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A Generalized Uncertainty Principle and Sparse
Representation in Pairs of Bases

Michael Elad and Alfred M. Bruckstein

Abstract—An elementary proof of a basic uncertainty principle
concerning pairs of representations of vectors in different
orthonormal bases is provided. The result, slightly stronger than
stated before, has a direct impact on the uniqueness property of the
sparse representation of such vectors using pairs of orthonormal
bases as overcomplete dictionaries. The main contribution in this
paper is the improvement of an important result due to Donoho
and Huo concerning the replacement of the 0 optimization
problem by a linear programming (LP) minimization when
searching for the unique sparse representation.

Index Terms—Dictionaries comprising pairs of orthogonal
bases, linear programming (LP), sparse representation, uncer-
tainty principle.

I. INTRODUCTION

G IVEN a real column vector (also referred to as a signal)
in it has a unique representation in every basis of

this space. Indeed, if are orthogonal
vectors of unit length, i.e., , where the Kronecker
symbol equals if and if , we have

...

where is an -by- matrix, and the coeffi-
cients are given by , since

... ...

Note that the inner product may appear in our notation
as as well, following classic linear algebra conventions.

Suppose now that we have two different bases for
and . Then every
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vector has representations both in terms of and in terms
of . Let us write then

...

...

A question posed by Donoho and his coworkers is the following:
is there some benefit in representingin a joint, overcomplete
set of vectors, say

(that can be called a “dictionary” concatenating theand
bases)?

Indeed, we can consider a signal that has a sparse repre-
sentation in terms of the joint set of vectors forming theand
the bases, but, in general, will have highly nonsparse rep-
resentations in either of these bases alone.

Sparse representations can have advantages in terms of com-
pression of signals and/or in terms of understanding the under-
lying processes that generated them. The problem that arises,
however, is that in terms of “dictionaries” of overcomplete set of
vectors (as obtained by concatenating the basis vectors ofand
the to the -by- matrix ) every signal has multiple
representations. Of those multiple representations choosing one
based on sparsity is a difficult optimization problem. Indeed,
suppose we have

...

...

Choosing involves solving an underdetermined set ofequa-
tions with unknowns, and hence must be done subject to

0018-9448/02$17.00 © 2002 IEEE



ELAD AND BRUCKSTEIN: UNCERTAINTY PRINCIPLE AND SPARSE REPRESENTATION IN PAIRS OF BASES 2559

additional requirements on the solution. The additional require-
ment for sparsity would be to minimize the support of, i.e.,
minimize the number of places whereis nonzero. Hence we
need to solve the problem

Minimize subject to

where is the size of the support of. This problem was
addressed in two different approximation methods named
“matching pursuit” [1], [2] and “basis pursuit” [3], [2]. Later,
a result due to Donoho and Huo [4] formalized conditions
under which the basis pursuit method exactly finds the desired
sparse representation. They have shown that in casehas a
“very” sparse representation, i.e., when there existsso that

and , where is some given
function to be specified later, then this sparse representation is
the unique solution of not only as defined above, but also
of

Minimize subject to

where , the -norm of . This is an impor-
tant result stating that “sparse” representations can be found
by solving not a combinatorial search problem as implied by

but by solving the much simpler linear programming (LP)
problem of minimizing the -norm of . The bound defining
sparsity as provided by Donoho and Huo is

where

The results of Donoho and Huo are based on exploiting an un-
certainty principle stating that a signal cannot have representa-
tions that are simultaneously sparse in two orthonormal bases.
This then leads to a result showing that sufficiently sparse repre-
sentations in “dictionaries” concatenating the two bases must be
unique, showing the uniqueness of the solution of problem
as defined above. Subsequently, for sufficiently sparse represen-
tations, it is shown that solving leads also to the unique
solution of .

In the general case discussed here Donoho and Huo showed
in [4] that uniqueness of the solution of the problem is en-
sured for , and that in this case provides
this unique solution as well.

Here we follow the path of work of Donoho and Huo, and im-
prove their bounds. First, we prove an “improved” uncertainty
principle leading to better bounds yielding uniqueness of the

solution. The result is that uniqueness of the solution
is achieved for .

Our main contribution in this paper is an improvement of
the result concerning the replacement of the minimization
problem with the convex minimization, while achieving
the same solution. We show that the solutions of the two prob-
lems and coincide for . Doing so
we enlarge the class of signals for which we can apply a simple,
linear-programming based search for the optimal sparse repre-
sentation.

II. THE BASIC UNCERTAINTY PRINCIPLE

We shall first prove a basic “uncertainty principle” con-
cerning pairs of representations of a given vectorin two
given orthonormal bases and . Let us first state the result.

Theorem 1: Given a vector and given two or-
thonormal bases and , may be represented both as

and . For all such pairs of representations we
have

where is a scalar value denoting the maximal absolute value
of cross-inner-products between vectors inand .

To prove this result, suppose a signalhas the representa-
tions

...

...

and without loss of generality assume that , i.e., we
have normalized the energy of the signal to. We have

Now let us write

...
...

hence,

...

(1)

Writing

all the entries in the matrix are smaller than . We further
have the (Parseval) energy preservation property
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Now assume that

and

Then (1) becomes

where runs over the support of and runs over the support
of . Now we can write

(2)

Next, in order to upper-bound the above expression, let us solve
the following problem:

maximize

subject to

Since this problem is separable, we have to maximize both
subject to and , and

subject to and . To solve these problems
let us consider the following Lagrangian (note that we do
not explicitly enforce the positivity constraint, but verify its
correctness at the end of the process)

Next, using the unit-norm constraint we get

Therefore, the maximal value of equals

and the maximal value of is . Re-
turning to our derivation of the uncertainty relations in (2) we
now have

We have, therefore, obtained the result stated in Theorem
1: If we have two representations of a signalin the bases

and and the coeffi-
cient vectors and have supports of sizes and

then

where . Using the well-known
inequality between the geometric and arithmetic means,

, we also have that

Donoho and Huo obtained, by emulating arguments for the si-
nusoidal and spike bases, a weaker result stating that

(with respect to [4, eq. (7.1)]). Clearly

since . In [4] it is said that their “…general bound (i.e.,
(7.1)) can be a factor of two away from sharpness with respect to
those (earlier particular, i.e., sinusoidal and spike bases) cases.
Its generality can be an advantage in some cases.”

We see here that an elementary derivation provides tight
bounds that are not by a factor of two away from sharpness.
Indeed, as (as it happens for spikes and complex

sinusoids) goes to while goes to ,
which is the bound claimed for this particular case (see, e.g.,
[4, eq. (2.1)] or [5, eq. (2.2)]).

In fact, the uncertainty result that we have obtained is even
stronger since we got . The use of the arithmetic
mean instead of the geometric one looses tightness except for

. Also, this uncertainty result is of the form of the classical
multiplicative uncertainty results (see, e.g., [2]) .

The value of is crucial in the above arguments. For any pair
of orthonormal bases and of we have that . To

see this, one simply notices that is an orthonormal matrix,
having the sum of squares of its entries equal to. All entries
cannot therefore be less than since then we would have
that the sum of all squared entries is less than.

III. U NIQUENESS OFSPARSEREPRESENTATIONS

A direct consequence of the uncertainty relation derived
above is the following fact: if we have a “sparse” represen-
tation in terms of a dictionary that is the concatenation of
two orthonormal bases and , it is unique. How sparse the
representation should be to achieve such uniqueness depends
crucially on the bound provided by the uncertainty principle.
We first state the result as follows.

Theorem 2: If the signal is to be represented using the con-
catenated dictionary ( vectors), for any two feasible
representations denoted by , we have
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Thus, there cannot be two different representations for the same
vector having each less than nonzero entries, i.e., for any
given representation we have that uniqueness is ensured by

This result derives easily from the following line of argumen-
tation (taken from [4]). Suppose and are the coefficient
vectors of two different representations of the same signalin
the dictionary , i.e.,

Then clearly

or

or

Hence in this case, we have two vectors and defined as
the “upper” and “lower” values in , respectively. These
two vectors are nonzero since they represent the same vector
in the two orthogonal bases.

Now the basic uncertainty principle states that if

and

then we must have

Suppose that the original representations were both sparse, i.e.,
that

and

Then we must necessarily have

On the other hand, we have

Hence, sparsity of both and with bound implies that

But by the uncertainty principle we have

In conclusion, if would be or smaller, we would contra-
dict the uncertainty principle if we would assume two different
sparse representations. Hence, we have proved the uniqueness
Theorem 2: If a signal has a sparse representation in the dic-
tionary so that

and

then this sparse representation is necessarily unique (i.e., there
cannot be two different’s obeying that represent
the same signal).

The bound is better than the one implied by the uncer-
tainty principle stated in [4], which would yield .
This means that the uniqueness result will be true for much less
sparse representations than those required by the bound pro-
vided in [4].

IV. FINDING SPARSEREPRESENTATIONSVIA OPTIMIZATION

The next question that naturally arises is as follows: if a signal
has a sparse representation in a dictionary , how should

we find it? Solving the optimization problem defined as

Minimize subject to

involves an unfeasible search (note that in the definition of the
norm we define to be ). However, it was discovered ex-

perimentally that solving the optimization problem

Minimize subject to

often provides the sparse representation [3]. Donoho and Huo
proved in [4] that the stronger sparsity condition

ensures that the solution of the problem yields the sparse
solution of too. This is a wonderful result, since is
essentially a LP problem!

To show that provides also the solution one has to
prove that if

and

then, if there exists some other representation , we
must have

In words, we need to show that the (unique) sparseis also
“shortest” in the metric. As mentioned earlier, Donoho and
Huo have shown that for this requirement
is met. In what follows, we first describe the derivation of this
result, then, in the next section we show how this bound can be
improved.

Following [4] we have that if

then

Therefore, the difference vector satisfies

(3)

where we define the two vectors and as the “upper” and
“lower” values in , respectively. We need to show
that for every nonzero vectorthat obeys (3) we shall have
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Hence, we need to show that

In order to shorten notations in the following analysis, we define

The inequality implies ,
so we have

Putting this into the preceding inequality we get

Adding to both sides results in

which finally gives

or equivalently (4)

Therefore, if we shall show that for some value of the support
size of (denoted by ), all obeying (3) also satisfy (4),
then the assertion follows, and the problem
can replace the problem while searching for the sparse

. Following [4], in order to prove (4), consider the following
problem:

minimize

subject to and

where is an arbitrary nonzero scalar,is an arbitrary integer
index in the range , denotes either or , and

, are the th entries of the vectors and , respectively
( and where defined above—see (3)). This minimization
problem consists of finding the smallest possible denominator
in (4) while assuming that some arbitrary (th) entry in either

or is nonzero and equal to. If the minimum attained for
all conditions is given by some
then we shall be able to say that

But we have assumed that , hence we shall have

If we have then the required condition for the
optimality of for the problem will be met. We shall next
prove that and it will lead to the result that if

, (4) holds as needed.
Since we have we can write .

Suppose without loss of generality that the condition we have is
. Then we have

for some index

Hence,

We also obviously have

hence

Therefore, we may take

This proves that if

the sparse representation will be provided by the solution of
as well.

So far we have seen that if

the sparse representation is unique and if

the unique sparse representation is provided by solving an LP
problem . Hence, if

we have uniqueness of the solution, but we cannot be sure
that will provide this solution. So, obviously, there remains
a gap, and the natural question is what happens for sparsity of
vectors in this gap. A wealth of simulations that we have per-
formed has shown that for signals with (unique) sparse represen-
tation in this gap the equivalence between the and the
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solutions remains true. Motivated by these empirical results, we
succeeded to prove that the gap is indeed much narrower.

V. IMPROVING THEBOUND FOR OPTIMIZATION

In the preceding section we closely followed Donoho and
Huo’s work and reproduced their results. Next we take a dif-
ferent route in order to obtain an improved bound necessary for
the equivalence between and . The result to be estab-
lished in this section states the following.

Theorem 3: If the signal has a sparse representation(i.e.,
) such that

then the -norm minimization solution coincides with the min-
imization of the norm.

Let us prove this claim. Equations (3) and (4) can be re-inter-
preted as an optimization problem of the following form:

minimize

subject to

This problem should be solved for various values of and
all profiles of nonzero entries in. As increases the min-
imum of the above expression decreases and tends to a negative
value. The largest that yields a minimum that is still above
zero as a consequence of (4) will be the bound on the sparsity
of , ensuring equivalence between and . However,
working with the above minimization problem is complicated
because of several reasons.

1) We have not explicitly set conditions onto avoid the
trivial solution .

2) The problem involves both the entries of the vectorand
their absolute values.

3) The orthonormal matrices and appear explicitly, and
we would like them to influence the result only through
the parameter they define.

4) The problem is clearly sensitive not only to the number
of nonzero elements in the support of, but also to their
position.

In order to solve the first difficulty, we introduce an additional
constraint that prevents the trivial solution. Such a constraint
could be posed on theor the norm of the unknown vector,
i.e., or . The newly added constraint will
clearly not change the sign of the result, i.e., if for some
the minimization result becomes negative, then it would have
been so without the constraint as well. Thus, the new constraint
does not interfere with our goals in this optimization problem.
As to the other difficulties, we solve them via the definition of

an alternative minimization problem. In this new problem, we
minimize the same function, but pose a weaker set of constraints
as follows:

minimize

subject to:

1.

2.

3.

where we define and as the absolute values of the orig-
inal vectors and , respectively, and where is an

-by- matrix all the entries of which are ones.
The first and second constraints simply use the fact that any

given entry in one of the vectors ( or ) cannot be greater
than multiplying the sum of the absolute entries in the other
vector. Clearly, every feasible solution of the original constraint
set is also a feasible solution of the new constraint set, but not
vice versa. Thus, if the minimum of the function is still positive
using the new constraint set, it implies that it is surely positive
using the original constraint set.

Looking closely at the newly defined optimization problem,
we can further simplify it by noticing first that the sum over
all the support that appears in the function is known to be
due to the third constraint. Also, only the absolute values of
the unknown vector play a role here. Exploiting these two
properties we can rewrite the new problem and get

Minimize

subject to:

1.

2.

3.

4.

(5)

where we added the fourth constraint regarding positivity of
the unknowns, i.e., the entries of and . The notations

and stand for vectors of length , being the
-vector with ones where is nonzero and is simply an

-vector containing all ones.
If we assume that there are nonzero components in

and nonzero components in , then . In
the new formulation, we can assume without loss of generality
that the nonzero components are located at the first
positions of vector , due to the symmetrical form of
the constraints.

The problem we have obtained is a classical LP problem and,
as such, has a unique local minimum point which is also the
unique global minimum point. Let us bring it to its canonical
form

Minimize subject to
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denotes the fact that this is a primal LP form. The matrices
involved are defined as follows:

Notice that the equality constraint in the original problem is re-
placed by two inequalities, in order to fit the required canonic
form. In the optimization problem defined in (5) we wanted con-
ditions so that the minimum will not be negative. After removing
the constant from the function to be minimized, the new re-
quirement becomes .

It is still difficult to give an analytic form to the solution of
the LP problem we obtained. Instead, we shall exploit the dual
LP problem of the form

maximize subject to

here denotes that this is a dual LP form, with the same
matrices as in the primal problem (see, e.g., [6]).

The approach we are going to take is as follows: We know
that the primal and the dual problems yield the same optimal
value [6], i.e.,

minimize maximize

We require this optimal value to be higher than or equal to .
In the dual problem, if we find a feasible solutionsuch that

, we guarantee that the maximal value is also
above , and thus we fulfill the original requirement on the
primal problem.

Let us consider the following parameterized form for a fea-
sible solution for :

where , , and are real scalar parameters. Using previous
notations, there are nonzero components in and
nonzero components in . We assume without loss of gen-
erality that (the problem is perfectly symmetric with
respect to these two sections). We also assume that .
This way, three parameters govern the entire solution

, and we need to find requirements on them in order to guar-
antee that the proposed solution is indeed feasible.

Substituting the proposed solution form into the constraint
inequalities of the dual problem we get

and rearranging these inequalities we get

The multiplication is simply , and similarly,
. Thus, the first set of inequalities actu-

ally reduces to the simple scalar requirement

If , as assumed earlier, the second set of inequalities
can be replaced by the scalar requirement

(For the places where has zero components, we get
the inequality , which is weaker than the
above one.)

Solving the two inequalities as equalities, we get

We see that, indeed, our assumption is correct since
we assumed and we have .

So far we have found an expression for the first parameter.
As to the other two, substitutingin the above equations we get

Thus, we can choose and will be the above expression
multiplied by . This way, we have satisfied all the inequality
constraints, and obtained a solutionwhich is also nonnegative
in all its entries.

Now that we have established that the proposed solution is
feasible, let us look at the value of the function to be maximized.
This function is simply . So we should require

Thus,

(6)

We have, therefore, obtained a requirement onand which
is posed in terms of the parameter. Thus, given a vector

, the two orthonormal basesand , and their induced
cross-product factor , we solve the problem and obtain
a candidate representation. From this representation, we can
determine and , the respective numbers of nonzero com-
ponents in the two -sections of . Putting them into the in-
equality (6) we immediately know whether this is also the
solution as well, and hence also the sparsest representation.

We now proceed and produce a simpler sparsity condition on
the representationensuring that produces the unique and
sparse solution. Assuming that we know , the require-
ment on is

Adding to both sides of the above inequality we get
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Fig. 1. A graphic description of the bounds obtained.

Let us look at the term which multiplies in the above
bound. This term is a function of which is clearly
nonnegative. The minimum of this term is given by cancelling
the derivative of the function , thus
solving the equation , which results in .
The negative solution is irrelevant, and the positive one is in-
deed the minimum (as easily verified with the second deriva-
tive), where we get that . Thus,
our final result is the requirement

To summarize, we got that if then the
dual LP necessarily gives a value above , which in turn as-
sures that the minimum of the primal problem is above as
well. Thus, it is guaranteed that thenorm of the solution with
this number of nonzero components is the smallest possible, so
we have proved that the problem yields the solution of
as well.

The result obtained is better than the bound
asserted by Donoho and Huo. As an example, for ,
we get that for the old (DH) requirement is to have less
than 2.5 nonzero components, while we (EB) require 3.65 and
below. For , the old requirement (DH) is 4.5 and below,
while the new bound requires 7.3 or less nonzero components.
As goes to infinity the ratio between the two results becomes

Fig. 1 shows graphically how (6) compares to the alternatives

and

In this graph, we have assumed . Note that since
, only the upper left part of the graphs is relevant,

and thus we have masked the nonrelevant zone. We can see that
the bound (which is also the uniqueness bound) is valid at
the extremes, whereas the bound is relevant in
the middle of the zone.

Fig. 2 graphically describes how the various bounds devel-
oped by Donoho and Huo (and thus denoted by DH) compare
with the new bounds established here (denoted EB).

One question that remains at the moment unanswered is
whether the coefficient we got reflects the true
behavior of the problem versus the one, or is it
emerging due to the still loose bounding approximation in our
proof. For example, if we take the trivial (spike) and Hadamard
bases for , we get that .
Hence, the uniqueness bound requires .
On the other hand, the new bound found here, ,
requires less than 10.34 nonzero entries, which in practice
means 10 and below in order to ensure that the and the

problems coincide. An experiment that would test this
case with 11 nonzero entries and produce a counterexample
where and lead to different solutions could be
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Fig. 2. A graphic illustration of the bounds due to Donoho and Huo (DH) versus the ones developed in this paper (EB).

beneficial. The search for such a counterexample is currently
under way but so far we could not find any case like this.

It is interesting to note that if we assume that , the re-
quirement made in (6) leads to the requirement .
Similarly, if then (6) leads to the requirement

. Note that these two cases are the extremes in the
range of . Thus, for these two cases, the
bound is valid and there is no gap with respect to the uniqueness
bound.

Returning to the suggested search for a counterexample for
the 11 nonzero components described above, it is clear now that
choosing the nonzero components in one of the above two ex-
tremes will not lead to a successful hunt. Instead, one has to
choose and in order to
maximize the chances for success. Again, simulations done so
far have not found such a special case.

Another important question is how much of the entire range
of signals in are we covering by the sparsity condition we
have formed? What is the “measure” of signals that require more
than nonzero components in their sparse repre-
sentation? These and more questions will be the subject of future
investigations.

VI. CONCLUSION

Given a vector , and given an orthonormal -by-
matrix representing a basis, we can uniquely represent
using this basis and get . Assuming that we have
a second orthonormal basis and a second representation

, the first question we have addressed in this paper
is whether there is a lower bound on the number of nonzero
components in these two representations. It was found that

where is a scalar value denoting the maximal absolute value
of cross-inner-products between vectors inand .

The second question answered in this paper refers to the
uniqueness of sparse representation with overcomplete dic-
tionaries. Assuming that the signal is to be represented
using a dictionary that contains and ( vectors), it is
clear that there are numerous possible representations. It was
established that for any two feasible representations denoted by

, we have that

Thus, there cannot be two different representations for the same
vector having each less than nonzero entries, i.e., for any
given representation, we have that uniqueness is ensured by

The main contribution of the paper concentrated to the way to
find the sparse representation over an overcomplete dictionary
as described above. Finding the optimal representation by min-
imizing the norm is a highly complicated nonconvex combi-
natorial optimization search. An alternative approach based on

-norm minimization was proposed by Donoho and Huo and
proved to lead to the same result for sufficiently sparse signals.
Their result was that if the signal has a sparse representation
with no more than nonzero entries, minimization
of the norm can replace the original-norm minimization
while ensuring the same result. Obviously, such a result is very
valuable since -norm minimization leads to an LP problem,
which is a convex problem, while the-norm minimization is a
hard nonconvex problem. In this paper, we have improved this
sparsity bound and found that ifhas a sparse representation
such that

then the -norm minimization solution coincides with the mini-
mization of the norm. In fact, the bound obtained in this paper
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is better than , since we obtained the above requirement
in terms of and (the number of nonzero components in
the two -sections of the representations) which obey
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