
Future Generation Computer Systems 16 (2000) 915–926

ANTS: Agents on Networks, Trees, and Subgraphs

Israel A. Wagnera,∗, Michael Lindenbaumb, Alfred M. Brucksteinb

a IBM Haifa Research Lab, Matam, Haifa 31905, Israel
b Department of Computer Science, Technion City, Haifa 3200, Israel

Abstract

Efficient exploration of large networks is a central issue in data mining and network maintenance applications. In most
existing work there is a distinction between the active ‘searcher’ which both executes the algorithm and holds the memory and
the passive ‘searched graph’ over which the searcher has no control at all. Large dynamic networks like the Internet, where the
nodes are powerful computers and the links have narrow bandwidth and are heavily-loaded, call for a different paradigm, in
which a noncentralized group of one or more lightweight autonomous agents traverse the network in a completely distributed
and parallelizable way. Potential advantages of such a paradigm would be fault tolerance against network and agent failures,
and reduced load on the busy nodes due to the small amount of memory and computing resources required by the agent in
each node. Algorithms for network covering based on this paradigm could be used in today’s Internet as a support for data
mining and network control algorithms. Recently, a vertex ant walk (VAW) method has been suggested [I.A. Wagner, M.
Lindenbaum, A.M. Bruckstein, Ann. Math. Artificial Intelligence 24 (1998) 211–223] for searching an undirected, connected
graph by an a(ge)nt that walks along the edges of the graph, occasionally leaving ‘pheromone’ traces at nodes, and using
those traces to guide its exploration. It was shown there that the ant can cover astaticgraph within timend, wheren is the
number of vertices andd the diameter of the graph. In this work we further investigate the performance of theVAW method
ondynamicgraphs, where edges may appear or disappear during the search process. In particular we prove that (a) if a certain
spanning subgraphS is stable during the period of covering, then theVAW method is guaranteed to cover the graph within
time nds, whereds is the diameter ofS, and (b) if a failure occurs on each edge with probabilityp, then the expected cover
time is bounded from above bynd((log1/log(1/p)) + ((1 + p)/(1 − p))), where1 is the maximum vertex degree in the
graph. We also show that (c) ifG is a static tree then it is covered within time 2n. © 2000 Elsevier Science B.V. All rights
reserved.

Keywords:Dynamic graph search; Edge failure model; Vertex ant walk; Edge ant walk; Cover time

1. Introduction

Ant algorithms are computing methods that make
use of ideas from the world of real ant colonies in the
context of optimization problems. Some examples for
such applications are the traveling salesman problem

∗ Corresponding author. Tel.:+972-4-8296331;
fax: +972-4-8296116.
E-mail address:wagner@il.ibm.com (I.A. Wagner)

[11], graph coloring [6], quadratic assignment [22]
and routing in communication networks [7,21]; see
[8,10] for a list of references to such applications. Both
theoretical [1] and experimental [16] studies show
that ants continuously and very effectively forage un-
charted territories in search for food. Hence, a natural
place to apply their search strategies is when the need
arises to either learn about the state of the environ-
ment or to search for specific items of information in a
large, time-varying and rather chaotic environment. As

0167-739X/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(00)00045-5

916 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

explained in [1,16], real ants cope with such chal-
lenges by creating a network of information in which
the vertices represent meetings between ants, and the
information is spread by means of traces of a chemical,
called pheromone, that are either left on the ground
or transferred directly from one ant to another. In our
very limited imitation of real ants behavior we as-
sume that the searching agent moves on a graph from
a vertex to a neighbor vertex, and reads and modifies
the traces left at the visited vertex; we assume no di-
rect communication between agents. Rather, an indi-
rect communication is achieved by allowing agents to
read and use the traces left by others to the benefit of
their common mission.

An example of a chaotic environment in which an
efficient search is desired is a network of connected
computers like the Internet, where the links are made
of various kinds of hardware that may suffer fre-
quent failures. In most existing search algorithms for
the Internet (for example, those embedded in search
engines like ‘Yahoo’ and ‘Alta-Vista’) there is a dis-
tinction between the active ‘searcher’, which both
executes the algorithm and has a huge amount of
memory, and the passive ‘searched network’ or en-
vironment, over which the searcher has no control
at all (see, e.g. [14,20]). Such methods put a heavy
load on network links and may require a long time to
gather the results of a thorough search. In huge and
dynamic networks like the Internet, where nodes are
usually powerful computers while the communication
links are heavily-loaded and mostly have a low ca-
pacity, there seems to be a need for a different search
paradigm, in which a noncentralized group of one
or more lightweight autonomous agents traverse the
network in a completely distributed and paralleliz-
able way. Potential advantages of such a paradigm
are fault tolerance against network and agent failures,
and reduced load on the network links. Algorithms
for network covering based on this paradigm could be
used in today’s Internet as a support for data mining
and network control algorithms. Although not every
searcher needs a complete covering of the network,
it may be needed for either maintenance (e.g. a con-
tinuous search for viruses) or for a really exhaustive
search — one that is not supported by the existing
search engines which rely on predefined indexes and
thus cannot find all web-pages that exist at a given
moment.

More specifically, we consider a memoryless
a(ge)nt that searches a simple, undirected graphG for
food; that is, it attempts to explore the whole graph
in a short time. A graphG is generally defined by
a pairG = (V , E), whereV is a set of vertices (or
points) andE is a set of edges (or lines), where each
edge connects two of the vertices. In our paradigm,
the ant has the ability to leave pheromone traces on
vertices and to sense the traces at the current loca-
tion and its immediate neighbors, which are those
vertices connected to the current vertex by an edge.
By ‘sensing the trace’ at a vertex we mean that the
ant senses both the pheromone traces that have been
left on the vertex, and the time at which the trace
was last updated. Our goal is an efficient method for
covering the graph, that is: visiting every vertex in
it. Formally, a vertexv at time t is marked by a pair
(σt (v), τt (v)), whereσt (v) is the mark left onv, and
τt (v) is the time of the most recent mark left there up
to time t . Initially we set both marks to zero for all
vertices in the graph. Being at a vertexu at timet , the
ant smells around and chooses amongN(u), the set
of neighbors1 of u, a neighborv with the minimum
mark on it, where marks are ordered lexicographi-
cally by the(σ, τ) values on the vertices. Assuming
the minimum was found on neighborv, the ant then
setsσ(u) to σ(v) + 1, andτ(u) to the current time.
Then it goes tov. The reason for taking the value of
σ(v) into account when settingσ(u) is that we wish
to keep the local difference inσ(·) as small as pos-
sible; as will be shown later, this is needed in order
to guarantee a short cover time. Intuitively, this rule
of motion behaves like a steepest-descent optimizer
that attempts to find the minimum of the function
σ(·), with the additional option to dynamically al-
ter its value, thereby avoiding being stuck in a local
minimum like steepest-descent methods.

We shall call this process ‘vertex ant walk’ (VAW)
to distinguish it from a similar ‘edge ant walk’ process
that has been previously introduced by the authors
in [27,28], where the edges, rather than the vertices,
were marked. It has been shown there that a group of
k trace-oriented ants that evolve in an edge process
can cover a static graph in a (worst case) time of
O(1n2/k), where1 is the maximum vertex-degree

1 N(u), the set of neighbors of vertexu in a graphG(V, E), is
the set{v|u 6= v, (u, v) ∈ E}.

I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926 917

and n the number of vertices. The vertex ant walk
for static graphs was described in [29], where it was
proved that such a process covers a connected static
graph using no more thannd steps, whered is the
diameter of G, defined as the maximum distance
between any pair of vertices in the graph, that is

d = max
u,v∈V

{length of the shortest path connectingu andv} .

This is an improvement compared to the edge process,
sincend < 1n2.

In this paper we extend our analysis of theVAW
method todynamic graphs, where edges may stop
functioning or recover during the execution of the al-
gorithm. We show that cover time can still be bounded,
under two models of dynamic graphs. In particular we
prove that (a) if a certain spanning subgraphS is stable
during the period of covering, then theVAW method is
guaranteed to cover the graph within timends, where
ds is the diameter ofS, (b) if a failure occurs on
each edge with probabilityp, then the expected cover
time is bounded from above bynd((log1/log(1/p))+
((1 + p)/(1 − p))), where1 is the maximum vertex
degree in the graph, and (c) ifG is a tree then it is
covered within time 2n.

The VAW process, beyond its theoretical interest,
may find application in searching a large network of
WWW sites, where the physical links between the
sites suffer from frequent hardware failures. In such
a network, it sometimes makes sense to send one or
more searching agents to do the job rather than apply
a static agent that can access a site only if there is
a functional path to that site at the moment. AVAW
agent can move from siteu to sitev by copying its code
to a (temporary) area of memory inv, then deleting
itself fromu, leaving there only a small ‘signature’ that
will later help the agent and its fellows in navigation.

The rest of the paper is organized as follows. First
we mention related work in Section 2; then, in Sec-
tion 3, theVAW process is defined and some examples
are given. The cover time is analyzed in Section 4 for
two models of dynamic graphs, followed by a simula-
tion experiment that demonstrates the ability ofVAW
agents to cooperate. Then in Section 5 we prove an up-
per bound on the cover time of trees. We conclude in
Section 6 with a summary and some open questions.

2. Related work

Graph exploration is an old problem; a paper on the
subject was published as early as 1895 [24]. The goal
of covering (also known as exploring or searching) a
graph is to visit all its vertices while going along the
edges, possibly using markers to store information. In
the sequel we cite a sample of covering algorithms; the
interested reader can find more using the references
therein. Perhaps the most famous search algorithm is
depth-first search(DFS), first introduced in [24] and
further discussed in [12,13,17,23]. In DFS the agent
looks for an unvisited neighbor. If one exists, it goes
there; otherwise it goes back along the first edge used
to enter the current vertex. This edge is marked the
first time a vertex is entered, and this marking should
persist through the process, or else the searcher cannot
backtrack and thus may get stuck. The covering time
of a static graph by a simple DFS is 2m, m being the
number of edges in the graph. However, the lack of
tolerance to edge failures is a drawback of DFS. Using
randomness in resolving ties, the average cover time
by DFS can be reduced to 1.5m [15]. Another, mem-
oryless, method is therandom walk— just choose a
random neighbor of the current vertex and go there.
Clearly, covering by a random walk is rather slow; in
[2,3] it was shown to cover a graph within expected
time O(mn), wherem is the number of edges andn
the number of vertices. It was also shown that, un-
der a proper initial distribution ofk agents, their si-
multaneous random walk covers the graph in expected
time O(mn/k) [5]. More sophisticated methods use
memory (or field marking) to keep a certain record
of the history, but the usage of that record is flexi-
ble; instead of determining a single good continuation,
the agent prioritizes the neighbors and then takes the
best among many ways to continue its search; thus,
a faulty edge does not cause a terminal disturbance
but only extends cover time. Thereal-time A∗ (RTA∗)
andlearning RTA∗ (LRTA∗) [18] are two variations on
the famous A∗ heuristic search, with a cost function
that takes the current searcher’s location into account,
thus making the algorithm more realistic for field ap-
plications like robotics. The worst case cover time by
LRTA∗ is O(mn). In [25,26] acounter-based explo-
ration method is described in which a counter holds
the number of visits to each vertex so far. The cover
time by this method is bounded by O(n2d), whered

918 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

Table 1
Upper-bounds on cover times for a sample of graph-covering
algorithms, assuming the graph to be static and to haven vertices,
m edges, diameterd and maximum vertex degree1a

Method Reference Cover time

Depth-first search [24] 2m
Random walk [2] O(mn) (expected)
k Random-walkers [5] O(mn/k) (expected)
Semi-random [15] 1.5m (expected)
Learning real-time A∗ [18] O(mn)
Counter-based [25] O(n2d)
Nearest neighbor [19] O(m logn)
k Edge ant walkers [27] O(1n2/k)

Vertex ant walk [29] O(nd)

aFor randomized algorithms theexpectedbound is given.

is the diameter of the graph. In the nearest neighbor
approach (NNA) method of [19], a graph is learned
by moving towards the nearest un-visited edge, and an
upper bound is proved on the cover time of O(m logn),
wherem is the number of edges in the graph, which
can be as large as O(n2). An interesting source of ideas
for search algorithms is the world of animals, espe-
cially insects like ants that use distributed pheromone
traces to help their navigation [4,9]. To the best of our
knowledge, no upper bounds have been reported on
covering by ant-based systems, but extensive simula-
tions have shown them to be efficient heuristics for
various search problems. Table 1 summarizes a sam-
ple of cover-time results for static graphs.

All the algorithms and cover times described so far
are suitable forstaticgraphs, that is — graphs which
do not change during the execution of the algorithm.
If the graph isdynamicthe algorithms either do not
cover it or their cover time is not guaranteed. The con-
tributions of the current paper are in proving that ant
walk is efficient not only for static graphs but also for
dynamic graphs of various kinds, and in the analysis
of the case of searching trees.

3. Vertex ant walk

The VAW process is formally defined by theVAW
rule of motion given in Fig. 1. Initially, all(σ, τ) val-
ues are set to(0, 0) and a starting vertex is chosen
for each agent, and then the rule is applied repeatedly.
There is no explicit stopping condition for this algo-

Fig. 1. The vertex ant walk (VAW) rule.

rithm; however one can use the upper bound on cover
time to stop it after a sufficient period that guarantees
covering. Note that our rule applies for any number
of ants; if multiple ants occupy the same vertex at the
same time, they all attempt to write the same numbers
(Steps 3 and 4) so there is no logical conflict. Their
next step, however, might be different since the ran-
dom decision (Step 1) could differ between ants. See
Figs. 2 and 3 for examples of theVAW evolution on
static and dynamic graphs. In the sequel we shall in-
vestigate the case of a singleVAW ant by analysis,
and of multiple ants by simulation.

4. Vertex ant walk on dynamic graphs

It is known that a singleVAW works well for static
graphs; as has recently been shown in [29], aVAW

Fig. 2. A VAW ant covers a static graph, starting from vertex ‘a’,
within 10 steps. Heren = 9 and the diameter is equal to 4. The
numbers in parentheses represent the vertex and itsσ, τ values
upon leaving the vertex.

I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926 919

Fig. 3. The first 12 steps in aVAW tour of a dynamic graph with
six vertices, diameterd = 3 and stable diameterds = 4, starting
from vertex ‘a’. Edges (a, b) and (c, e) are not stable; (a, b) is only
functional at time 1 while (c, e) begins to function at time 9. The
corresponding(ut , σ (ut), τ (ut)) evolution is shown in the table.
The process starts at timet = 1, andσ(ut) is the value after the
t th step has been completed. Note that the graph is covered in the
10th step upon first visiting vertex ‘e’, while the analytical upper
bound isnds = 24.

ant coversanystatic connected graph withinnd steps,
wheren is the number of vertices andd is the diam-
eter of the graph. How efficient is the process for a
graph with a dynamic structure? The analytical results
from [29] do not hold for that case, and it is our goal
here to generalize those results and achieve an upper
bound on the covering time of theVAW process for
dynamic graphs. We consider two models of dynamic
graphs: thestable spanning subgraphmodel, and the
probabilistic failuremodel. In the first we assume that
there exists a spanning subgraph ofG which is al-
ways functional, while in the second model we con-
sider each edge to be faulty with some probabilityp,
and establish an upper bound on the expected cover
time as a function ofp and some topological proper-
ties ofG: its diameter, the number of vertices and the
maximum vertex degree.

4.1. GS — a dynamic graph with a stable subgraph

Let GS be a graph with a stable spanning subgraph
S. The subgraphS is a subset of the edge-setE that

Fig. 4. A possible evolution of a dynamic graphGS on six vertices
with a stable spanning subgraphS (in bold lines).

covers all vertices and does not fail in the process.
This kind of subgraph is sometimes called theback-
boneof the network. We shall now show that such a
dynamic graph is covered within timends, whereds
is the diameter ofS. For this purpose we extend the
analysis from [29], using the following definitions.

Definition 1. An edgee ∈ E is calledstableif it does
not fail during the process.

Definition 2. A spanning subgraph(V , S) is called
a stable subgraphof G = (V , E) if S ⊂ E and all
edges inS are stable.

Definition 3. A graph GS is dynamic with a stable
subgraphif not all its edges are stable, but the edges
of the spanning subgraphS are stable.

See Fig. 4 for an example of such a dynamic graph.
We shall now show that, as long as the graph has

not yet been covered, theσ -values of already-visited
vertices cannot grow beyond a certain limit. For that
purpose, let us denote byUt the set of all vertices with
σ = 0 at timet , that is

Ut = {u ∈ V |σt (u) = 0} .

Clearly,U0 = V and if the graph is covered at timet
thenUt is empty. We shall also denote by dists(u, v)

the distance2 betweenu andv using only edges ofS,
the stable subgraph ofG. Similarly, if Q is a set of ver-
tices inG, then dists(u, Q) will denote the minimum
distance betweenu and any member of setQ, that is

dists(u, Q) = min
v∈Q

{dists(u, v)} .

If Q is empty then dists(u, Q) = ∞.
The following lemma shows thatσt (u) cannot

exceedu’s distance from the setUt .

2 The distancebetween two vertices in a graph is the number of
edges in a shortest path connecting the vertices.

920 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

Lemma 1. At all timest it holds for all verticesu ∈ V

that

σt (u) ≤ dists(u, Ut), (1)

whereUt is the set of unvisited vertices at timet .

Proof. The lemma is clearly true whent = 0 since all
σ(·) values are being preset to zero and sinceU0 = V .
Assuming it is also true at timet , we claim that the
(t + 1)th step ofVAW does not cause any harm, that
is, at timet + 1 it holds for allu ∈ V that

σt+1(u) ≤ D, (2)

whereD is the stable distance ofu from Ut+1, that
is, D = dists(u, Ut+1). If u is not the vertex which
is visited at timet + 1, thenσt+1(u) = σt (u). The
unvisited set is monotonically nonincreasing, that is,
Ut+1 ⊆ Ut , implying that

dists(u, Ut) ≤ D,

hence

σt+1(u) = σt (u) ≤ dists(u, Ut) ≤ D,

and Eq. (2) holds. Otherwise,u is a vertex to which
the ant has arrived at timet +1. We need to prove that,
after thet +1th step,σt+1(u) ≤ D. Becauseu /∈ Ut+1
thenD ≥ 1, andu must have a neighbor, sayw, such
that

dists(w, Ut+1) = D − 1,

(w is the first vertex in a shortest path fromu to Ut+1),
and it follows that, because the lemma was true at
time t ,

σt (w) ≤ D − 1.

According to theVAW rule, the ant should always go
to a vertex with the minimum value ofσ among its
neighbors; hence theσt value of the vertex visited at
time t + 2 cannot exceedD − 1, since at least one
neighbor ofu (namely w) certainly has this value.
Hence, the new value ofu at timet +1 will not exceed
D, which proves the Lemma. �

Our next step is to show that under theVAW rule,
the sum of allσ -markers at the end of thet th step is
at leastt . To this end, let us define the total amount of
traces on the graph at timet , σt (G), to be the sum of
all theσ values on the vertices at that time.

Lemma 2. At all timest ,

σt (G) ,
∑
u∈V

σt (u) ≥ t.

Proof. Let us denote byui the node visited at timei,
such that the sequence of nodes visited up to timet

is u1, u2, . . . , ut , and theσ -value of a vertexu upon
completion of time-stept , by σt (u). The only change
to σ may occur at the vertex currently visited, hence

σt (G) = σt−1(G) + δt ,

whereδt stands for the addition toσ(G) at timet , that
is

δt = σt (ut) − σt−1(ut). (3)

According to theVAW rule, upon moving fromui to
ui+1, the value ofσi(ui) is set toσi(ui+1) + 1; hence

δi = σi(ui+1) − σi−1(ui) + 1. (4)

From Eq. (3)

σt (ut) = σt−1(ut) + δt , (5)

and, substitutingi by t − 1 in Eq. (4),

σt−1(ut) = σt−2(ut−1) + δt−1 − 1. (6)

Applying Eqs. (5) and (6) and recursively one gets

σt (ut) = σt−1(ut) + δt

= σt−2(ut−1) + δt−1 + δt − 1
= σt−3(ut−2) + δt−2 + δt−1 + δt − 2
...

= σ0(u1) + ∑t
i=1δt − (t − 1),

and hence, sinceσt (G) = ∑t
i=1δi , we get that

σt (G) = σt (ut) − σ0(u1) + t − 1.

But, according to our rule,σ0(u1) = 0 andσt (ut) ≥ 1,
and the Lemma follows. �

Now let us combine the smoothness ofσ(·) (Lemma
1) with its temporal accumulation (Lemma 2) to get

Theorem 1. Denote byds the diameter of a stable
spanning subgraphS of a dynamic graphG, and by
n the number of vertices. Then after at most nds steps
the graphG is covered.

I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926 921

Fig. 5. A hard case for theVAW rule. There aren vertices, and about 1.25n edges. The diameter is about 0.8n, and the time needed to
traverse it may be as long as O(nd) = O(n2). The dotted arrows show the worst case where each triangle of vertices is a ‘trap’ that causes the
ant to go back to its starting point. Note that removing the bold-line edges would make it a tree, thus reducing the cover time to at most 2n.

Proof. Assume that at timet the graph has not yet
been fully covered. Then there exists at least one node,
sayu, for which σ(u) = 0. According to Lemma 1,
none ofu’s neighbors can haveσ > 1, none of the
neighbors’ neighbors can haveσ > 2, etc. Hence, the
maximumσ value on any node at that time cannot
exceedds, the diameter ofS, and the sumσt (G) cannot
exceednds. On the other hand, we know from Lemma
2 thatσt (G) ≥ t ; hencet < nds; or, in other words if
t exceedsnds, then theσ -values of all nodes should
be at least 1 and the graph is covered. �

Note that althoughσt (G) ≥ t , the change is not
always smooth; for example, in the case depicted in
Fig. 3,σ7(G) = 8, σ8(G) = 10, butσ9(G) = 9.

Also note that Theorem 1 from [29] is achieved as a
special case whenG is static, that is all edges are stable
and henceS = G. Also note that the bound of O(nds)

is tight; the example in Fig. 5 depicts a case where
the cover time required byVAW is indeed O(nds).
Another insight gained from this example is that more
edges do not always imply faster coverage; in this case
if all bold edges are deleted from the graph, the cover
time reduces to 2n, as will be proven in Section 5.

4.2. Gp — the faulty edge model

Let us now consider a different type of dynamic
graphs. We shall denote byGp a connected graph
with diameterd andn vertices, such that each edge
may be faulty with probabilityp, and functional with
probability 1− p, independently of any other edge,
and independently in each time step. See Fig. 6 for an
example; note that, as opposed to theGS model, the
graph is not always connected. If we use theVAW rule
as is, it will cover the graph with some probability but
it is hard to predict its performance because the upper

Fig. 6. 5 steps in the life of a dynamic graphGp with all edges
being prone to faults with some probabilityp > 0. Note that under
this model, the graph is not always connected.

bound onσ (Lemma 1) no longer holds, and there
may be sharp discontinuities in theσ function that can
cause the ant to get stuck for a long time in a small area
of the graph. Hence, we slightly modify theVAW rule
by instructing our ant to behave as before butrefrain
from moving or marking until all neighbors of the
current vertex are accessible at leastoncefor deciding
on the best neighbor (Step 1), and then a second wait
may be needed for the chosen edge to be functional
for making the move (Step 5). All other steps remain
as before. TheWaiting VAW rule is shown in Fig.
7. Clearly, not all neighbors should besimultaneously
accessible, so the average waiting time (in Steps 1 and
5), as we shall see, is not too long. For example, if a
vertexu has five emanating edges that randomly come
and go, the ant visitingu has to see each of the five
neighbors before choosing a move, although not all
five edges should be up at the same time because we
assume (in the single ant case) that vertices other than
u do not change while the ant is inu. After the ant
saw all neighbors and decided to go, say, to neighbor
v, it may happen thatv has again disappeared and
the ant may need to wait until a second edge(u, v)

is up again and Step 5 can be executed. Working this
way, there is no harm to Lemma 1, but the value of
σ̄t (Gp), the average value of the totalσ after t steps,
will decrease asp increases, as is formulated in the
following Lemma.

922 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

Fig. 7. Waiting Vertex-Ant-Walk rule.

Lemma 3.

σ̄t (Gp) ≥ t

log1/log(1/p) + (1 + p)/(1 − p)
,

whereσt is averaged over all possible evolutions of
Gp and1 is the maximum vertex degree inG.

Proof. Under theWaiting VAW rule there are two
kinds of time steps: those in which the ant is pas-
sive (that is, waiting in a vertex until each neighbor is
accessible at least once) and those in which it is ac-
tive (that is, moves according to the rule). In order to
estimate the ratio of active time to the total time, we
first achieve an upper bound on̄W , the average wait-
ing time at a vertexu until each neighbor is accessi-
ble at least once. Since we do not requireall edges to
be functional at the same time, we can bound the ex-
pected waiting time at a vertex with a ‘tail’ analysis
as follows. Assuming that all vertex degrees are less
than or equal to1, we have

W̄ = ∑∞
t=0t Prob

{all neighbors were seen at least once until timet}
= ∑∞

t=1 Prob
{not all neighbors were seen until timet}

= ∑∞
t=1

[
1 − (1 − pt)1

]
= ∑blog1/p 1c

t=1

[
1 − (1 − pt)1

]
+∑∞

t=blog1/p 1c+1

[
1 − (1 − pt)1

]
(using(1 − q)M ≥ 1 − Mq for q < 1)

≤ blog1/p 1c + 1
∑∞

t=blog1/p 1c+1 pt

≤ log1/p 1 + 1
(
pblog1/p 1c+2

)
/(1 − p)

≤ log1/p 1 + 1
(
plogp(1/1)+1

)
/(1 − p)

= log1/p 1 + (p/(1 − p))

= (log2 1/log2(1/p)) + (p/(1 − p)).

Now recall that the modified algorithm waits this time
(W̄) in order to see all neighbors and then another
period of (average) 1/(1 − p) in order to make the
proper move. Let us denote the average total waiting
time at a vertex byWtot; our discussion implies

Wtot ≤ log1

log(1/p)
+ 1 + p

1 − p
.

(Note that if p = 0 the waiting time is 1 as in a
nonfaulty graph). Hence, aftert steps, an average of
t/(Wtot) steps were active ones. Using Lemma 2 and
the fact that no change occurs to the(σ, τ) marks in
‘passive’ times, the Lemma is proved. �

Going along the lines of Theorem 1 and its proof,
one can prove that̄t(p), the average cover time under
edge-fault probabilityp, is bounded from above

Corollary 1.

t̄ (p) ≤ nd

(
log1

log(1/p)
+ 1 + p

1 − p

)
.

Proof. Consider a run of theWaiting VAW rule.
Lemma 1 still holds, so if at timet the graph has
not yet been fully covered, then there exists at least
one node, sayu, for which σ(u) = 0; none ofu’s
neighbors can haveσ > 1, none of the neighbors’
neighbors can haveσ > 2, etc. Hence, the maximum
σ value of any node at that time cannot exceedd,
the diameter ofG, and the sumσt (G) cannot ex-
ceednd. On the other hand, we know from Lemma
3 that the average sum ofσ at time t is bounded
from below byσ̄t (Gp) ≥ t/(log1/log(1/p) + (1 +
p)/(1−p)). Thus, in an average run,t cannot exceed
nd(log1/log(1/p) + (1 + p)/(1 − p)). �
Remark 1. In some cases it makes more sense to
consider faulty vertices rather than faulty edges. For

I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926 923

example, one may assume that each vertex is func-
tional with probability 1 − p; otherwise it does not
function and all its emanating links are considered
dysfunctional, too. Under such an assumption, our
analysis holds as before with the only exception be-
ing W̄ , the average waiting time at a vertex. Let
us call the waiting time under vertex failures̄Wv.
Using the sameWaiting VAW rule of behavior, the
ant has to probe all neighbor vertices before it can
proceed. The calculation of the waiting time is like
in the proof of Lemma 3, but there is yet another
source of delay – the functionality of the current
node. The ant cannot execute its code if the processor
hosting it is not working. Thus we have to stretch
the waiting time by a factor of1/(1 − p), getting
W̄v ≤ log1/log(1/p) + (1 + p)/(1 − p), and

t̄v(p) ≤ nd
1

1 − p

(
log1

log(1/p)
+ 1 + p

1 − p

)
.

4.3. Experiments in co-operation

In the multiagent setting we assume each of the
agents to apply the sameVAW rule. If two or more
agents meet at a vertex, only one of them (say the one
with highest ID) is allowed to set the newσ value
for that vertex. Our analysis as reported above is only
valid for a single agent, and we do not yet have a
clear way for extending it to multiple agents working
together to cover a dynamic graph. One problem that
arises when multiple ants are used is the lackness of
‘global’ instantaneous knowledge, e.g. when an ant
A1 is at nodeu1 and reads the state of nodeu2 and
decides to go there because it is a minimum. In the
meantime antA2, that moved fromu2 to u3, writes in
u2 the valueσ(u3) + 1. So, at the time antA1 moves
from u1 to u2, u2 is no longer the minimum but ant
A1 does not know about it.

In order to get an empirical result for the multiagent
case, a simulation program was written and run on
an IBM PowerPC 604emachine. We simulated sets
of 1–12 agents, all starting at the same vertex, and
covering a graph under both the stable subgraph (GS)
and the faulty edge (Gp) models of noise. The reason
for starting all agents at the same vertex is to make
their life as hard as possible in order to get an estimate
of the worst-case behavior.

See Fig. 8 for an example depicting the results of
480 simulations (20 per each number of agents be-
tween 1 and 12), each on a graph with 500 vertices
that was created by first generating a random tree and
then adding randomly edges until a density of 0.5% is
reached. The cover times are the average over 20 sim-
ulation runs for each case. It can be seen that as the
number of agents grows, the cover time decreases up
to an asymptotic point where more agents do not help
much. The exact location of this point clearly depends
on the number of verticesn; asn grows, the maximum
useful number of agents increases. It also seems to de-
pend onp; as the uncertaintyp grows, the advantage
of additional agents is more significant. Note that even
networks with high fault ratios (e.g.p = 0.75) can be
covered as fast as a faultless network if the number
of agents is increased (forp = 0.75, three agents are
needed).

5. VAW on trees

We shall now consider a special case, where the
graphG is a static tree, that is it is connected but free
of cycles.

Lemma 4. Assume thatT is a tree inG (that is, a
subset ofV such that all edges between them make a
tree) andT is connected toG \ T by a single edge
e = (x, y), with x ∈ G \ T andy ∈ T (See Fig. 9).
Then the edgee, once traversed fromx to y, is not
traversed again beforeT is completely covered.

Proof. By induction onr, the number of vertices in
T . If r = 1 the lemma is obviously true. Now let
us assume its correctness for all trees of sizer or
smaller, and consider a tree of sizer + 1. Denote by
v1, v2, . . . , vp andT1, T2, . . . , Tp the neighbors ofy
in T and their respective subtrees, respectively. Note
that the size of each subtree is less than or equal tor.
According to our assumption, once the ant has moved
from y to, sayvi , it will not get back toy before it
has covered the whole subtreeTi . Once the ant has re-
turned toy, it will go to another not-yet-visited neigh-
bor, and so on. Clearly, the ant will not travel back
fromy tox before ally’s neighbors (and the respective
subtrees) have been visited, and the lemma follows.�
Corollary 2. A tree overn vertices is covered by
a VAW process in at most2(n − 1) steps.

924 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

Fig. 8. Cover times by multiple agents that apply theVAW rule on the stable subgraph model (top) and the faulty edge model (bottom).
Times are plotted against the number of agents, and parameterized according to edge-failure probabilityp. For each number of agents
and failure probability, 20 experiments were made, each on a graph with 500 vertices that was created by a random tree and additional
random edges with 0.5% density.

Fig. 9. The treeT is connected to the rest of the graph,G \ T ,
by the edge(x, y).

Proof:. Using Lemma 4, one can show that no edge
in T is traversed more than twice before covering the
whole tree. SinceT is a tree, it has exactlyn−1 edges
and the lemma follows. �

Note that theVAW process on a tree evolves in the
same way as a depth-first search (DFS) process on the
same tree.

6. Summary and open questions

TheVertex Ant Walk, a trace oriented process, was
presented and shown to be able to cover a dynamic
graph in a bounded time. Two models of connected
dynamic graphs were presented. The first model as-
sumes that some spanning subgraphS is always func-

I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926 925

tional, in which case theVAW process is guaranteed
to cover the graph within timends, wheren = |V (G)|,
and ds = diam(S). In the second model we assume
that each edge is functional with probability 1−p and
may fail with probabilityp, independently of all other
edges. For the latter case we have proved that a slight
modification of VAW results in an upper bound on
the expected cover time:t̄ (p) ≤ nd(log1/log(1/p)+
(1 + p)/(1 − p)), whered is the diameter ofG and
1 is the maximum vertex degree inG.

There are various questions that are open for further
research.
1. Our proof of coverage by theVAW process seems

to rely on the specific rule of motion. Can similar
results be achieved for a more relaxed protocol, for
example, ifσ(u) is alwaysincreased by one upon
visiting u, no matter what its situation relative to
the neighbors is? So far we could not prove for this
protocol anything better than the exponential up-
per boundtc ≤ 1d , 1 being the maximum vertex
degree inG. On the other hand, we do not have
any example that does achieve this high bound, and
simulations seem to yield much lower times.

2. One problem with a large number of agents in a
network is that they may cause an overwhelming
amount of traffic that can overload the network and
disturb its regular use. A possible cure may be to
put a limit on the life time of an agent, or on the
allowed rate of agents launching from any point
in the network. This bound, however, will clearly
increase the cover time, or may even totally impede
covering. Hence, further analysis and simulations
are needed for understanding the behavior of such
mortal agents (as opposed to the immortal model
of the current paper), depending on the network
parameters.

3. Our analysis holds for a single ant, and, as can be
seen by the simulations depicted in Fig. 8, it seems
reasonable to say that if the graph is large, more
ants will cover it faster. Is it possible to analytically
quantify the speed-up ratio as a function of the size
of the colony and the structure of the graph?

Acknowledgements

We thank Marco Dorigo, Gianni Di Caro, Thomas
Stützle and the anonymous referees for their careful

reading and helpful comments. We also wish to thank
our alert students in the MultiRobotics class at the
Technion for their help in debugging the paper.

References

[1] F.R. Adler, D.M. Gordon, Information collection and spread
by networks of patrolling ants, The Am. Naturalist 140 (3)
(1992) 373–400.

[2] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, C.
Rakoff, Random walks, universal traversal sequences, and
the complexity of maze problems, Proc. FOCS ’79 (1979)
218–223.

[3] G. Barnes, U. Feige, Short random walks on graphs, SIAM
J. Disc. Math. 9 (1) (1996) 19–28.

[4] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press,
Oxford, 1999.

[5] A.Z. Broder, A.R. Karlin, P. Raghavan, E. Upfal, Trading
space for time in undirecteds − t connectivity, SIAM J.
Comput. 23 (2) (1994) 324–334.

[6] D. Costa, A. Hertz, Ants can colour graphs, J. Operat. Res.
Soc. 48 (1997) 295–305.

[7] G. Di Caro, M. Dorigo, AntNet: distributed stigmergetic
control for communications networks, J. Artificial Intelligence
Res. (JAIR) 9 (1998) 317–365.

[8] M. Dorigo, G. Di Caro, The ant colony optimization
meta-heuristic, in: D. Corne, M. Dorigo, F. Glover (Eds.),
New Ideas in Optimization, McGraw-Hill, New York, 1999,
pp. 11–32.

[9] M. Dorigo, G. Di Caro, L. M. Gambardella, Ant algorithms
for discrete optimization, Artificial Life 5 (2) (1999) 137–172.

[10] M. Dorigo (Ed.), The ant colony optimization WWW page.
An introduction and compendium of examples, publications
and events. Maintained at IRIDIA, Université Libre
de Bruxelles, Belgium. http://iridia.ulb.ac.be/+.1667emaã
mdorigo/ACO/ACO.html

[11] M. Dorigo, V. Maniezzo, A. Colorni, The ant system:
optimization by a Colony of cooperating agents, IEEE Trans.
Syst. Man Cybernetics Part B 26 (1996) 29–41.

[12] S. Even, Graph Algorithms, Computer Science Press,
Rockville, Maryland, 1979.

[13] A.S. Fraenkel, Economic traversal of labyrinths, Math. Mag.
43 (1970) 125–130, and a correction in 44 (1971) 12.

[14] M. Frauenfelder, The Future of Search Engines, The
Industry Standard, 25 September 1998. http://www.
thestandard.com/articles/articleprint/0,1454,1826,00.html

[15] S. Gal, E.J. Anderson, Search in a maze, in: Probability in the
Engineering and Informational Sciences, Vol. 4, Cambridge
University Press, Cambridge, 1990, pp. 311–318.

[16] D. M. Gordon, The expandable network of ant exploration,
Animal Behaviour 50 (1995) 995–1007.

[17] J. Hopcroft, R. Tarjan, Efficient algorithms for graph
manipulation (Algorithm 447), Comm. ACM 16 (6) (1973)
372–378.

926 I.A. Wagner et al. / Future Generation Computer Systems 16 (2000) 915–926

[18] R.E. Korf, Real-time heuristic search, Artificial Intelligence
42 (1990) 189–211.

[19] S. Koenig, Y. Smirnov, Graph learning with a nearest neighbor
approach, Proc. COLT ’96 (1996) 19–28.

[20] S. Lawrence, C.L. Giles, Searching the World Wide Web,
Science 280 (5360) (1998) 98–100.

[21] R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz,
Ant-based load balancing in telecommunications networks,
Adaptive Behav. 5 (2) (1997) 169–207.

[22] T. Stützle, M. Dorigo, ACO algorithms for the quadratic
assignment problem, in: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, New York,
1999, pp. 33–50.

[23] R. Tarjan, Depth-first search and linear graph algorithms,
SIAM J. Comput. 1 (2) (1972) 146–160.

[24] G. Tarry, Le probleme des labyrinths, Nouvelles Annales de
Mathematiques 14 (1895) 187.

[25] S. Thrun, The role of exploration in learning control, in:
Handbook for Intelligent Control: Neural, Fuzzy and Adaptive
Approaches, Van Nostrand Reinhold, Florence, Kentucky,
1992.

[26] S. Thrun, Efficient Exploration in Reinforcement Learning,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, Tech.
Rep. CMU-CS-92-102.

[27] I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Smell as a
computational resource — a lesson we can learn from the
ant, Proc. ISTCS ’96 219–230. http://www.cs.technion.ac.il/∼
wagner

[28] I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Distributed
covering by ant-robots using evaporating traces, IEEE Trans.
Robotics Automation 15 (5) (1999) 918–933.

[29] I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Efficient
graph search by a smell-oriented vertex process, Ann. Math.
Artificial Intelligence 24 (1998) 211–223.

Israel A. Wanger was born in Isreal, in
1960. He received his B.Sc. degree in
computer engineering from the Technion,
Israel Institute of Technology, Haifa, in
1987, cum laude, an M.Sc. degree in com-
puter science from the Hebrew University,
Jerusalem, Israel, in 1990, cum laude,
and a Ph.D. degree in computer sceince
from the Technion in 1999. He was a
research engineer in General Microwave,

Jerusalem, grom 1987 until 1990, when he joined the IBM Haifa
Research Laboratory as a staff member. Dr. Wagner is currently an
adjunct lecturer in the Computer Science Department at the Tech-
nion. His research interests include multiagent robotics, manual
and automatic VLSI design, computational geometry and graph
theory. He is a member of MAA and AMS.

Michael Lindenbaum was born in Israel
in 1956. He received his B.Sc., M.Sc. and
D.Sc. in the Department of Electrical En-
gineering at the Technion, Israel, 1978,
1987 and 1990, repectively. From 1978 to
1985 he served in the IDF. He did his
post-doc at the NTT Basic Research Labs
in Tokyo, Japan, and from October 1991,
he is with the Department of Computer
Science, Technion. His main research in-

terest in Computer Vision, and especially statistical analysis of
object recognition and grouping processes.

Alfred M. Bruckstein was born in Tran-
sylvania, Romania, on January 24, 1954.
He received the B.Sc. and M.Sc. degrees in
Electrical Engineering, from the Technion,
Israel Institute of Technology, in 1977 and
1980, respectively, and the Ph.D. degree in
Electrical Engineering from Stanford Uni-
versity, Stanford, CA, in 1984. Since Octo-
ber 1984, he is the faculty at the Technion,
Haifa, Israel, where he presently holds the

Ollendorff Professorship of Sciences in the Computer Science De-
partment. He is a frequent visitor at Bell Laboratories, Lucent
Technologies, in Murray Hill, NJ. Professor Bruckstein’s research
interests are Image Analysis and Processing, Pattern Recogni-
tion, Robotics and Ants, and Computer Graphics. He has also
done work in Estimation Theory, Signal Processing, Algorithmic
Aspects of Inverse Scattering, Point Processes and Mathematical
Models in Neurophysiology. Professor Bruckstein is a member of
SIAM, MAA and AMS. He enjoys drawing and is an amateur
logo designer.

