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A Generalized Uncertainty Principle and Sparse
Representation in Pairs of Bases

Michael Elad and Alfred M. Bruckstein

Abstract—An elementary proof of a basic uncertainty principle ~ vectorS has representations both in termg¢f; } and in terms
concerning pairs of representations ofR™ vectors in different  of {+;}. Let us write then -
orthonormal bases is provided. The result, slightly stronger than -

stated before, has a directimpact on the uniqueness property of the a1
sparse representation of such vectors using pairs of orthonormal Qo
bases as overcomplete dictionaries. The main contribution in this S = [¢1 D2 (j)N]
paper is the improvement of an important result due to Donoho - - :
and Huo concerning the replacement of thel, optimization an
problem by a linear programming (LP) minimization when 3
searching for the unique sparse representation. /31
2
Index Terms—Dictionaries comprising pairs of orthogonal = Wl hy - ¢A,] ;
bases, linear programming (LP), sparse representation, uncer- - - :
tainty principle. BN
A question posed by Donoho and his coworkers is the following:
|. INTRODUCTION is there some benefit in representifign a joint, overcomplete

IVEN a real column vector (also referred to as a signa?)(at of vectors, say
- ) in RY it has a unique representation in every basis of {® O} = {?17 byr oo b Uy 0y, "'ﬁN}
this space. Indeed, @ = {#1, ¢, ... ¢~} are N orthogonal o _
vectors of unitlength, i.e{s;, ¢ ;) = &;;, where the Kronecker (that can be called a “dictionary” concatenating theind ¥

symbol§;; equalsl if < = j and0 if ¢ # j, we have bases)?
Indeed, we can consider a sigr#l that has a sparse repre-
o1 N sentation in terms of the joint set of vectors forming #hand
S=[¢1¢2 - ¢n) 06.2 — Z Qi the ¥ bases, but, in genera;* will have highly nonsparse rep-
. : = resentations in either of these bases alone.
an Sparse representations can have advantages in terms of com-
where[p: ¢ - ¢ x]isanN-by-N matrix, and the coeffi- pression of signals and/or in terms of understanding the under—
cientsa, are given by(¢;, S), since lying processes that generated them. The problem that arises,
- r however, is that in terms of “dictionaries” of overcomplete set of
% ¢ vectors (as obtained by concatenating the basis vectdraaf
Qs ey g the ¥ to the N-by-2N matrix[®@ W¥]) every signal has multiple

representations. Of those multiple representations choosing one
based on sparsity is a difficult optimization problem. Indeed,

an T
PN suppose we have
Note that the inner produdts, U) may appear in our notation Bl
asSTU as well, following classic linear algebra conventions. ¢

Suppose now that we have two different basedRfor & = 72

{91, ¢2, ... ¢n} and W = {31, ¢, ...50 ). Then every :
"
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additional requirements on the solution. The additional require- II. THE BASIC UNCERTAINTY PRINCIPLE
ment for sparsity would be to minimize the supportofi.e.,
minimize the number of places whetds nonzero. Hence we
need to solve the problem B

We shall first prove a basic “uncertainty principle” con-
cerning pairs of representations of a given vectoin two
given orthonormal basalk andW. Let us first state the result.

(Fp) ~ Minimize [|y[o subjectto S =[® ¥]y Theorem 1:Given a vectorS € RY and given two or-
where|y]|o is the size of the support of. This problem was thonormal base and ¥, 5 may be represented both as
addressed in two different approximation methods naméd= @« andS = Wj. For all such pairs of representations we
“matching pursuit” [1], [2] and “basis pursuit” [3], [2]. Later, Nave
a result due to Donoho and Huo [4] formalized conditions llello + 118]]o 1
under which the basis pursuit method exactly finds the desired 2 2 Vledlo - l18llo 2 M

sparse representation. They have shown that in Sabas a herel i | lue d ing th imal absol |
"wery” sparse representation, i.e., when there existo that whereM is a scalar value denoting the maximal absolute value

S =[® W]yand|lyflo < f([@ ¥]), wheref(")is some given of cross-inner-products between vector@iand .

function to be specified later, then this sparse representation iSo prove this result, suppose a sigahas the representa-
the unique solution of not onlyFy) as defined above, but alsotions

of
ay
(Pr) Minimize ||v||1 subjectto S =[® VU]~ S=1[d do - bn] 06.2 — &y
where|ly|ls = >_;[v;], thel;-norm of 5. This is an impor-
tant result stating that “sparse” representations can be found anN
by solving not a combinatorial search problem as implied by P
(FPo) but by solving the much simpler linear programming (LP) — [ ¢ - ] P2 —wg
problem of minimizing thd;-norm of y. The bound defining -3 ¥ L
sparsity as provided by Donoho and Huo is By
f([@ o) = % (1+M7h) and without loss of generality assume tisdts = 1, i.e., we
have normalized thg energy of the signal td. We have
where
M= sup ([(¢iv3)])- |
1<i, j<N Now let us write
The results of Donoho and Huo are based on exploitingan un- _ ¢7' g
certainty principle stating that a signal cannot have representa- =~ T
tions that are simultaneously sparse in two orthonormal bases. - P
This then leads to a result showing that sufficiently sparse repre- fg B2
sentations in “dictionaries” concatenating the two bases mustbe — R : (91 42 - @] :
unique, showing the uniqueness of the solution of prokl&m) T B
as defined above. Subsequently, for sufficiently sparse represen- PN
tations, it is shown that solvingP; ) leads also to the unique :gT<I>T\IIﬁ

solution of (F).
In the general case discussed here Donoho and Huo shoWg8%e:

in [4]dt?a;|uHique?(ess oI t)he sglur:ior? ofr:_(‘lBo)é:)(er;)b)lem is_den- @fﬂl @Tﬂz . ?’{%N o)

sured forl|v||o < 5(1+ +5), and that in this cas@P; ) provides

this unique solution as well, 1=y ag -+ an] 31 3a - GIUN /3.2
Here we follow the path of work of Donoho and Huo, and im- ) ) - :

prove their bounds. First, we prove an “improved” uncertainty @%@ Q%@ QR@N BN

principle leading to better bounds yielding uniqueness of the &~ N

(P) solution. The result is that uniqueness of {i%) solution = Z Z (P, ¥ 5) 055 1)

is achieved fot|y[lo < . i=1 j=1

Our main contribution in this paper is an improvement 0\7Vriting
the result concerning the replacement of tfg) minimization
problem with the(P;) convex minimization, while achieving M = sup([{¢i, ¢ ;)|) = sup (|¢} v 4|)
the same solution. We show that the solutions of the two prob- J

lems (F) and (1) coincide for||v[lo < % Doing so  all the entries in the matri@” ¥ are smaller than/. We further

we enlarge the class of signals for which we can apply a simpigave the (Parseval) energy preservation property
linear-programming based search for the optimal sparse repre-

sentation. 1=575=Y"a}=> 4.
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Now assume that We have, therefore, obtained the result stated in Theorem
4 d 18l — B 1. If we have two representations of a sigrfalin the bases
llallo = and [|Bllo = B. B[Py ¢ -~ n]and ¥y ¥ - P n] and the coeffi-
Then (1) becomes cient vectorsy and 5 have supports of sizgf|lo = A and
4+ B |8llo = B then
:Z§j Agirs ©)By 1
“ 4 > —
e AB > i
where:’ runs over the support @f and;j’ runs over the support where M = Sup{|{¢;, ¥;)|, ¥ (i, j)}. Using the well-known
of 3. Now we can write inequality between the geometric and arithmetic medsé >
A B Vv ADB, we also have that
Qi ¥ > > = > —
P . _(\/AB)_M = A+Bz .
4 B Donoho and Huo obtained, by emulating arguments for the si-
<D | (i, w0118 nusoidal and spike bases, a weaker result stating that

=1 j'=1 1
25 avp (1+3)
<30 lawl-M 18] M
V=1 j'=1 (with respect to [4, eq. (7.1)]). Clearly
A 2 1 1 1
:ﬂfZ ) ZWI- @ M- T w
=1 sinceM < 1.1In[4]itis said that their “...general bound (i.e.,

Next, in order to upper-bound the above expression, let us sof¥el)) can be afactor of two away from sharpness with respect to
the following problem: those (earlier particular, i.e., sinusoidal and spike bases) cases.

Its generality can be an advantage in some cdses

. A We see here that an elementary derivation provides tight
maximize <Z “i> >0 bounds that are not by a factor of two away from sharpness.
i=1 j= ;
£ B sinusoids)1 + 3;) goes tol + v/N while 2 goes to2v/N,
subjectto «;, 3; > 0, Z af =1, Z g =1 which is the bound claimed for this particular case (see, e.g.,
‘ J=t [4, eq. (2.1)] or [5, eq. (2.2))).
Since this pr0b|em is Separab|e We have to maX|m|ze bothIn fact, the uncertalnty result that we have obtained is even
(Z;’*:l «; ) subjecttoy; > OandZ_]L a? =1, and(zg=1 3;) stronger since we go¥ AB > ;. The use of the arithmetic

mean instead of the geometrlc one looses tightness except for
= B. Also, this uncertainty resultis of the form of the classical
multiplicative uncertainty results (see, e.g., [2])- 02 > 1.
The value of?f is crucial in the above arguments. For any pair

subject tog; > 0 andzf:1 /3? = 1. To solve these problems
let us consider the following Lagrangian (note that we d
not explicitly enforce the positivity constraint, but verify its
correctness at the end of the process)

of orthonormal base® and¥ of R we have thad/ > \/_ .To
A A
_ R 2| see_thls, one simply notices t@T\If is an orthonormal mqtnx,
Q) z_: ot Z a”] having the sum of squares of its entries equaNtoAll entries
aL 1 cannot therefore be less thayn/N since then we would have
e — 12 Ao =0 = a; = o that the sum of all squared entries is less than
Next, using the unit-norm constraint we get [ll. UNIQUENESS OFSPARSEREPRESENTATIONS
A 2 A r1\? A direct consequence of the uncertainty relation derived
ZO“ - Z 2 above is the following fact: if we have a “sparse” represen-
tation in terms of a dictionary that is the concatenation of
- A4 =1 = A= @ = o = 1 ) two orthonormal base® and ¥, it is unique. How sparse the
42 2 VA representation should be to achieve such uniqueness depends

JA crucially on the bound provided by the uncertainty principle.

Therefore, the maximal value 4y equalsA = .
Of = @i €q va We first state the result as follows.

and the maximal value of;_, c;r Z 71 is VAB. Re-
turning to our derivation of the uncertainty relations in (2) we Theorem 2:Ifthe signals is to be represented using the con-
now have catenated dictionary®, ¥] (2/V vectors), for any two feasible

representations denoted by, v» € R*", we have

Iv1llo + [lv2llo =

A B
SM-Y > |ar]|By| < MVAB. 2
=1 j’:l M
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Thus, there cannot be two different representations for the sam&he boundl /M is better than the one implied by the uncer-
vector having each less thafA/ nonzero entries, i.e., for anytainty principle stated in [4], which would yieI§(1 + ML),
given representation we have that uniqueness is ensured by This means that the uniqueness result will be true for much less
1 sparse representations than those required by the bound pro-
lIvllo < v vided in [4].

This result derives easily from the following line of argumen{V. FINDING SPARSEREPRESENTATIONSVIA /3 OPTIMIZATION
tation (taken from [4]). Supposg; and~, are the coefficient
vectors of two different representations of the same sigrial
the dictionary{® V¥, i.e.,

The next question that naturally arises is as follows: if a signal
S has a sparse representation in a dictiori@ry¥], how should
we find it? Solving the, optimization problem defined as

S=1® ‘I’]llz[‘l’ ‘I’]12- 2N
Then clearly (P,) Minimize [y]lo = >_ 7 subjecttoS = [@ ¥]~y
k=0
(@ ¥][71 —72] =0 involves an unfeasible search (note that in the definition of the
or lo norm we defined® to be0). However, it was discovered ex-
® - [v1—72]®+ ¥ -[71—72]" =0 perimentally that solving thh optimization problem
or N
By = —Wy% = A (P) Minimize ||y||, = kzo lyx| subjecttoS = [& U]y

Hence in this case, we have two vectgfg and~ ", defined as often provides the sparse representation [3]. Donoho and Huo
the “upper” and “lower’N values iny; —y2, respectively. These proved in [4] that the stronger sparsity condition

two vectors are nonzero since they represent the same vector 1

in the two orthogonal bases. Illo < 5 (1 + M~

Now the basic uncertainty principle states that if _ _
ensures that the solution of the probléf ) yields the sparse

I¥Allo=A4 and [v4llo =B solution of (Fy) too. This is a wonderful result, sinde”;) is
then we must have essentially a LP problem!
9 To show that P, ) provides also théF,) solution one has to
A+B> (2 AB 2) E prove that if
Suppose that the original representations were both sparse, i.e., I7llo< £ and [® ¥]y=S5
that . .
then, if there exists some other representaidon¥] ¥ = S, we
[71llo < £ and [|ly2[lo < F. must have
Then we must necessarily have 17012 = Il
Ilve — v2llo < llvillo + [lv2llo < 2F. In words, we need to show that the (unique) sparse also

“shortest” in thel; metric. As mentioned earlier, Donoho and

On the other hand, we have . .
Huo have shown that foF = (1 + M ~') this requirement

71— v2llo = HfAH + HZWAH =A+B. is met. In what follows, we first describe the derivation of this
i o 0 o result, then, in the next section we show how this bound can be

Hence, sparsity of botly; and~y» with bound#” implies that improved.

A+ B < aF Following [4] we have that if
But by the uncertainty principle we have @ V]y=5=[® ¥y

2 then
A+ B> —.
+ 5> 1% )

In conclusion, if” would beM —* or smaller, we would contra- [® Y[ -~]=0.

dict the uncertainty principle if we would assume two differentnerefore. the difference vector— % — ~ satisfies
sparse representations. Hence, we have proved the uniqueness N -
Theorem 2: If a signab has a sparse representation in the dic- ®z” = W(—z¥) 3)

tionary [@ W] so that where we define the two vectog$ andz¥ as the “upper” and

1 “ " H _ 5 .
S=[® ¥y and |ho< — lower” N values inz = 7 — v, respectively. We need to show
M that for every nonzero vectarthat obeys (3) we shall have
then this sparse representation is necessarily unique (i.e., there aN aN

cannot be two different’s obeying||o|| < M ! thatrepresent Z Ik + zi| — Z Ive| > 0.
the same signal). k=1 k=1 B
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Hence, we need to show that But we have assumed thigt||o < F', hence we shall have
: : J = 1v|) = 0. T;
) Zt l+ Zt (el = b 2 Shal
oftf support of v on support of v - .
X X 2olwil T F(M)

In order to shorten notations in the following analysis, we define all

. If we have ' < $F(M) then the required condition for the

Z |z3| = Z || optimality of y for the, problem will be met. We shall next

=T el prove thatF' (M) > 1+ 4; and it will lead to the result that if

Z (k| = Z ] F < i1+ ), (4) holds as needed. |
Since we havé = 2% = —Wz¥ we can writer® = — &7 ¥z¥.

off support of . . .
prort ot Suppose without loss of generality that the condition we have is

dlaml= D> lal « = V. Then we have
on on support of vy
- 2% 0o = max||a:¢|| = |z | for some indexjo
The inequalitjv+m| > |v|—|m|implies|v+m|—|v| > —|m]|,

so we have = ‘— [‘PT\I’} 2 <Mzl
rowjo - -
%:|$k|+2(|% +$k|—|7k|)zzﬂ:|$k|—2|$k|- Hence,
Putting this into the preceding inequality we get %]y > 12l > M
== M — M
Z x| — Z x| 2 0. We also obviously have
off on
b
Adding2 3" |zx| to both sides results in %l = V]
hence
lekl+lekl—lekl>Zlekl .
el + el 2 V1 (14 57 )
which finally gives
Therefore, we may take
Sl 1
= |zx| — |zx| > 0 or equivalently= =. (4 i _ s
Z 2 Sl = 2 FOO) = (1457

all

Therefore, if we shall show that for some value of the suppo!iS Proves that if

size ofy (denoted byF), all z obeying (3) also satisfy (4), 1 1
then the assertioffry||; > ||v||: follows, and the(F; ) problem 12/l < B <1 + M)
can replace théF,) problem while searching for the sparse
~. Following [4], in order to prove (4), consider the followingth® sparse representation will be provided by the solution of

problem (Py) as well. .
So far we have seen that if
minimize 2_: 7| + 2_: |z} | Iallo < 57
subject to {xi/w — V and®[2¢] = \If[—gw']} the sparse representation is unique and if
1 1
whereV is an arbitrary nonzero scaldrjs an arbltrary integer [7llo <5 <1 + M)
index in the ranggl, N], « /% denotes eithex? or z, and

2%, ¥ are theith entries of the vectors? andz", respectively the unique sparse representation is provided by solving an LP

(z* andz* where defined above—see (3)). This minimizatioRroblem(£1). Hence, if
problem consists of finding the smallest possible denominator 1 1 1
in (4) while assuming that some arbitrarti) entry in either 9 <1 + M) < llallo < M

x? orz¥ is nonzero and equal 8. If the minimum attained for
all conditionsz ¢/Y _ V is given by somef(V) > |V|F (M) We have uniqueness of tli&,) solution, but we cannot be sure
then we shall be able to say that that( P, ) will provide this solution. So, obviously, there remains
a gap, and the natural question is what happens for sparsity of
> il 2] % 1 vectors in this gap. A wealth of simulations that we have per-
= Z <y < == “ll7llo-  formed has shown that for signals with (unique) sparse represen-

%'x” Z el T VI E(M) - F(M) tation in this gap the equivalence between(tRg) and the( P, )
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solutions remains true. Motivated by these empirical results, \w&a alternative minimization problem. In this new problem, we
succeeded to prove that the gap is indeed much narrower. minimize the same function, but pose a weaker set of constraints
as follows:

V. IMPROVING THE BOUND FOR{; OPTIMIZATION

minimize l% PSS Iwkll

In the preceding section we closely followed Donoho and all on
Huo’s work and reproduced their results. Next we take a dif- 1.X1<M-1yynXo
ferent route in order to obtain an improved bound necessary for
the equivalence betweédiy) and( ;). The result to be estab- subject to: 2. X< M- 1yunXo

lished in this section states the following. 3. Z |lzi| =1

Theorem 3: If the signalS has a sparse representatipfi.e., all

s=[ \I’]l) such that where we define{ ; andX , as the absolute values of the orig-

inal vectorsz® and z¥, respectively, and wherkyy x is an
(\/5 — 0'5) - 0.9142 N-by-N matrix all the entries of which are ones.

M M The first and second constraints simply use the fact that any
given entry in one of the vectorg¥{ or z*) cannot be greater
thanM multiplying the sum of the absolute entries in the other
vector. Clearly, every feasible solution of the original constraint
Let us prove this claim. Equations (3) and (4) can be re-intefet is also a feasible solution of the new constraint set, but not

I2llo <

then thel;-norm minimization solution coincides with the min-
imization of thelg norm.

preted as an optimization problem of the following form:  vjce versaThus, if the minimum of the function is still positive
using the new constraint set, it implies that it is surely positive
L 1 using the original constraint set.
minimize |3 = ‘ . i o
[2 EH: | 2] %ﬂ: |$"|] Looking closely at the newly defined optimization problem,
a.

, we can further simplify it by noticing first that the sum over
subjectto ®z® = U(—z"). all the support that appears in the function is known tolbe
due to the third constraint. Also, only the absolute values of
This problem should be solved for various valueg|9flo and the unknown vector: play a role here. Exploiting these two

all prOf”es of nonzero entries I’I_‘ﬂ As ||l||0 increases the min- properties we can rewrite the new pr0b|em and get
imum of the above expression decreases and tends to a negative

value. The largeghy|| that yields a minimum that is still above

. 1
zero as a consequence of (4) will be the bound on the sparsity Minimize |- — 151&1 - 1@&2
. . 2
of v, ensuring equivalence betwegefy) and (P1). However,
working with the above minimization problem is complicated 1LX) S M- 1yunXo
because of several reasons. 2. X, <M -1yxnX1

subject to: (5)

1) We have not explicitly set conditions anto avoid the
trivial solutionz = 0.

BAN(X1+Xo)=1

4X,20, X520
2) The problem involves both the entries of the veetand
their absolute values. where we added the fourth constraint regarding positivity of

3) The orthonormal matricad and¥ appear explicitly, and the unl(;nowns, 'ae%’ the entrlesfiﬂl aTNdXQ' Thebnqtat|ohns
we would like them to influence the result only through andl,, St"’,‘n or vectors 0 engtlV, [1,, 17?] .emgt €
the parameted they define. (2NV)-vector with ones wherg is nonzero and y is simply an

N-vector containing all ones.
4) The problem is clearly sensitive not only to the number |f e assume that there a#; nonzero components ih,,
of nonzero elements in the supportgfbut also to their anq x, nonzero components ih,, thenk; + K5 = ||7]lo. In
position. the new formulation, we can assume without loss of generality

In order to solve the first difficulty, we introduce an additionathat the K1 (K>) nonzero components are located at the first
constraint that prevents the trivial solution. Such a constrai@sitions of vectorX ; (X »), due to the symmetrical form of
could be posed on tHe or thel; norm of the unknown vectar, the constraints.
i.e,zTz =10rY , |zx] = 1. The newly added constraintwill ~ The problem we have obtained is a classical LP problem and,
clearly not change the sign of the result, i.e., if for sonéo @S such, has a unique local minimum point which is also the
the minimization result becomes negative, then it would hay@igque global minimum point. Let us bring it to its canonical
been so without the constraint as well. Thus, the new constrai@f™
does not interfere with our goals in this optimization problem.

As to the other difficulties, we solve them via the definition of (P) Minimize C"Z subjecttoAZ > B, Z>0.
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(P) denotes the fact that this is a primal LP form. The matricdhe multiplicationly . x1., is simply K>1x, and similarly,
(A, Z, B, C) involved are defined as follows: lyx=n1, = Kily. Thus, the first set oV inequalities actu-
ally reduces to the simple scalar requirement

[X 1 X T]
If 0 < o <1, as assumed earlier, the second set of inequalities
T .

[ 1 —1} can be replaced by the scalar requirement

_IN M- 1Inxn l-a)+ MK +(B—-06)<0.
M- 1yxn —Iy
A= T T . (For theN — K, places wherd.,, has zero components, we get

Iy Iy the inequalityM K + (3 — é) < 0, which is weaker than the
—1% -1% above one.)

. . - . . Solving the two inequalities as equalities, we get
Notice that the equality constraint in the original problem is re- LMK
+ 1

placed by two inequalities, in order to fit the required canonic aMK;=(1-a)+ MK, = a= )
form. In the optimization problem defined in (5) we wanted con- 1+ MK,

ditions so that the minimum will not be negative. After removingve see that, indeed, our assumptibg « < 1 is correct since
the constant /2 from the function to be minimized, the new rewe assumedy; < K- and we havell > 0.

quirement become§” Z > —0.5. So far we have found an expression for the first parameter

It is still difficult to give an analytic form to the solution of As to the other two, substitutingin the above equations we get
the LP problem we obtained. Instead, we shall exploit the dual |+ MK
1

LP problem of the form 8§ =— ot
p o ' | i (B-106) MK, 1 MK, < 0.
(D) maximize B°U  subjecttoA"U <C, U2>0. Thus, we can choose = 0 andé will be the above expression

(D) here denotes that this is a dual LP form, with the sanfBultiplied by —1. This way, we have satisfied all the inequality
matrices as in the primal problem (see, e.g., [6]). constraints, and obtained a soluti@rwhich is also nonnegative

The approach we are going to take is as follows: We knoly all its entries.

that the primal and the dual problems vyield the same optimalNow that we have established that the proposed solution is
value [6], i.e., feasible, let us look at the value of the function to be maximized.

This function is simplyB* U = (3 — 6). So we should require
1+ MK, 1

—(f—8)=-MK, — "L~ __
(B-9) 21T MK, = 2

minimize {C” Z} = maximize {B"U} .

We require this optimal value to be higher than or equai@cs.

In the dual problem, if we find a feasible solutidhsuch that Thus
BTU > —0.5, we guarantee that the maximal value is also '
above—0.5, and thus we fulfill the original requirement on the ;- - 1+ MK, 1 00 K Ks+ MEy—1<0. (6)

primal problem. 1+ MKy, = 2
Let us consider the following parameterized form for a fegue have, therefore, obtained arequiremenkarandk>» which
sible solution forU: is posed in terms of the paramet&f. Thus, given a vector
UT =% oL g 6 S € RV, the two orthonormal basdsand¥, and their induced

cross-product factod/, we solve the P, ) problem and obtain
whereq, 3, andé are real scalar parameters. Using previous candidate representatign From this representation, we can
notations, there aré(; nonzero components ib,, and K> determinek; andK>, the respective numbers of nonzero com-
nonzero components ih,,. We assume without loss of gen-ponents in the twdV-sections ofy. Putting them into the in-
erality thatK; < K (the problem is perfectly symmetric with equality (6) we immediately know whether this is also (i)
respect to these two sections). We also assumétkiaty < 1.  solution as well, and hence also the sparsest representation.
This way, three parametefs, /3, §) govern the entire solution  We now proceed and produce a simpler sparsity condition on
U/, and we need to find requirements on them in order to guahe representation ensuring thatP; ) produces the unique and

antee that the proposed solution is indeed feasible. spars€g F,) solution. Assuming that we knoi», the require-
Substituting the proposed solution form into the constraintent onk; is
inequalities of the dual problem we get 1 1- MK
IM2K Ky + MK, —1<0 = K; < — . —— 2%
-1, +aM -1nxnly, + (8- 6)In < -1, M  2MK,
—ol,, + M -1nynl,, + (8- 6)1ln <-1,, Adding K, to both sides of the above inequality we get
and rearranging these inequalities we get Ko< L 1T MK
R N AT e 2
aM - Lyxnly, +(8 =61y <0 11— MK, +2(MK,)?

(I-a)ly, + M - 1nxnly, + (8- 6)1y <O0. M 2M K,
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Fig. 1. A graphic description of the bounds obtained.

Let us look at the term which multiplies/M in the above  Fig. 1 shows graphically how (6) compares to the alternatives
bound. This term is a function of = M K> which is clearly

nonnegative. The minimum of this term is given by cancelling K+ Ky < (vV2-0.5)
the derivative of the functiorf(z) = (1 — = + 22?)/(2z), thus - M
solving the equation = 222 — 1, which results in: = £+/0.5. and

The negative solution is irrelevant, and the positive one is in- Ki+K>< %

deed the minimum (as easily verified with the second deriva-

tive), where we get th@f(\/_ﬁ) =V2-05=09142. Thus, |, this graph, we have assumad = 1/./128. Note that since
our final result is the requirement 0 < K, < K, only the upper left part of the graphs is relevant,
and thus we have masked the nonrelevant zone. We can see that
the1l/M bound (which is also the uniqueness bound) is valid at
To summarize, we got that Jfrllo < (v — 0.5)/M then the the extremes, whereas the¢/2 — 0.5)/M bound is relevant in
dual LP necessarily gives a value abev@.5, which in turn as- the .m|ddle of theKl zone.. .

' Fig. 2 graphically describes how the various bounds devel-

el Thus /s guaranteect that henorm o the soluton v OPed BY Donoho and Huo (and thus denoted by D) compare
' ' 9 with the new bounds established here (denoted EB).

this number of nonzero components is the smallest possible,' s : . .
we have proved that tHe”; ) problem yields the solution ¢f%) ne question that remam.s.at the moment unanswered is
! 9/ whether the(v/2 — 0.5) coefficient we got reflects the true
as well. . . behavior of the(F,) problem versus théP;) one, or is it
The result obtained is better than &(1 + 1/M) bound . . . A
asserted by Donoho and Huo. As an exampleMo= 1/v/N emerging due to the_ still loose bour_m_hng apprOX|mat|on in our
: ' roof. For example, if we take the trivial (spike) and Hadamard

we get that forV = 16 the old (DH) requirement is to have les - o o
than 2.5 nonzero components, while we (EB) require 3.65 a%p‘ases forV = 128, we get thatl/M = 1/128 = 1/11.31.

below. ForV = 64, the old requirement (DH) is 4.5 and below, entcr:]e, t?ﬁ ur;:qugnt(;ss bour;d regu]citﬁﬁ(aﬁ %M E Elﬁ
while the new bound requires 7.3 or less nonzero componenct)g]. e other hand, the new bound found héw€2 — 0.5)/M,

As N goes to infinity the ratio between the two results becom&§aUIres less than 10.'34 nonzero entries, which in practice
means 10 and below in order to ensure that(tRe) and the

(v2-053) (\/g —0.3) VN (Fo) problems coincide. An experiment that would test this
05 1M T~ = — 2v/2-1=1.8284. case with 11 nonzero entries and produce a counterexample
S5(1+2) 05 (1+\/N) where (Py) and (P;) lead to different solutions could be

1
Ivllo = K1 + K2 < (\/5— 0.5) Ve
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: 0.5(1+1/M) §
EB {PO - Pl} Equivalence Result
> EB Uniqueness Result >

Fig. 2. A graphic illustration of the bounds due to Donoho and Huo (DH) versus the ones developed in this paper (EB).

beneficial. The search for such a counterexample is currentlyThe second question answered in this paper refers to the

under way but so far we could not find any case like this. uniqueness of sparse representation with overcomplete dic-
It is interesting to note that if we assume tli&t =0, the re- tionaries. Assuming that the signal is to be represented

quirement made in (6) leads to the requirem€nt=||v|[o < ;.  using a dictionary that contair® and ¥ (2N vectors), it is

Similarly, if K5 = K; then (6) leads to the requireme2¥’, = clear that there are numerous possible representations. It was

I7llo < L. Note that these two cases are the extremes in thstablished that for any two feasible representations denoted by

range ofi; (0 < K; < K»). Thus, for these two cases, th&\d v, v» € R*V, we have that

bound is valid and there is no gap with respect to the uniqueness o

bound. llvallo + llvallo = —

Returning to the suggested search for a counterexample for ) M .
the 11 nonzero components described above, it is clear now thaH'S: there cannot be two different representations for the same

choosing the nonzero components in one of the above two ¥gCtor having each less thayih/ nonzero entries, i.e., for any
tremes will not lead to a successful hunt. Instead, one has%$en representation, we have that uniqueness is ensured by
choosek, =~ \/A(J{_O = 8andk; = 11 — 8 = 3 in order to
maximize the chances for success. Again, simulations done so lI2llo < M
far have no_t found such a s_pe(_:lal case. _ The main contribution of the paper concentrated to the way to
Apother_lme\f)rtant question is how much of the entire rangg,§ \he sparse representation over an overcomplete dictionary
of signals inR"* are we covering by the sparsity condition We;s yescriped above. Finding the optimal representation by min-
have formed? What is the “measure ofsgnalsthat require mc?Fﬁizing thel, norm is a highly complicated nonconvex combi-
than(v'2 — 0.5)/M nonzero components in their Sparse reprez, i) optimization search. An alternative approach based on
.sentat'lon? These and more questions will be the subject Off““l‘f—‘?]orm minimization was proposed by Donoho and Huo and
Investigations. proved to lead to the same result for sufficiently sparse signals.
Their result was that if the signal has a sparse representation
V1. CONCLUSION with no more tham.5(1 4+ 1/M) nonzero entries, minimization
Given a vectorS € RY, and given an orthonormaV-by-Nv  of the; norm can replace the origin&-norm minimization
matrix @ representing a basis, we can uniquely repregentwhile ensuring the same result. Obviously, such a result is very
using this basis and get = ®*S. Assuming that we have valuable sincé;-norm minimization leads to an LP problem,
a second orthonormal basi and a second representatiowhich is a convex problem, while tlig-norm minimization is a
8= Ur's, the first question we have addressed in this papeard nonconvex problem. In this paper, we have improved this
is whether there is a lower bound on the number of nonzesparsity bound and found thatdfhas a sparse representatipn
components in these two representations. It was found that such that

ledlo +118llo o 7 < 1 (vV2-03) 09142
- > . > —
2 = Viedlo - 15llo = M HlHO < M M

whereM is a scalar value denoting the maximal absolute valdleen the/;-norm minimization solution coincides with the mini-
of cross-inner-products between vector®imnd . mization of thdy norm. In fact, the bound obtained in this paper
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is better thaﬁ%, since we obtained the above requirement
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