is to have the robot
follow a random PC procedure; i.e., a new direction is selected
at random in each step, but the radius of coverage (and step
size) isr ′ > r, using the (short-lived) marks to cover a circle
of such an extended radius. Formally, the rule of motion is
similar to our previous PC algorithm:

/* MAC-PC - Semi-Probabilistic Covering */
/* r = covering radius; */
/* r ′ = extended coverage radius, */
/* depending on the trace’s lifetime */
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RuleMAC-PC(z: current location)
A) coverBr ′(z) by applying a local MAC process fromz;
B) choose a random neighborw from R ∩ Cr ′(z);
C) go tow;
endMAC-PC.

See Figure 11 for an example.
Note that each step of the MAC-PC algorithm takes

O((r ′/r)2) units of time. Hence, using Theorem 3 (but
this time with squares of sider ′/

√
2 rather thanr/

√
2), the

expected time to cover a region by the hybrid algorithm is
bounded from above:

E
[
T MAC-PC

]
= O

(
ρ(r/r ′)A

r
′2 (r ′/r)2 log

(
A

r
′2

))

= O

(
Aρ

r ′r
log

(
A

r
′2

))
,

which is more thanO(r ′/r) times faster than the bound on a
simple PC.

6. Simulation and Experiments

A simulation program (Wagner 1997) that animates the algo-
rithms in this paper was written in JAVA13 (see the examples
in Figs. 12 and 13). In addition to visualization of the dy-
namics of the algorithms, our simulator can also be used to

13. The reader is encouraged to try the simulator, which is web accessible
via http://www.cs.technion.ac.il/˜ wagner/pub/mac.html.

Fig. 11. A hybrid of MAC and PC: the covering radius is
widened by using short-lived trails to traverse ther ′ circle
aroundz, as compared to ther circle covered by the conven-
tional PC rule. After coveringBr ′(z), the robot goes tow, a
randomly chosen point at a distancer ′ from z. Working this
way, the average performance improves significantly, while
using only short-lived traces.

Fig. 12. A simulation of the MAC algorithm with one robot.
The marks appear as a thin line, while gray denotes the un-
covered (“dirty”) region.

Fig. 13. Upon completion, the final trace induced by MAC is
a tree that spans the region.
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study those properties of the algorithms for which we have no
satisfactory analysis; e.g., the dependency of cover time on
the number of robots. In Figure 16, a comparison of the de-
terministic MAC and the random PC algorithms is depicted,
by way of the times of complete coverage of a 30× 30 room,
with and without walls in it (there is a one-unit opening in the
wall; see Figs. 14 and 15), and plotted against the number of
robots. Note that in all MAC simulations we assume that the
trails remain detectable during the whole time of execution;
in the worst case (e.g., that of a robot starting near the edge of
a very long and narrow corridor), this assumption is required
to guarantee covering. For the PC algorithm, the cover times
were averaged over 20 simulation runs, and the standard devi-
ation was plotted as well. The simulations show that MAC is
much faster, and that both algorithms benefit from increasing
the population of robots, up to a point where robots begin to
disturb rather than help each other.

7. Summary

We have analyzed two ways of covering a continuous region,
using the deterministic MAC and the random PC. The set-
ting of continuous space is more relevant to robotics than the
discrete structure of graphs, since robots move continuously,
and even if a discrete partition is dictated by some external
signs (e.g., a tiled floor), it is still hard for a low-cost robot
to precisely identify those signs. The problem of continuous
covering has various implications for both theory and prac-
tice. The analysis suggested in this paper can serve as an

Fig. 14. A case of one wall for MAC/PC simulations.

inspiration for further research in several directions, some of
which are described below:

1. Covering without positioning. In our MAC algorithm,
we assume that the robot is able to either follow a pre-
viously laid trace, or recall a previous location from its
memory, based on some positioning mechanism (e.g.,
odometric positioning or GPS). These positioning sys-
tems are both expensive and error-prone. It seems,
however, that to guarantee coverage, we only need our
positioning system to be unique, and not necessarily
precise; i.e., if the position isz and our system returns
P(z) as a position, we only need to haveP(z) 6= P(z′)
if z 6= z′. The open question here is how to define the
precise conditions on the positioning functionP(z) that
allow a MAC-like algorithm to cover the region.

2. Better mode of cooperation.In our multi-robot setting,
we just add robots and let them all follow the same
rule. It is intriguing to see what will happen if a more
significant communication is enabled; e.g., considering
the MAC algorithm, if a robot that has finished its mis-
sion could get a call from a robot that is still working
and come to help. Such an approach may yield a better
speedup by increasing the number of robots.

3. Cooperating PC robots. As we just add robots and let
them all follow the same PC rule, it would be intriguing
to see what would happen if a more significant commu-
nication were enabled; e.g., if a collision with another
robot or with the wall would make the future steps bi-
ased against the (alleged) location of other robots/walls.

Fig. 15. A case of two walls for MAC/PC simulations.
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Fig. 16. A comparison of the deterministic MAC and the random PC algorithms. Times of complete coverage of a 30× 30
room, with one wall (“-x-” points), two walls (“-*-” points), and without walls (“-o-” points), by MAC- (a) and PC-simulated
(b) robots are plotted against the number of robots. Note the difference in scale of they axes. For the PC algorithm, the cover
times were averaged over 20 simulation runs, and the standard deviation is plotted (c). The simulator is accessible via the web
at http://www.cs.technion.ac.il/˜ wagner/pub/mac.html.

4. Finding a “short” universal traversal sequence of an-
gles. We have shown the existence of a polynomial-
length universal sequence of angles (UTSA) for grid-
ded polygons. However, we do not know how to find
one. The similar question for graphs is also wide open,
with the only exceptions (known to us) being paths and
cycles (Bridgland 1987; Bar-Noy et al. 1989). Intu-
itively, one may think that finding a UTSA in our case
is easier, since the robot is assumed to have a kind of
“compass,” while in the UTS problem for graphs, edges
are arbitrarily ordered.

5. The minimum memory needed to deterministically
cover a region.Counting the total amount of memory
used as marks on the floor, our MAC robots needO(n)

memory (n being equal toA/a). Can an algorithm
be devised that covers a finite region with a constant
amount of memory?

6. Parametric step-coverage problem.If a graph is em-
bedded such that each edge is a zero-width line with

an integer length, then a minimum covering with radius
r → 0 is equivalent to a Euler path14 in the graph, if one
exists. Hence both Hamilton and Euler paths are special
cases of the covering path. Thus we have shown that
the question, “Is there a 0.5-covering of length|φ(G)|
in a grid-graphG,” is hard, while the other extreme,
“Is there a 0-covering of length|E(G)| in a grid-graph
G,” is easy; so how hard is the question “Is there an
r-covering of lengthL, |φ(G)| ≤ L ≤ |E(G)| in a
grid-graphG,” where 0< r < 0.5?

Appendix: Potential Difference across a
Uniformly Resistive Circle

Proof of Proposition 1

Consider a circle of radiusµ and unit sheet resistance, and
assume that a current ofI0 A per unit area is uniformly injected

14. AEuler pathis a tour of the graph in which each edge is traversed exactly
once. A graph isEulerian if such a path exists.
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into the circle. We seek for the average potential difference
(or “voltage drop”) between the center of the circle and its
circumference, defined by

φ(0) − φ(µ) = 1

2π

2π∫
θ=0

(φ(0) − φ(µeiθ ))dθ.

Consider a ring of radiusu and infinitesimal widthdu (see
Fig. 17). We know (from the theorem of divergence) that since
there are no sources or sinks of current on the surface, all the
current injected into theu circle should flow out across its
boundary and into the ring. This amount of current isI0πu2.
Let us denote byI (u, θ) the centrifugal current flowing at
ueiθ in directionθ , bydφ(u, θ) the voltage drop between the
inner and outer edges of an infinitesimal trapezoid of the ring,
and bydφ(u) the average voltage drop across the ring. One
can now write

dφ(u) = 1

2π

2π∫
θ=0

dφ(u, θ)dθ

= 1

2π

2π∫
θ=0

I (u, θ)dudθ

udθ

(the resistance of a rectangle is length/width)

Fig. 17. An infinitesimal ring within a circle. The average
voltage drop across the ring is obtained by integrating over
small trapezoids like the one in gray, through which the cen-
trifugal currentI (u, θ) is flowing.

= du

2πu

2π∫
θ=0

I (u, θ)dθ

= du

2πu
πu2I0 = I0udu

2
.

Note that the voltage drop across the ring due to the current
flowing into the ring itself is proportional to the product of
this current, (o((u + du)2 − u2) = o(udu)), and the ring’s
resistance, ((o(du/u)), and hence it iso((du)2), and vanishes
in integration. Thus, the total voltage difference can be found
by integrating alongu:

φ(0) − φ(µ) =
µ∫

u=0

dφ(u)du =
µ∫

u=0

I0u

2
du = I0µ

2

4
.

�
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