
Visual Comput (2005) 21: 488–501
DOI 10.1007/s00371-005-0297-z O R I G I N A L A R T I C L E

Adi Bar-Lev
Alfred M. Bruckstein
Gershon Elber

Virtual marionettes: a system and paradigm
for real-time 3D animation

Published online: 19 July 2005
© Springer-Verlag 2005

A. Bar-Lev · A.M. Bruckstein (�) ·
G. Elber
Computer Science Department, Technion,
I.I.T. 32000 Haifa, Israel
freddy@cs.technion.ac.il

Abstract This paper describes
a computer graphics system that
enables users to define virtual mar-
ionette puppets, operate them using
relatively simple hardware input
devices, and display the scene from
a given viewpoint on the computer
screen. This computerized marionette
theater has the potential to become
a computer game for children, an
interaction tool over the Internet, en-

abling the creation of simultaneously
viewed and operated marionette show
by users on the World Wide Web,
and, most importantly, a versatile
and efficient professional animation
system.

Keywords Computer graphics sys-
tem · Virtual marionettes · Computer
game · Animation system · RealTime
physics-based animation

1 Introduction

Marionettes have always had a special place at puppet
shows and are favorite toys for children of all ages [2]. The
purpose of the system described herein is to unleash the
phenomenal capabilities now widely available on personal
computers, to allow natural and easy access to an imagi-
nary puppet world of infinite variety: an imaginary world
that allows the user to operate rather complex articulated
objects and make them play on stages from a computer
graphics wonderland with the help of some simple devices
for geometric data input and high-resolution displays that
can readily be projected on large screens.

2 Scientific background of the project

So far, most efforts in animation have gone into sys-
tems based on forward kinematics, where the animator can
specify directly the positions and movements of all joints,
or on inverse kinematics, where a certain movement goal
is specified, and the positions and movements of joints
are calculated to meet the required goal. Both approaches
have found adherents, but the inverse kinematics approach

is considered better for the design of user-friendly, goal-
directed systems enabling the user to specify general mo-
tion requirements. Watt and Watt provide a good survey of
these techniques in their book [20].

The marionette manipulation system that we present
here differs from these approaches. It is a physics-based
simulation program, calculating the movements of articu-
lated objects in response to “virtual” locally applied forces
and displacements. Recently considerable research effort
has been devoted to the field of physically based modeling
and simulation for a variety of computer graphics applica-
tions. In this context scientists have developed programs
for simulating the motions of articulated rigid and even
nonrigid bodies subject to various forces and constraints.
Examples of such programs are described in [5, 6, 9, 22,
24] and are eminently suitable for marionette dynamics
simulations and form the core of the system we have im-
plemented.

In order to efficiently integrate the equations provided
by the elegant theory of analytical dynamics due to La-
grange (see [13] and [12]), the system implemented herein
combines the physics of basic particle systems, which
considers forces and geometric and time constraints, with
an adaptive time step integration process. A good refer-
ence for this theory can be found in [21, 22]. The physical

Virtual marionettes: a system and paradigm for real-time 3D animation 489

theory is also supplemented with several heuristics be-
cause sometimes giving up physical behavior yields the
possibility of having responses that “appear” physically
correct and enable the real-time running of a rather com-
plex virtual marionette show.

An issue that needed special attention was the topic of
collisions with the floor and between the puppets, or the
various parts of the same puppet. Here, too, several clever
algorithmic shortcuts were imperatively needed to ensure
physically plausible behavior, along with real-time system
responses.

3 Virtual marionettes: general system description
and functionality

The goal of the work presented here was to design
a computer-graphics-based system that allows users to
define a marionette as a general articulated object or
structure, together with points of attachment for virtual
operating strings. The operating strings are then con-
ceptually attached to a virtual hanging frame—a user-
defined geometric object, with easily modifiable modular
movement functionality. The functions of this marionette
control system are subsequently mapped to a mechani-
cal/geometric data input device that might be viewed as
a much simplified “Data Glove.” The input device dis-
placements are then transmitted via a communication link
to a computer, where they are translated to movements of
the virtual frame associated to the puppet, thereby con-
trolling its movements via the virtual strings attached
to it.

Using the concept of virtual marionettes, an opera-
tor/artist has access to a system for designing complete
puppet shows with as many and as varied participants as
his/her imagination desires, on stages that are designed
with the use of recent advances in rendering methods,
complete with illumination and color effects.

Note that in using our system, we do not aim to pre-
cisely reproduce the walk of animal or humanlike figures
or to generate perfectly realistic motions. Rather, we let
these aims be met by the skills of the human operator,
using interactive feedback from the screen. In this sense
our system is simpler than inverse-kinematics-based ani-
mation software programs. We claim that such a system,
in the hands of a skilled operator, can effectively be used
as a first-stage animation tool in the process of producing
animated movies.
The system we implemented comprises three parts:
1. The physical simulation and animation program – the

brain.
2. The movement control input devices – the interface.
3. The rendering engine and the graphics display – the

stage.
Let us now describe the three components in detail.

3.1 The brain: a physics-based animation software
program

The software system we implemented allows for the defin-
ition of articulated objects, the marionettes, by giving the
user the possibility to select, modify, and combine given
3D graphics models. The 3D models can be created using
any existing 3D software, such as the 3D Studio Max, and
can then be loaded to the application and used as parts
of the marionette. In more advanced versions of our soft-
ware, nonrigid objects would be representable as well.
After an articulated object has been defined, the user may
choose the “anchors” for the virtual manipulation strings
and their attachments to the control frame that can be suit-
ably designed. From this point on, a physics-based anima-
tion software produces movements of puppets in response
to the users’ controls, transmitted via the software to the
virtual manipulation strings. This way the system achieves
fast and realistic responses, enabling the user to have real-
time control over his puppets. We note that the user’s
voice can be integrated in the play as well (and one might
even enhance the program with voice-controlled mouth-
movement subroutines for each puppet!).

3.2 The interface: a movement-detection device

The inputs for marionette movement control are displace-
ments and forces applied to the virtual strings. Since these
virtual strings are pulled and moved around, we need to
detect control signals for such actions coming from the
user. For example, the strings may be controlled by the fin-
gers of the operator, while global motion can be controlled
by hand, head, or body motions.

Currently, we use a simple data-glove-type input de-
vice, which was designed and created as a part of this
project by a team of two Technion undergraduate students
(Fig. 1).

The input device transduces and transmits the stretch
of several strings attached to the user’s fingers. Each data
glove transmits data for the control of a single marionette.
The device we implemented has 5◦ of freedom. We chose
to use them for the rotation axes and for setting the vertical
and the forward/backward movement axes.

A project currently under development focuses on the
use of digital video cameras as alternative input devices
for the control of virtual marionette frames. The aim is
to enable the detection and real-time computation of the
spatial pose of a real “puppet control frame.” The devices’
position and orientation will then drive the virtual control
frames for the marionettes defined in the system.

3.3 The stage: a computer-generated world

The virtual world in which the simulated marionettes per-
form can be as sophisticated as allowed by the latest devel-
opments in computer graphics. The stage could be simple,

490 A. Bar-Lev et al.

Fig. 1. A picture of one of the two data gloves that was designed
and implemented as part of this project

with a few objects defined by the user, or it could become
a fractal landscape modeling the surface of some distant
planet. The stage, once defined, can also benefit from var-
ious lighting schemes, and a user can easily implement
and control complex lighting and surface texture effects.
Day can turn into night at the turn of a knob, and prepro-
grammed star constellations can appear on the simulated
sky. Different events can be introduced into this imaginary
stage, and changes in the scenery can be made almost as
fast as computer memory can be accessed.

The combination between the simulation unit, the
“brain,” and the graphics engine that generates the “stage
and the marionette-actors” ultimately determines the qual-
ity of the visual effects.

The display graphics engine itself supports three differ-
ent modes:

(1) Particle display mode A 3D model is attached to each
particle and the attached model is transformed ac-
cording to the movement of the particle. This mode
is used for simplified figures with symmetric models
such as spheres.

(2) Link display mode Two particles can be used to dis-
play a 3D model according to their configuration.
The model is automatically stretched, scaled, and
positioned to fit the distance between the particles.
The model orientation is set by the direction be-
tween the particles.

(3) Rigid group mode A rigid object model is linked to
three given particles. The model is oriented either by
the particles’ configuration or by their initial orien-
tation. During the simulation course, the model’s
orientation is determined for each frame by the con-
figuration of the three particles.

(4) Freeform mode is in process of being implemented
and will be used to represent deformable models.

Fig. 2. A “dragon” marionette built with 3D models attached to
particles (particle display mode)

Fig. 3. The “IceTrooper” from the Star Wars movie. In order to dis-
play its legs, the link display mode was used, while for its head and
body we used the rigid group display mode. The leg joints were
displayed using the particle display mode

Note that 3D models can be loaded and set at any position,
orientation, and scale during the initialization stage of the
system. The model’s material and texture are then applied
and can readily be altered at any time during the simu-
lation. Figures 2 and 3 demonstrate some of the modes
described for puppet display.

4 System internals

4.1 Overview

We present below the working elements of the dynamic
simulation system, the “brain,” and the interactions among
them. It is not our intention to get into the mathematical
or physical aspects of the system yet, but rather to give the

Virtual marionettes: a system and paradigm for real-time 3D animation 491

reader a global picture of our system and its structure. The
system comprises the following building blocks:

Physical unit: This part of our system is based on the
physical equation solver, following Witkin et al. [22].
The solver is given a physical configuration (con-
figuration of masses, forces, velocities, locations,
constraints, etc.) and computes the resulting over-
all forces that act in the scene during the subsequent
time interval.

Mathematical equation solver: Based on the set of lin-
ear equations generated by the physical unit, the
mathematical engine solves the equations by call-
ing to action one of the many existing numerical
methods that were implemented.

Collision detection unit: This unit detects and deals with
the collisions between the marionettes and the other
objects in a scene (as well as other marionettes).

Adaptive time step unit (ATS): Works together with the
physical engine and decides the length of the next
time interval based on previous sampling intervals
and detected system deviations of the particles from
their geometric constraints.

Frame display scheduler: Controls the rate (in frames
per second) for the display device and synchronizes
between the varying sizes of the time step intervals
and the number of intervals that need to be calcu-
lated for each displayed frame.

In the following subsections, we briefly describe each of
these elements and their combined actions and interac-
tions. The complete structure of the system is presented
in Fig. 4.

4.2 Physical unit

There are many approaches to simulating the dynamics
of objects. Important research in this area includes the
work by Barzel and Barr [5] on the behavior of rigid
objects under constraints, the work of Cohen et al. [7,
8], which mostly handles simulation control and physical
constraints, and the work by Witkin et al. [22, 24] focus-
ing on spacetime constraints and simulation control. Other
approaches to dynamic simulations exist, and several of
them deal with emulating physical behavior without really
solving all the correct physical equations involved. This is

Fig. 4. The relation between the different parts
of the articulated object simulation system. The
physical layer is the hard core of the system,
while the other mechanisms are attached to and
through it. The frame display scheduler is omit-
ted from the scheme but is basically attached to
both the physical layer and the ATS mechanism

mostly done by finding behavioral functions that act “like
the real thing,” hence aim toward a visually good motion.
One example along this line of thought is the work by
Overveld [15].

In this work, we chose a different approach for hand-
ling the physical problem. Since our main aim is to ma-
nipulate marionettelike virtual devices, we want to have
a system that is specially designed to deal with articulated
objects with simple spherical joints (2/3 DOFs). Further-
more, we want to provide the user with an intuitive way
of assembling and controlling these virtual marionettes.
A method that nicely supports these specifications was
first introduced by Witkin et al. [22] and is based on the
classical physics of particle systems. The beauty of the
method lies in the fact that the user does not have to spec-
ify an inertia matrices for the objects he works with, nor
does he have to adjust the shape and mass distribution
of any object to get a desired behavior. Instead, the user
creates objects by simply specifying a group of points in
space, each with a mass and location (particle). Objects
can thus have physical behaviors that are simple to modify
by moving particles or changing their mass at will. A sig-
nificant advantage of this approach is the fact that we can
separate between the objects’ 3D models and the way they
behave; thus we can get almost any desired behavior with
an interface that is easy to understand and use.

Physical dynamic systems are based on the principle of
continuous motion through time. This cannot be achieved
when simulating such systems since the simulator works
with discrete time steps instead of infinitesimally small
steps as required for continuous integration in time. To
this end, we use the Runge–Kutta extrapolation scheme
for better prediction and reduction of the integration error.
At each time interval the physical unit applies all known
forces to the particles and calculates data needed from the
constraints. At the end of the process, the physical unit
forms a system of linear equations in which the unknowns
are Lagrange multipliers. Once the equations are solved,
the multipliers are assigned to the constraint equations,
and by using a priori assumptions to be discussed later,
we can obtain the constraint forces. Adding these forces
to the particles, we obtain the new overall forces that act
on each particle, and based on prior velocities and loca-
tions we extrapolate the system’s state through the time
interval.

492 A. Bar-Lev et al.

The final result of these calculations is a close approx-
imation to the new locations of all the particles as well
as their velocities and accelerations. Using the location of
the particles, our system now calculates and displays the
configuration of each of the 3D models in the scene.

4.3 Mathematics unit

The mathematics unit yields solutions to the linear equa-
tions generated by the physical unit. As we shall see, the
solutions to these equations are constraint forces that were
implicitly defined and hence previously unknown to the
system. We tested several techniques for solving the sys-
tem of equations and concluded that a Gausss–Seidel dir-
ect solver is suitable since our system has no more than
several hundred sparse equations. However, as the systems
become more complicated, and in light of the fact that
system matrices tend to be sparse for most types of con-
straints, an iterative solver for sparse matrices can often be
used more effectively. Furthermore, when using iterative
methods, we can stop the solution process when reaching
a given error threshold, thereby gaining time. Another ad-
vantage of an iterative solver stems from the fact that we
can get good approximation with these methods even if
the system has dependencies through the existing geomet-
ric constraints. This feature provides us with extra time to
identify such ill-defined configurations and avoid, or even
stop, the course of the simulation.

4.4 Collision detection unit

To enable as realistic a behavior as possible in our sim-
ulations, we enabled the system to deal with forces and
momenta interactions. The simulated behavior does not
seem realistic without reactions to collisions and contacts;

Fig. 5. The different levels of the collision sphere-tree, which represents a birdlike marionette

hence we implemented a very basic collision and contact
detection scheme between puppets and other objects in
a scene.

We based our collision detection on two basic methods.
Collision with planes such as the floor were detected by
testing directly each of the particles representing a mar-
ionette, and collisions with more complex objects (such
as the puppets themselves) were detected through the use
of a collision sphere-tree. Although many other techniques
exist and could be used here, we found these two tech-
niques sufficient for demonstrating our concepts and ob-
taining highly realistic behavior. The sphere-tree collision
technique and its modification were mainly inspired by
Hubbard [16, 17] and is very effective in our case where
the objects that comprise the puppet rapidly change their
location and orientation. Some examples of the sphere-
trees created for the marionettes are shown in Figs. 5
and 6.

4.5 Adaptive time step mechanism

A particle system has configurations determined by ex-
plicit behavioral forces (such as springs and dampers) and
by constraints imposed on the system. These configura-
tions correspond to different forces and momenta for the
particles, and when simulating the movement during time
intervals the particle system undergoes deviations due to
varying constraint forces and magnitudes. As the time step
increases, the extrapolation of these values becomes less
stable; hence the entire system might become mathemat-
ically unstable, depending on the configuration. To over-
come these undesirable phenomena, we can either use an
adaptive time step (ATS) mechanism or we might always
use sufficiently small time steps so that all integration er-
rors will remain within a tolerable range. In most cases,

Virtual marionettes: a system and paradigm for real-time 3D animation 493

Fig. 6. The collision sphere-tree of the IceTrooper marionette

using the latter approach will impede running the simula-
tion in real time.

In our system implementation, we introduced a rela-
tively simple ATS mechanism. By monitoring all particle
deviations at all times, we selected the current largest de-
viation from the valid configuration of the system. We
then compared it to a predefined error threshold and de-
cided whether the next time step should be increased or
decreased and by what ratio. Default lower and upper time
steps bounds, as well as predefined error thresholds, were
implemented as well. These values can be set specifically
for each system using a loaded configuration file.

Since the Runge–Kutta extrapolation scheme we im-
plemented has a precision of order O(h4), the estimated
time step is calculated as follows:

∆tnew = ∆told · time_ratio

time_ratio =
(

threshold_error

current_error
.

) 1
4

We note that the Runge–Kutta method engenders very
small errors to begin with. Hence, starting with a reason-
able time step (of about 1

50 of a second), should be suffi-
cient, and in practice the time step is not expected to vary
by much. This is due to the fact that all ratios between
the current error and the error thresholds are damped by
the fourth root update formula. In addition, the system it-
self has a dynamic error correction mechanism; hence as
long as the deviations from the valid states are kept within
a reasonable range, they will tend to be reduced over time.

The ATS is also responsible for the time step re-
duction right after a collision occurs. In such a case,
the time of the collision is calculated, the configura-
tion of the system before the collision is restored, and
a time step that matches the exact collision time is set.
This must be done to prevent large deviations due to
errors resulting from the inaccuracy in the collision lo-
cation choice. After collision events are detected and
calculated, the time step is restored by increasing (by

a factor of two) each time interval of subsequent itera-
tions until the allowable error threshold level is reached
again.

4.6 Frame display scheduler

The ATS mechanism allows the simulations to run in
real time while maintaining a correct and controlled speed
of simulation and a constant number of frames per sec-
ond (fps) for displaying the results. This mechanism is
the trigger to both the calculation of each step and the
display of the scene in real time. Using a simple con-
figuration file, the user can set the system to output to
the display at any desired frame rate within the capa-
bilities of the CPU. During the execution of the simu-
lation, the application’s timer is activated every prede-
fined interval of time (1/fps). At each such call, sev-
eral iterations are carried out. The number of iterations
varies depending on the deviation of the particle system
from its physically valid configuration as well as on the
amount of frames per second defined by the user (the de-
viation error is responsible for setting the length of the
time interval for the system’s integration step). At the
end of each timer call, the marionette is actually ren-
dered to the screen. In fact, the last frame is drawn at
the start of each timer call, and then we carry out the
next frame’s iterations. This way, all frames are displayed
without any delay due to the mathematical processing.
However, the frames are shown with a delay of a single
frame.

Since the application is adaptive with respect to both
the time step and the deviations, if the complexity of the
particle system exceeds the maximum that can be handled
in real time, the frame display scheduler has no choice
but to skip rendering frames until the previous frame com-
pletes its “dynamics” calculations. This is done in order
to maintain the solution error within a reasonable range.
When the dynamics iterations time interval reaches or
passes the time limit allocated by the frame display, the

494 A. Bar-Lev et al.

ATS mechanism reduces the last time step so that the dis-
play at the end of the frame will be accurate. This action
also helps in reducing the amount of accumulated error
through iterations.

5 Physical unit

5.1 Terminology and conventions

In this paragraph we first give a brief description of the
terms used to describe the dynamic equations through-
out this article. The physics and mathematics foun-
dations and equations are only briefly reviewed here,
and we assume that the reader is familiar with the
field.

Particle An infinitesimally small object (a point in the 3D
world) with the qualities of mass, location, and its
derivatives (velocity and acceleration).

Constraint In this work we deal with two types of con-
straints: geometric constraints, which cause acti-
vation of forces in the system due to the need to
maintain a predefined geometric configuration, and
time constraints, which force objects to move along
a predefined curve in time.

Force (F = ma = mẍ): Our system deals with two types
of forces. The known forces, usually referred to as
applied forces, are denoted by Fa, and the unknown
forces, usually generated by the activation of con-
straints. These forces are denoted by Fc.

Momentum (L = mv = mẋ): Since our approach uses
particles, we refer only to linear momenta. Mo-
menta in the system are considered mainly at col-
lisions. We deal with complex systems of particles
with geometric constraints; hence changing the vel-
ocity of single particles as a result of local oper-
ations cannot be applied because the system will
deviate from its valid configuration. Therefore, mo-
menta must be derived from the collision constraints
in real time and be applied through an additional set
of equations.

Rigid group A group of particles attached to each other
by strict static distance constraints. The smallest
group of that type that has a unique inertia matrix is
a group of four particles in general positions, com-
bined in a triangular pyramid-shaped clique (tetrahe-
dron). In our system, we restrict the connection of
each new particle to no more than three other non-
planar particles in order to prevent dependency in
the equations.

An object in our system is thus comprised of particles,
known forces due to gravity, springs, dampers, drag, etc.,
and constraints, such as predetermined fixed distances be-
tween particles. Using fixed-distance constraints we can
construct rigid groups and display each such group using

a chosen 3D model. We also have the freedom to form
nonrigid (articulated and deformable) objects by con-
necting particles using the combination of spring/damper
forces instead of connecting them by rigid geometric con-
straints.

5.2 Implicit constraint solver for forces

In our system we chose to use the so-called implicit ap-
proach [21], which solves for constraints represented in
world coordinates. We begin with some basic relations and
definitions. The reader will note that all the presented cal-
culations from now on use vector and matrix functions and
calculations in order to simplify the understanding of the
overall method. Let q be a coordinate vector of size 3n, n
being the number of particles in the system, C(q) the con-
straint equation vector of size k, and J the Jacobian matrix
of size 3n ×k. Then we have

J = ∂C

∂q
,

Ċ = dC

dt
= ∂C

∂q
· dq

dt
+ ∂C

∂t
= Jq̇ + ∂C

∂t
= 0 ,

J̇ = dJ

dt
= d

dt

(
∂C

∂q

)
= d

dq

∂C

∂q
· dq

dt
+ ∂

∂t

∂C

∂q

= d

dq

(
Jq̇ + ∂C

∂t

)
= d

dq
Ċ = dĊ

dq
.

Note that the immediate derivative of C by time can be
omitted if no direct time dependency exists.

Next we use the law of action and reaction to derive the
system of equations:

Fa + Fc = Mq̈ , (1)

C̈ = J̇ q̇ + Jq̈ + ∂2C

∂t2 = 0 . (2)

M here represents the diagonal mass matrix of all the
particles. Each particle’s mass appears three times on the
matrix’s main diagonal. Fa represents the known forces
applied on the system, and Fc are the unknown constraint
forces. Here, too, the second immediate derivative of C by
time may be omitted if t is not an explicit variable in the
equation of the constraint. By setting both Ċ and C̈ to zero,
we ensure that constraints do not change over time, a fact
that enables one to explicitly solve the system. Multiply-
ing Eq. 1 by M−1 and J results in:

JM−1(Fa + Fc) = Jq̈ . (3)

Using the expression for q̈ from Eq. 2 we get:

JM−1 Fc = − J̇ q̇ − JM−1 Fa − ∂2C

∂t2 . (4)

Virtual marionettes: a system and paradigm for real-time 3D animation 495

Equation 4 is a linear system usually with more degrees
of freedom than constraints. Assuming we have k con-
straints, transforming the system into the constraint space
will give us exactly k unknowns and only one possible
solution (assuming the constraints are independent). This
method is known as the Lagrange multipliers transform
method for linear systems. Applying the principle of vir-
tual work to the system we can write Fc ·dq = 0, where dq
is the virtual displacement. We know that the constraints
forbid particles from moving anywhere but in the nor-
mal space of the constraint hyper surfaces; thus dq must
be orthogonal to the hypersurfaces generated by the con-
straint directions. We also know that the Jacobian J = ∂C

∂q
is orthogonal to these surfaces, and therefore we get the
equality: J ·dq = ∂C

∂q ·dq = 0. Reexamining the constraint
forces, we can now use the above relation and write the
constraint forces as follows:

Fc = λ · J . (5)

Next we substitute Fc into Eq. 4 and get:

JM−1 J Tλ = − J̇ q̇ − JM−1 Fa − ∂2C

∂t2 . (6)

The above equations represent a linear system with k un-
knowns. Solving the equations, we can easily find each of
the unknown forces of the system by using Eq. 5.

We now add correcting forces in the direction of the
constraint vectors and apply them directly to the system
of equations. These forces should depend on the deviation
from the correct configuration of the constraints, and thus
we get:

KsC + KdĊ = 0 . (7)

In the above equations, Ks and Kd are the spring stiffness
coefficient vector and the damper coefficient vector, re-
spectively. Notice here the similarity to forces of a spring
and damper with equilibrium point at zero, action along
the constraint’s axes. Adding these correction “forces” to
the equations system we get the final result:

JM−1 J Tλ = − J̇ q̇ − JM−1 Fa − KsC − KdĊ − ∂2C

∂t2 . (8)

This equation describes the state of the system due to
given applied forces Fa, and a set of geometric and time
restrictions to obey, represented here by C.

5.3 Applying linear momentum

In some cases, we need to generate a very strong force that
will act for a very short time in order to alter the velocity
of the system at some location practically instantaneously.
The most common example of such forces are those acting

during collisions between objects. Such forces are referred
to as Linear momenta, and since the change in force ap-
pears for an infinitesimally short time δt, we have:

L =
t+dt∫
t

Fdt =
t+dt∫
t

mẍdt = mẋ .

It is obvious that we cannot embed the momenta in the
system as presented since the system was conceived to
deal with forces. Moreover, we cannot simply add veloci-
ties to particles. Doing so will alter the validity of the con-
figuration and violate constraints of the system, leading to
a divergence of the entire system. The solution is to use
the first-order derivative of the constraints w.r.t. time. So
far we have dealt with forces; hence we used the second-
order derivatives of the constraints. To use the first-order
derivatives, we stop the derivation at the velocity equa-
tions (Witkin et al. pointed this out in a different context
in [22, 24]). We start with the definition of momentum,
where La is the applied momenta vector and Lc is the
vector of momenta generated by the system in order to
maintain the validity of the geometric constraints. Hence
we can write:

La + Lc = Mq̇ yielding : JM−1 Lc = −JM−1La + Jq̇

Ċ = Jq̇ + ∂C

∂t
= 0 .

Combining these terms we get:

JM−1Lc = −JM−1 La − ∂C

∂t
.

Here again we set the vector of each constraint momentum
to be in the direction of the constraint in order to obtain
again the Lagrange multipliers for the system, and add
“correcting momenta”’ as well:

JM−1 J Tλ = −JM−1La − KsC − KdĊ − ∂C

∂t
. (9)

Here, La represents the applied linear momenta and not
forces, as was the case in the previous section. Thus, no
forces act in these equations at all. To advance the system
through time in the presence of both forces and momenta,
we must solve two systems of equations at each given time
step—the system of forces and the system of momenta.

5.4 Collisions and contacts—conditions of occurrence

This paragraph relies on work done by Baraff [3, 4]. For
simplicity, we assume that a collision always occurs be-
tween a plane of a polygon of one of the objects (object 1)
and either a polygon or a vertex of the other (object 2).
The direction of the collision impulse is in the direction

496 A. Bar-Lev et al.

of the plane’s normal. We also assume, without loss of
generality, that the normal direction (n̂) points outward
from object 1 and toward object 2. For collisions of singu-
lar points (two vertices, vertex and an edge, or two edges)
we can generate a seminormal direction applying several
known heuristics. In the following equations, p1 and p2
represent the collision locations on the surface of objects 1
and 2, respectively.

We start by defining a state function for the collision as
follows:

χ12 = (p2 − p1) · n̂ . (10)

The derivatives in time are:

χ̇12 = dχ12

dt
= (p2 − p1) · ˙̂n + (ṗ2 − ṗ1) · n̂ ,

χ̈12 = d2χ12

dt2

= (p2 − p1) · ¨̂n +2(ṗ2 − ṗ1) · ˙̂n + (p̈2 − p̈1) · n̂ .

The derivative (χ̇) represents the relative velocity of the
two colliding objects in the direction of the normal of the
collision plane (n̂). Differentiating the velocity function
(χ̈) we get an indication of the relative acceleration in the
direction of the collision normal. During a collision the
equality p1 = p2 must hold; therefore, we get:

χ̇12 = dχ12

dt
= (ṗ2 − ṗ1) · n̂ , (11)

χ̈12 = d2χ12

dt2 = 2(ṗ2 − ṗ1) · ˙̂n + (p̈2 − p̈1) · n̂ . (12)

We now test the state functions for possible collisions.
When a collision occurs, we are interested in only one of
two scenarios. The first one is the case where the two bod-
ies have negative relative velocity in the normal’s direc-
tion. In other words, the objects move toward each other,
hence a collision occurs that must be resolved. This is the
state where an impulse should be introduced in order to
change an object’s velocity. We call this short impulse a
collision force (but it actually is a change in linear mo-
mentum, hence an “impulse”). The collision is identified
by the following state function:

χ̇12 = (ṗ2 − ṗ1) · n̂ < 0 . (13a)

The second scenario is when the relative velocity is zero
and the relative acceleration is negative. Here we have
a state of contact between the objects with no “real” colli-
sion. We still need to resolve this case because the bodies
will continue to advance toward each other due to their
relative acceleration toward each other. We refer to this
state as a state of resting contact. Here the solution is to
apply a contact force in order to eliminate the acceleration
(since it is an acceleration and not a velocity, we must use

a force and not a linear momentum). The state functions
look as follows:

χ̇12 = 0 and χ̈12 = (p̈2 − p̈1) · n̂ < 0 . (13b)

After a collision is detected, we calculate the moment of
collisions and recalculate the entire particle system state at
that moment.

Resting contacts are treated in much the same manner,
with one exception—there is no need to introduce a sec-
ond equation system since the equations deal with forces.

6 Controlling the puppets

6.1 The problem

A real-life marionette is controlled by an overhead control
frame (hanging frame) that connects to the puppet’s con-
trol joints by strings (Figs. 2 and 3). An additional string is
usually attached to the puppet’s heaviest body part in prox-
imity to the center of mass of the entire puppet. This string
holds the puppet in its desired rest configuration. The two
main problems of simulating this dynamic control model
are the motions of the control frame and the behavior of
the strings.

The first problem arises from the fact that we do not
know the forces that are applied to the virtual control
frame. We only have access to the location and orienta-
tion of the frame at each time interval; thus the data are
not continuous due to the fact that time intervals have
noninfinitesimal length. An approximation scheme must
therefore be applied here.

The second problem is the choice of the strings. How
do we simulate strings so that we get a behavior that is
close enough to the behavior of real marionettes hanging
by strings? We present several solutions to those prob-
lems, each with its advantages and disadvantages.

To generate the frame movement, we examined three
approaches:

1. Moving the frame simply by setting its location to the
new coordinates given by the user interface. Between
each two time intervals the frame is placed in its most
recent configuration.

2. Estimating the forces or momenta needed to move the
frame’s particles to the desired locations.

3. Setting time-dependent constraints that force the
frame to move to the desired location while attach-
ing the control points of the frame to the puppet by
using a fixed distance constraints. In this context, each
time-dependent constraint is actually a 3D curve that
represents the change in location of a control point
along the time parameter.

Depending on the above method, we tested techniques to
simulate the strings. The techniques we applied were:

Virtual marionettes: a system and paradigm for real-time 3D animation 497

– Using sets of spring/damper force functuators as
springs.

– Adding a virtual “nonphysical” force to the scene.
– Using geometric and time-dependent constraints to

maintain a fixed distance from the frame’s control
points.

6.2 The method of choice

We found that a method based on the first technique above
is best for our needs (a solution that is close to the real-
life frame control and reaction). Using this technique we
move the virtual frame to the exact location given by
the input device, and then we apply the forces over the
marionette by introducing virtual behavior forces such as
springs. The main reason for choosing this method is that
there is almost no delay in response time (almost, since
springs do introduce some indirect delay while stretching).
However, a very undesirable side effect implied in the
use of springs is that the configuration of the whole pup-
pet is changed from the desired rest configuration when
running the simulation. This is caused by the fact that
during the design stage, the marionette was not under
the action of forces. The effect becomes more noticeable
as the puppet’s mass grows. This phenomenon also af-
fects the control over the puppet, since now the joints
are located in a different position relative to the control
frame.

In order to compensate for these effects, we needed to
introduce several new types of forces. The most important
one is the antigravity force, a name that is justified by the
force’s action. (How nice it is to have a virtual world!)
The new force is specified between two particles, where
one of them is the acted upon particle and the other is
the trigger particle. The force direction is opposite to
the direction of the overall global force (gravity) in the
scene.

The force as described helps the springs deal with
the puppet’s weight, yet it does not improve the response
time by much. The result of applying these forces is
that the new rest configuration of the system is close
to the designed rest configuration. To improve the re-
action time of the puppet, we add another feature to
the force. This feature might be called a “triggered” ac-
tion force. Whenever the length between the control par-
ticle and the trigger particle is changed, the generated
force increases or decreases as a function of the distance
between the two particles and the mass of the entire
puppet.

This new feature allows very rapid movements yet
at the same time appears natural. If configured cor-
rectly, the “antigravity” force only affects the particles
near its location. Setting this force to act on all particles
is useless because it will only reduce the overall grav-
ity, hence the system will act as if under lower gravity

(which will look as if the whole action happens on the
moon!).

Applying only several of these forces to the main con-
trol points of the puppet causes each spring’s pull to be-
come faster. In addition, all the main strings that were cre-
ated to hold the puppet’s weight will now be much closer
to their rest length, hence the whole system becomes much
more stable.

Another type of force that was introduced to the sys-
tem is a force based on the spring/damper set of forces, but
with a different force activation function. While the spring
force is linear with the change in distance, our new force
resembles the behavior of a shifted sine function between
0◦ and 90◦. The force reaches its maximum action level
after a predefined distance and does not change unless the
distance becomes shorter. This behavior prevents the in-
troduction of very large forces to the system, hence the
system is less exposed to large deviations in the legal con-
figuration state. We therefore gain a reduction in system
vibration due to the spring forces of the strings. Neverthe-
less, such phenomena do exist, but they can be visually
reduced by introducing naive algorithms such as the in-
verse dynamics process, which iteratively shortens invalid
string lengths until reaching a desired threshold [19]. The
same principle can be applied for dampers in relation to
particles velocities.

7 Results

All the simulation systems presented above were tested
using the DirectX 5.0 3D environment on top of the Win-
dows 2000 operating system. We ran the simulations on a
450 MHz Pentium 3 CPU, with 128 MB RAM and 512 KB
cache memory. We tested more than six different compli-
cated articulated systems (some of them are presented in
the images of this paper) having various control frames,
masses, and configurations.

Through all the tests, our system’s settings were as
follows: The system’s lower time step bound was set to
0.01 s, and the upper bound was set to 0.05 s. We meas-
ured the deviations in our system by the largest amount
of divergence from the given geometric constraints. By
this definition, the minimal deviation threshold for time
step adjustment was set to 0.01%, while the upper bound
was set to 1.0% of deviation. The upper deviation thresh-
old was needed so that time step changes due to the ATM
would not be too drastic with respect to decreasing the
time step interval. On average, all systems set the adaptive
time step interval to about 0.02 s (above the minimal time
step), and the more stable systems (such as the trooper and
the humanoid puppet, which are presented in the following
pages) remained fully stable at the upper time step bound
through most of the movements.

498 A. Bar-Lev et al.

Fig. 7. The trooper from the movie “Re-
turn of the Jedi” in eight different walking
states when constructed and controlled by
our system as a marionette

Fig. 8. Two steps made by a simple stick-figure marionette
created to test and illustrate the degree of control over
humanoid figures

The marionettes were tested for stability under dras-
tic and rapid movement of the controls. When tested with
added particle friction (which is our default mode for the
marionette system due to its natural motions), the mari-
onettes remained stable at all times, even through rapid
changes that might have torn a real marionette. We also
tested the system with no friction at all under extreme
movement changes. Without any friction, the marionettes
did get to a point where they either reached dependency
in this system of equations or the deviation was too large

and the system was forced to return to its starting config-
uration. Although these critical states can be avoided by
allowing smaller time steps, this will be at the expense of
the computation time needed for each frame to be calcu-
lated; thus the system will no longer be capable of reacting
in real time.

Figures 7–10 are snapshot sequences taken from var-
ious scenes that were simulated using our system. We
illustrate the behavior of the puppets with a sequence
of images from each simulation. All sequences run

Virtual marionettes: a system and paradigm for real-time 3D animation 499

Fig. 9. Demonstration of marionette collision (first five im-
ages) and contact (bottom row). Note the bounce from the
floor at the center image and the sliding ahead along the floor
over the last three images

Fig. 10. Test of stability of the system against rapid move-
ments of the control frame of the marionette. The images of
the trooper marionette were taken approximately every four
frames and near the peak of each oscillation

500 A. Bar-Lev et al.

from top to bottom and at each line from right to
left.

8 Conclusions

We presented a method to simulate and control the move-
ments of virtual 3D articulated bodies (puppets) in real
time. The system as presented can achieve a high degree
of realism in the movement of 3D puppets. We estimate
that, given a good input device, a professional puppeteer
would be able to easily obtain a quality of movement close
to what he/she could have achieved with a real marionette.

The method presented demonstrated the ability to sim-
ulate such systems in a manner that is not necessarily com-
pletely physical by introducing forces that do not really
exist in order to achieve better looking behavior or faster
control.

The results that we presented are mathematically based
on the described implicit physical solver. We estimate
that by using different solver approaches, such as the one
described by Barzel et al. [5], could lead to similar re-
sults or perhaps better ones due to the handling of true
rigid objects instead of particles. Also, better rendering
methods such as skinned mesh techniques should increase
the photo realism level of the entire system. Nevertheless,
the main novelty in our work here lies in the approach to
the control of the system, and the use of a physical solver
and a rendering system was simply the means to achieve
this goal.

Acknowledgement This research was partly supported by the Bar-
Nir Bergreen Software Technology Center of Excellence and partly
by the George Haber Research Foundation.

We would like to thank The Visual Computer’s anonymous re-
viewers for their helpful suggestions and comments. We would also
like to thank Shy Shalom and Amos Mosseri for their help in de-
signing and implementing the glove input device.

References
1. Bar-Lev A (2003) Virtual marionettes:

a system for real-time animation in 3D.
MSc research thesis, Technion, Israel
Institute of Technology

2. Mourey A (1993) Marionettes: Atelier et
Creation, Editions Fleurus, Paris

3. Baraff D (1989) Analytical methods for
dynamic simulation of non-penetrating
rigid bodies. Comput Graph 23(3):223–232

4. Baraff D (1990) Curved surfaces and
coherence for non-penetrating rigid body
simulation. Comput Graph 24(4):19–28

5. Barzel R, Bar AH (1988) A modeling
system based on dynamic constraints.
Comput Graph 22(4):179–188

6. Lee D et al (2001) Reproducing works of
Calder. J Visualizat Comput Animat
12:81–91

7. Isaacs PM, Cohen MF (1987) Controlling
dynamic simulation with kinematics
constraints. In: Proceedings of
Siggraph ’87, pp 215–224

8. Rose C, Guenter B, Bondenheimer B,
Cohen MF (1996) Efficient generation of
motion transition using space-time

constraints. In: Proceedings of
Siggraph ’96, pp 147–154

9. van Overveld C (1994) A simple
approximation to rigid body dynamics for
computer animation. J Visualizat Comput
Animat 5:17–36

10. Dahlquist G, Bjorck A (1974) Numerical
methods. Prentice-Hall, Englewood Cliffs,
NJ

11. Garcia AL (1994) Numerical methods for
physics. Prentice-Hall, Englewood Cliffs,
NJ

12. Goldstein H (1982) Classical mechanics.
Addison-Wesley, Reading, MA

13. Greenwood D (1997) Classical dynamics.
Dover, New York

14. Hemami H, Dinneen JH (1993)
A marionette-based strategy for stable
movement. IEEE Trans Syst Man Cybern
23(2):502–511

15. van Overveld CWAM (1994) A simple
approximation to rigid body for computer
animation. J Visualizat Comput Animat
5:17–36

16. Hubbard PM (1995) Collision detection for
interactive graphics applications. IEEE
Trans Visual Comput Graph 1(3):218–230

17. Hubbard PM (1996) Approximating
polyhedra with spheres for time-critical
collision detection. ACM Trans Graph
15(3):179–210

18. Meriam JL, Kraige LG (1993) Dynamics,
3rd edn. Wiley, New York

19. Desbrum M, Schroder P, Barr A (1999)
Interactive animation of structured
deformable objects. In: Proceedings of
Graphics Interface, June 1999, pp 1–8

20. Watt A, Watt M (1992) Advanced
animation and rendering techniques.
Addison-Wesley/ACM Press, New York

21. Witkins A, Baraff D (1997) Physical
modelling. Siggraph Short Course Notes

22. Witkins A, Gleicher M, Welch W (1990)
Interactive dynamics. Comput Graph
24(2):11–21

23. Witkins A, Kass M (1988) Spacetime
constraints. Comput Graph 22:159–168
Siggraph Proceedings ’88

24. Witkins A, Welch W (1990) Fast animation
and control of non rigid structures, Comput
Graph 24(4):243–252. Proceedings of
Siggraph ’90

Virtual marionettes: a system and paradigm for real-time 3D animation 501

ADI BAR-LEV was born in Petach-Tikva, Israel,
on 7 June 1969. He received both his B.A. and
M.Sc. in computer science from the Technion,
Israel Institute of Technology. His fields of
research and interest are in advanced CG, games
technology, animation and motion control,
dynamics, and special effects. Currently he
works at Samsung Telecom Research Israel
(STRI).

ALFRED M. BRUCSKTEIN received his B.Sc.
(honors) and M.Sc. in electrical engineering
from the Technion, Israel Institute of Tech-
nology, Haifa, and his Ph.D. in electrical
engineering from Stanford University, Stanford,
CA, in 1977, 1980, and 1984, respectively.
Since 1985 he has been a faculty member at the
Technion, Israel Institute of Technology, where
he is currently a full professor, holding the Ol-
lendorff Chair in Science. During the summers
from 1986 to 1995 and from 1998 to 2000 he
was a visiting scientist at Bell Laboratories,
Murray Hill, NJ, USA and in 2001–2002 a vis-
iting chaired professor at Tsing-Hua University
in Beijing, China. His research interests are in
image and signal processing, computer vision,
computer graphics, pattern recognition, robotics
(especially ant robotics), applied geometry,
estimation theory and inverse scattering, and
neuronal encoding process modeling.
Professor Bruckstein is a member of SIAM,
AMS, and AMM and is presently the dean of
the Technion Graduate School.

GERSHON ELBER is an associate professor in
the Computer Science Department, Technion,
Israel. His research interests span computer-
aided geometric design and computer graphics.
Professor Elber received a B.S. in computer
engineering and an M.S. in computer science
from the Technion, Israel in 1986 and 1987,
respectively, and a Ph.D. in computer science
from the University of Utah, USA, in 1992. He
is a member of the ACM and IEEE.
Professor Elber serves on the editorial board
of Computer Aided Design, Computer
Graphics Forum, and the International Journal
of Computational Geometry and Applications
and has served on many conference program
committees including Solid Modeling, Pacific
Graphics, Computer Graphics International,
and Siggraph. Professor Elber was one of the
paper chairs of Solid Modeling 2003 and Solid
Modeling 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

