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Abstract Modeling the deformation of shapes under con-
straints on both perimeter and area is a challenging task
due to the highly nontrivial interaction between the need
for flexible local rules for manipulating the boundary and
the global constraints. We propose several methods to ad-
dress this problem and generate “random walks” in the space
of shapes obeying quite general possibly time varying con-
straints on their perimeter and area. Design of perimeter
and area preserving deformations are an interesting and use-
ful special case of this problem. The resulting deformation
models are employed in annealing processes that evolve
original shapes toward shapes that are optimal in terms of
boundary bending-energy or other functionals. Furthermore,
such models may find applications in the analysis of se-
quences of real images of deforming objects obeying global
constraints as building blocks for registration and tracking
algorithms.
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1 Introduction

Reinhard Lipowsky, in his overview on Vesicles and Bio-
membranes, [16], states that “vesicles exhibit a great variety
of nonspherical shapes. This polymorphism arises, to a large
extent, from two global constraints”:

– “The surface area of a bilayer membrane is constant (at
constant temperature) since the exchange in molecules
between the membrane and the solution is negligible” . . .

“the stretching of these lipid bilayers is limited to rather
small deformations. They start to rupture as soon as their
area is changed by about one percent”.

– The volume of a vesicle is constant (at constant temper-
ature and environment) since, [16], “it is determined by
the osmotic pressure arising from those solutes that can-
not permeate the bilayer membrane”.

Therefore, the mathematical description of vesicle dynam-
ics requires three dimensional models for deforming shapes
while preserving both their surface area and volume.

In this work we explore the world of two-dimensional
shapes deforming under perimeter and area constraints.
A 2D shape is described by a simple closed planar curve.
Its perimeter, L, and its area, A, must obey the isoparamet-
ric inequality [5], 4πA ≤ L2. At equality, the entire world
of shapes consists of circular disks. However, if the circle is
deflated, i.e., for a given perimeter, the area is required to be
smaller than the maximum permitted by the isoparametric
inequality, the world of possible shapes becomes infinitely
rich. A planar shape or a simple and closed contour may be
described either explicitly, as a parametric continuous curve
(or a discrete polygon), or implicitly, as the zero level set of
a bivariate function. The various representation types have
advantages and drawbacks, and their richness and power of
expression depends on the number of parameters they em-
ploy.
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It would be nice to have a way of selecting “a random
shape” of a given perimeter and area. However, the problem
with selecting such “random points” in the world of shapes,
while imposing restrictions like perimeter and area, is that
nonlinear, complex and dissimilar constraints are enforced
over the many variables of the particular representation in
use. Furthermore, it is very difficult and often impossible to
specify or enforce a probability distribution on the “space of
shapes”.

Indeed, suppose a planar shape is described via an arbi-
trary parametric representation of a CD0 -continuous closed
curve C(p) = (x(p), y(p)), p ∈ [0,1]. In this representa-
tion, the constraints for the perimeter, area and smooth clo-
sure of the contour (D0 continuous derivatives) may be writ-
ten as follows:

∀i ∈ {0, . . . ,D0}: C(i)(0) = C(i)(1) (1)

L(C) =
∮

C

‖Cp‖dp = L (2)

A(C) = 1

2

∮
C

C × Cp dp = A (3)

where × marks the (signed magnitude of the) cross product.
The expression for the area is a result of Green’s theorem,
and it assigns a positive area to a counter-clockwise contour.
Using this representation, to select a shape with a given area
and perimeter is equivalent to finding a continuous, smooth
and non-self-intersecting (a property that is quite hard to ex-
plicitly express) vector function, C(p), obeying the above
constraints.

Alternatively, the boundary of a planar shape could be
defined as a non-self-intersecting polygon, X, with vertices
{Xi = (xi, yi)}m−1

i=0 and Xm = X0. The perimeter and area
constraints are, in this case:

L(X) =
m−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2 = L (4)

A(X) = 1

2

m−1∑
i=0

(xiyi+1 − xi+1yi) = A (5)

and here again, the non-self-intersecting conditions are quite
complex. Since we are only interested in the contour’s shape
up to an Euclidean transformation, we can (for example)
take X0 to be at the origin, (0,0), and X1 on the positive
x-axis, (x1,0), i.e., x0, y0, y1 = 0. In all, to select a random
shape is equivalent to the selection of a random “non-self-
intersecting” solution of a highly underdetermined system
of two nonlinear equations having 2m − 3 unknowns, not a
trivial task. A way to simplify matters would be by enforcing
the curve to obey some additional properties. For example,
we could force the boundary polygon to have equal length
edges. Such “arc-length-like” representations can provide

relatively good polygonal approximations of any arbitrary
curve. In this context, we may replace (4) with a set of m

simpler equations constraining all polygon edges to have le
length:

∀i = 0, . . . ,m − 1: (xi+1 − xi)
2 + (yi+1 − yi)

2 = l2
e (6)

Altogether, since X0 and X1 are now fixed, we have a system
of m nonlinear equations with 2m − 4 unknowns, and we
seek a random non-self-intersecting solution for it.

The same problem can also be posed in terms of the an-
gles, {θi}m−1

i=0 , that each unit polygon edge makes with an
arbitrary “horizon”. In that case, the perimeter constraint is
implicitly imposed by the number of edges, m, and their
length, l0, and the closure and area constraints are given by:

m−1∑
i=0

cos θi =
m−1∑
i=0

sin θi = 0 (7)

m−1∑
i=0

i−1∑
j=1

sin(θi − θj ) = 2A/l2
0 (8)

Here we have three equations for “only” m − 1 unknowns,
but still no simple way to obtain a “random” feasible non-
self-intersecting solution.

The examples given above show that modeling random
shapes in general and under given perimeter and area con-
straints in particular is not a well posed and well defined
problem. Hence, we shall deal here with a simpler problem:
given an initial shape, C0, with perimeter L0 and area A0,
we shall seek to express infinitesimal (or small) deforma-
tions of this shape that will preserve its perimeter and area
or modify them at a predefined rate. In terms of each se-
lected representation method, we shall deal with the prob-
lem of “obtaining new shapes from old ones” while obeying
the mathematical constraints imposed on the shape repre-
sentation parameters. Formally speaking, for a given initial
shape, C(0), with perimeter L(0) and area A(0), and given
a desired time evolving perimeter, L(t), and area, A(t), we
seek to express evolution rules that satisfy L(C(t)) = L(t)

and A(C(t)) = A(t).

2 Related Work

Several previous research efforts dealt with the problem of
deforming contours while preserving either their perimeter
or their area. In [9], Gage studied an area-preserving curva-
ture flow and its properties. Other curve evolution rules, the
Euclidean, affine, and similarity invariant geometric diffu-
sion flows were adjusted in [20] so that the shape is continu-
ously scaled to preserve either its perimeter or its area. Note
however, that these works dealt only with a set of predefined
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flows rather than general deformations, and only either the
perimeter or the area were fixed.

In the field of graphics, Sauvage et al. suggested meth-
ods for multiresolution editing of curves such that their
perimeter [21, 23] or their area [22] are preserved. These
methods, however, require iterative constrained optimiza-
tion processes. A deformation is applied to the curve by
modifying any control point at any resolution level. Then,
a “target curve” is iteratively optimized for smoothness and
minimum deviation from its original shape under length or
area constraints. In contrast, we would like to have deforma-
tion methods that are analytic and non-iterative. In [6], El-
ber presents methods for multiresolution editing of B-spline
curves subject to various linear constraints. In addition to
the positional, tangential and orthogonal constraints that are
linear, Elber suggests that the bilinear form of the area con-
straint can be dealt with as a pair of interchangeable linear
constraints, one for each of its dimensions. Sauvage et al.
and Elber then joined forces to present a fast and detail pre-
serving generalization of this work in [24] where they de-
form 3D B-spline surfaces subject to volume constraints.
Still, none of these methods enable the representation or the
deformation of shapes subject to both the perimeter and the
area constraints.

Recently, a very interesting study of shapes having min-
imal contour bending energy under perimeter and area con-
straints was undertaken by Arreaga et al. [1], Capovilla
et al. [2]. We shall show here how our shape evolution ideas
can be used to flow toward optimal shapes in the minimal
bending energy sense. In this context we note that Okabe
presented in [18] an interesting set of partial differential
equations governing a perimeter and area preserving con-
tour evolution in the direction of the negative gradient of
the bending energy functional. In the limit, these equations
implicitly describe “stationary” (i.e. optimal) contours with
respect to the energy functional.

3 Curve Evolution

Epstein and Gage proved in [7], that a general curve defor-
mation can always be expressed by the motion of its points
in the direction of the curve’s local normal, as follows:

∂C(s, t)

∂t
= ε(s, t)n̂(s, t) (9)

where s is the curve’s arc-length parametrization. Therefore,
a differential deformation can be bijectively expressed by
the choice of a geometrically defined function, ε(s). The
constraints we want to impose over the rate of change of
the contour’s enclosed area and perimeter are:

d

dt

[
L(C)

] = ∂

∂t

[∮
C

‖Cp‖dp

]
= Lt (t) (10)

d

dt

[
A(C)

] = ∂

∂t

[
1

2

∮
C

C × Cp dp

]
= At (t) (11)

Using differential geometry arguments [12], these con-
straints can be expressed as constraints on ε(s), or ε(p).
If n̂ is directed outward, and K is the curvature, then

d

dt

[
L(C)

] =
∮

C

εK ds =
∮

C

εK‖Cp‖dp = Lt (t) (12)

d

dt

[
A(C)

] =
∮

C

ε ds =
∮

C

ε‖Cp‖dp = At (t) (13)

However, how can we find such ε(s) functions? One of the
possibilities is to define ε(s) as a finite sum of elementary
(basis) functions:

ε(s) �
m∑

r=0

αrbr(s) (14)

and seek constraints on the finite set of coefficients, {αr}.
Notice that, since m here is a finite number, not every evolu-
tion function, ε(s), is expressible. The richness of the world
of possible deformations modeled in this way depends on
the type and number of basis functions involved in defining,
or rather designing, ε(s), and for most applications, han-
dling many parameters is costly and complicated, hence we
must select and use basis functions with care.

Substituting the representation (14) into (12) and (13)
yields

∮
C

εK ds =
∮

C

(
m∑

r=0

αrbr

)
K ds

=
m∑

r=0

αr

(∮
C

Kbr ds

)
= Lt (t) (15)

∮
C

ε ds =
∮

C

(
m∑

r=0

αrbr

)
ds

=
m∑

r=0

αr

(∮
C

br ds

)
= At (t) (16)

and by defining BL
r �

∮
C

Kbr ds and BA
r �

∮
C

br ds, (15),
and (16) become linear in the coefficients of ε’s representa-
tion in terms of the selected “basis” functions:

m∑
r=0

αr(t)B
L
r (t) = Lt (t) (17)

m∑
r=0

αr(t)B
A
r (t) = At (t) (18)

Notice that the {BL
r } and the {BA

r } terms are scalar de-
scriptors of the complete contour at a given point in time.
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Fig. 1 A curve evolution
example. The contour in (a) is
deformed into the one in (d) via
the ε(s) evolution function
shown in (b). The triangle in (c)
marks the contour’s arbitrary
starting point. Notice that the
evolution shown is of finite
rather than infinitesimal time
interval. The basis functions in
use are {cos(2πrs/L)}r=1,2,3,6,

{sin(2πrs/L)}r=1,2

They do not depend on ε(s), but only on the contour’s trace,
C(s), on the chosen representation “basis functions” in use,
{br(s)}mr=0, and on the arbitrary choice of a starting point,
s = 0, on the contour.

Another constraint on the deformation function, ε(s), is
that it has to keep the curve continuous and smooth to a cer-
tain degree, D0, depending on the application. For that to
happen, ε(s) has to be smooth enough everywhere, and even
as continuous basis functions are in use, the endpoints con-
straints, ∀i ∈ {0, . . . ,D0}: ε(i)(0) = ε(i)(L(t)), lead to more
linear constraints on the set of coefficients, {αm}:

∀i ∈ {0, . . . ,D0}:
m∑

r=0

αr(t)b
(i)
r (0) =

m∑
r=0

αr(t)b
(i)
r

(
L(t)

)

(19)

In all, the {αr} coefficients are required to satisfy the lin-
ear system consisting of (17), (18) and (19). As expected,
choosing the right basis representation can considerably
simplify the problem. Taking basis functions that are cyclic
over the domain of the contour’s perimeter, [0, L(t)], like
the Fourier basis functions for example, readily satisfies
(19). Furthermore, (18) depends, via BA

r ’s, only on the mean
values of the basis functions. In some bases, all but one of
the basis functions have zero mean. Again, the Fourier ba-
sis is a good example. In those cases, assuming the nonzero
mean function is normalized to have unit mean, the right
area rate of change can readily be guaranteed by setting
its coefficient, α0, to At (t). Hence, (17) remains the only
constraint on ε’s coefficients. How is the contour deformed
then? Assuming that we want the deformation to depend
upon exactly m+ 1 parameters, a number that is completely
application dependent, the deformation is described by
∂C(s, t)/∂t = n̂(s, t)

∑m
r=0 [αr(t)br (s)]. Notice that except

for the nonzero mean function, the choice of the other m ba-
sis functions is also arbitrary and application dependent. In
the Fourier basis for example, it might make sense to take the
lower frequency terms, {cos(2πrs/L), sin(2πrs/L)}m/2

r=1.
For the Fourier and similar bases, any subset of m − 1
coefficients out of {αr}mr=1 can be set with no restrictions
applied. Then, the remaining coefficient is determined by
solving the linear (17). Next, the contour is deformed via
C(s, t + dt) = C(s, t) + n̂(s, t) dt

∑m
r=0 [αr(t)br (s)]. Fig-

ure 1 shows an example of shape evolution according to ran-
domly generated parameters. In this example, Fourier basis
functions were in use, five parameters were randomly set,
and one was determined accordingly via (17).

In some applications, further information might be avail-
able about the rules governing the deformation of the shape.
Prior information may either be incorporated into the prob-
ability distribution functions of the randomly generated co-
efficients, or used to impose further constraints on {αr}. To
significantly simplify applying those constraints, we should
express them, if possible, via linear constraints on {αr}.

4 The “Local Evolve–Global Rescale” Model

Amoebae (see e.g. Fig. 2) are unicellular organisms famous
for their ability to “morph”. Amoebae continually form and
retrace so-called pseudopodia, i.e., “false arms and legs”,
in various directions. The pseudopodia test the environment
for likely meals or possible dangers. Each time such arm
is formed, the main body of the amoeba contracts, in both
surface area and volume, to allow the arm’s growth. The arm
may later be retracted or the whole body may move toward
the arm, reincorporating it, etc.

We would like our mathematical shape deformation
model to be able to describe such behaviors, i.e., to allow
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Fig. 2 An amoeba (picture
taken from the Carnegie
Institute for Science web page,
www.carnegieinstitution.org/
first_light_case/horn/lessons/
cellimages.html)

a local segment of the contour to intensively move out-
ward while the rest of the contour mildly adjusts itself to the
change in order to obey the global constraints on the perime-
ter and the area. The global adjustments should preserve the
contour’s shape except for the “active region”. The “local
evolve global rescale” principle refers to a class of defor-
mation techniques describing such deformations for various
shape representation methods. This section describes the
“local evolve global rescale” evolution of continuous con-
tours while polygonal and splinegonal deformation methods
following this principle are presented in Sects. 5.2 and 6.

Assume, for example, that we want to grow a certain seg-
ment of the contour into a protrusion or an arm. In other
words, we would like the evolution rule to rapidly push out-
ward a certain area of the contour while the rest is slowly
deforming in a way that (a) preserves its general shape, and
(b) makes the contour obey its global constraints. We shall
start with a possible description of the local rapid defor-
mation. A bump function, εbump(s), is a function over the
[0,L(t)] domain describing an arm growing curve evolu-
tion rule. Good examples of bump functions could be the
well known B-spline basis functions [4, 8, 25]:

∂C
∂t

= εbump(s)n̂ = αNi,j (s)n̂, s ∈ [
0,L(t)

]
(20)

where Ni,j (s) is defined by:

Ni,j (s) =
(

s − si

si+j−1 − si

)
Ni,j−1(s)

+
(

si+j − s

si+j − si+1

)
Ni+1,j−1(s) (21)

Ni,1(s) = {1 if si ≤ s < si+1, 0 otherwise} (22)

These piecewise polynomials of degree j − 1 are recur-
sively defined over an easy to manipulate knot vector,

(s0, s1, . . . , sk+j ). They have useful properties like having a
local nonzero domain, nonnegativity everywhere, zero end-
point values and derivatives, Cj−2 continuity over the knots,
etc. The general shape of these functions is shown in Fig. 3b.
The knot vector, the order, j , the index, i, and the scaling
parameter, α, are chosen to best fit the shape evolution char-
acteristics of the specific application. The nonzero domain
of the bump function will be centered “on” the desired arm
growing region of the contour as can be seen in Fig. 3.

In fact, depending on the desired behavior of the de-
formable shape, the ε(s) function can take other forms. For
example, a shape might grow several arms simultaneously
by taking an evolution function that is the sum of a vari-
ety of bump functions. Any evolution function is allowed as
long as it is cyclic having a period of L(t) (or D0 equal end-
points derivatives), this, in order to keep the contour closure
smooth.

However, since these evolution functions do not, in gen-
eral, satisfy the perimeter and area constraints, global cor-
rection terms should be added to the flow. These terms must
deform the contour in an application dependent “natural
way”. We shall first select to base our correction terms on
the Euclidean geometric curvature flow, ∂C/∂t = −Kn̂. In-
deed, in [9], Gage proposes a variation on this flow that pre-
serves the contour’s area through time. This idea was further
developed in [20], where the authors introduced a perimeter
preserving version of this flow. We shall here use both of
these flows to adjust the overall curve deformation to obey
the desired time varying constraints on the shape’s perimeter
and area.

The perimeter preserving Euclidean geometric curvature
flow is expressed by [20]:

∂C
∂t

=
(

−K +
∮

K2 ds

L(C)
C · n̂

)
n̂ (23)

http://www.carnegieinstitution.org/first_light_case/horn/lessons/cellimages.html
http://www.carnegieinstitution.org/first_light_case/horn/lessons/cellimages.html
http://www.carnegieinstitution.org/first_light_case/horn/lessons/cellimages.html
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Fig. 3 A curve evolution
example. The contour in (a) is
deformed into the one in (d) via
the εbump(s) evolution bump
function shown in (b). The
triangle in (c) marks the starting
point of placing the bump
function over the contour.
Notice that the evolution shown
is of finite rather than
infinitesimal time interval

and the Euclidean geometric curvature flow without area
shrinkage is given by [9]:

∂C
∂t

=
(

−K + πC · n̂
A(C)

)
n̂ (24)

The proof of perimeter and area preservation of these flows
proceeds as follows:
Using integration by parts, we have that
∮

(C · Kn̂)ds =
∮ (

C · (−t̂s )
)
ds = −

∮
(C · Css) ds (25)

= −[C · Cs]L(t)
0 +

∮
(Cs · Cs) ds (26)

= 0 +
∮

C2
s ds =

∮
1ds = L(C) (27)

Therefore, the flow defined by (23) satisfies

d

dt

[
L(C)

]

=
∮

εK ds =
∮ (

−K +
∮

K2 ds

L
C · n̂

)
K ds (28)

= −
∮

K2 ds +
∮

K2 ds

L

∮
(C · Kn̂)ds (29)

= −
∮

K2 ds +
∮

K2 ds

L
L = 0 (30)

Concerning the area variation, since
∮

K ds = 2π and
A(C) = 1

2

∮
(C · n̂) ds, we have that

d

dt

[
A(C)

]

=
∮

ε ds =
∮ (

−K + πC · n̂
A

)
ds (31)

= π

A

∮
(C · n̂) ds −

∮
K ds = π

A
2A − 2π = 0 (32)

The idea behind both of these global dimension-pre-
serving flows is that the shape is continuously scaled while
it deforms. The infinitesimal scaling term, ∂C/∂t = λC, can
be expressed via its projection on the direction of the normal
to the curve, ∂C/∂t = (λC · n̂)n̂. The rate in which the con-
tour is being scaled is designed to precisely overcome the
rate of change of the perimeter or the area due the curvature
flow.

The overall evolution equation is therefore

∂C
∂t

= εnet(s)n̂

= εbump(s)n̂ + α2

(
−K +

∮
K2 ds

L(t)
C · n̂

)
n̂

+ α3

(
−K + πC · n̂

A(t)

)
n̂ (33)

And the perimeter and area rates of change are

d

dt

[
L(C)

]

=
∮

Kεnet(s) ds

=
∮

K

[
εbump(s) + α3

(
−K + πC · n̂

A

)]
ds (34)

=
∮

Kεbump(s) ds

+ α3

(
π

A

∮
(C · Kn̂)ds −

∮
K2 ds

)
(35)

=
∮

Kεbump(s) ds + α3

(
πL

A
−

∮
K2 ds

)
(36)
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d

dt

[
A(C)

]

=
∮

εnet(s) ds

=
∮ [

εbump(s) + α2

(
−K +

∮
K2 ds

L
C · n̂

)]
ds (37)

=
∮

εbump(s) ds

+ α2

(∮ (∮
K2 ds

L
C · n̂

)
ds −

∮
K ds

)
(38)

=
∮

εbump(s) ds

+ α2

(∮
K2 ds

L

∮
C · n̂ ds − 2π

)
(39)

However, since we require the overall evolution to satisfy
dL/dt = Lt (t) and dA/dt = At (t), we can solve for coef-
ficients of the correction terms:

α3 = (Lt (t) − ∮
Kεbump(s) ds)A

πL − A
∮

K2 ds

α2 = (At (t) − ∮
εbump(s) ds)L∮

K2 ds
∮

C · n̂ ds − 2πL

(40)

where Lt(t) = (L(t + dt) − L(t))/dt and At(t) = (A(t +
dt) − A(t))/dt . In all, the generation of such perimeter and
area constrained evolution requires as input only the bump
function parameters and its positioning on the contour. All
other terms in εnet(s) then follow from (33) and (40).

We can get the same mathematical expression for the
overall flow from another viewpoint that might be more
straightforward. We consider a deformation rule that has
three components as follows, εnet = εbump + β2εnatural +
β3εscale. The εbump term is, as explained above, an uncon-
strained deformation of the contour. The other two terms
then compensate for the deviation εbump caused in the global
constraints. The εnatural term is some easy to model flow that
is “natural” in some way to the object being modeled. Here
we define it to be the curvature flow, for its many useful
properties like producing no shocks, topology and convex-
ity preservation, and a tendency to drive shapes toward disks
[10, 11]. Setting the right β2 value, the deformation rule
defined by both the natural flow term and the bump func-
tion term obeys the right time varying “shape factor” given
by 4π A(t)/L2(t). The last term, εscale = C · n̂, with the
proper selection of β3, infinitesimally rescales the contour to
the desired dimensions. Hence, setting the right coefficients,
β2 and β3, the overall flow, εnet = εbump − β2K + β3(C · n̂),
is made to obey the time varying perimeter and area con-
straints. The right coefficients are determined by expressions
similar to (40) above.

The curvature flow correction term we proposed above
for εnatural(s) is certainly not the only one possible. Other
“natural” flows might be chosen, as long as they produce no
shocks and suitably evolve the contour’s shape factor.

This rather general “local evolve global rescale” defor-
mation technique is an alternative to the one presented in
Sect. 3, and it can be useful in cases where we have prior
knowledge about the types of global deformations of the ob-
ject we are modeling. When modeling an amoeba, for in-
stance, we know what type of activity the object is going
through, for example, growing an arm, and we further as-
sume something about the natural tendencies of its shape de-
formation, for example, a tendency to regain a circular shape
or to flow toward a shape that optimizes a global geometric
functional such as minimizing of the elastic bending energy
as will be further explored in Sect. 7. This prior information
allows us, at the expense of defining shape dependent “basis
functions”, to express typical deformations via significantly
fewer parameters.

4.1 Numerical Implementation

Osher and Sethian advocated in [19] the use of implicit
representation of curves (or surfaces) as zero level sets of
three (or higher) dimensional surfaces for the temporal evo-
lution of such shapes. Indeed, a curve C(t) is expressed
by {C(t) ∈ R

2 : Φ(C, t) = 0}, the zero set of a deform-
ing bivariate function, Φ : R

2 × R → R. By differentiating
Φ(C, t) = 0 with respect to t we have that

∇Φ · Ct + Φt = 0 (41)

and since n̂ = −∇Φ/‖∇Φ‖ (the sign being determined
by the arbitrary choice of Φ > 0 within the contour), any
∂C/∂t = εn̂ deformation of a level set contour can be ex-
pressed via

Φt = ε‖∇Φ‖ (42)

The numerical implementation is carried out on a fixed
grid and consists of a discretization and representation
of Φ(x,y) at sample points, (i, j), Φ(i, j). First, the
bump function, εbump(s), can be replaced with a bivariate
bump function, εbump(i, j). For example, we can use a 2D
Gaussian function centered around (x0, y0), a point in the
center of the active region of the contour,

εbump(i, j) = α1e
− (i−x0)2+(j−y0)2

σ2 (43)

The bivariate bump can take any other shape as long as
it is continuous; no other constraints are enforced. After
εbump(i, j, t) is set, it is added to the embedding surface,
Φbump(i, j, t) = Φ(i, j, t) + εbump(i, j, t)‖∇Φ‖�t . Then,
the coefficients governing the rates of perimeter preserving
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and area preserving curvature flows are calculated (alterna-
tively, we can calculate β2 and β3, the rates of enforcing
curvature flow and scaling):

α3 = (L(t + �t) − L)A

�t(πL − A
∮

K2 ds)

α2 = (A(t + �t) − A)L

�t(
∮

K2 ds
∮

C · n̂ ds − 2πL)

(44)

and the embedding function obeys its zero level sets global
constraints by following

Φ(i, j, t + �t)

= Φbump(i, j, t)

+
[
α2

(
−K +

∮
K2 ds

L(t)
C · n̂

)

+ α3

(
−K + πC · n̂

A(t)

)]
‖∇Φ‖�t (45)

where all terms are measured over Φbump(i, j, t). The curva-
ture and the unit normal of level sets passing through each of
the grid points can be approximated since we have explicit
formulae for them. For instance, the curvature of a level set

of Φ(x,y) at (x, y) is given by

K = ΦxxΦ
2
y − 2ΦxΦyΦxy + ΦyyΦ

2
x

(Φ2
x + Φ2

y )3/2
(46)

The estimation of instantaneous global measures of the
curve is done by sampling the zero level set. The perime-
ter and the area are calculated from the sample points po-
sitions, {Ci}Qi=1. Sample points features like the curvature,
Ki , or the unit normal, n̂i , are approximated by suitable in-
terpolation from neighboring grid points, and their integrals
are estimated by their sum, weighted by their associated arc-
length. For example, the bending elastic energy is estimated
by:

∮
K2 ds =

Q∑
i=1

Ki

‖Ci+1 − Ci‖ + ‖Ci − Ci−1‖
2

(47)

In all, the deformation step of (45) can be applied to all
grid points since it is made out of only local terms, like K

and C · n̂, that are evaluated at any grid point, and global
terms, like the contour’s perimeter, its area, and its bending
elastic energy, which can be regarded as constants over all
grid points. An example of perimeter and area preserving
shape deformation is shown in Fig. 4.

Fig. 4 An example of perimeter
and area preserving shape
deformation produced via a
level sets implementation of the
“local evolve global rescale”
model. At any time, the above
amoeba is growing two
pseudopodia at locations that
are determined by random walks
along the perimeter of the shape
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A great advantage of using the level set method is that it
inherently avoids contour self intersections, while enabling
shapes to change their topology as they deform. This charac-
teristic may be helpful or harmful depending on the applica-
tion. Topology-preserving implementations of the level set
method are presented in [13], and these can be called upon
if such shape deformations are necessary.

5 Deforming Globally Constrained Polygons

Suppose we want to deform a contour that is given as a dis-
crete vector of points in the plane, {Xi = (xi, yi)}m−1

i=0 with
Xm = X0, constrained to obey

m−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2 = L(t) (48)

1

2

m−1∑
i=0

(xiyi+1 − xi+1yi) = A(t) (49)

Again, we would like to obtain new solutions from known
ones. We would like to express an infinitesimal deformation,
{δXi = (δxi, δyi)}m−1

i=0 , that would satisfy L(X + δX) =
L(t + δt) and A(X + δX) = A(t + δt), that is

m−1∑
i=0

√(
(xi+1 + δxi+1)− (xi + δxi )

)2 + (
(yi+1 + δyi+1)− (yi + δyi )

)2

= L(t + δt) (50)

1

2

m−1∑
i=0

(
(xi + δxi)(yi+1 + δyi+1) − (xi+1 + δxi+1)(yi + δyi)

)

= A(t + δt) (51)

In order to simplify the algebra and assure reasonable para-
metrization, we can replace the perimeter constraint with the
requirement for m equal length segments, each of length le:

∀i = 0, . . . ,m − 1:
(xi+1 − xi)

2 + (yi+1 − yi)
2 = l2

e (t) (52)
(
(xi+1 + δxi+1) − (xi + δxi)

)2

+ (
(yi+1 + δyi+1) − (yi + δyi)

)2 = l2
e (t + δt) (53)

Then, substituting (52) into (53) and (49) into (51), marking
�xi � xi+1 − xi and manipulating, yields

∀i = 0, . . . ,m − 1:
2�xi(δxi+1 − δxi) + (δxi+1 − δxi)

2

+ 2�yi(δyi+1 − δyi) + (δyi+1 − δyi)
2

= le(t + δt) − le(t) (54)

m−1∑
i=0

xiδyi+1 + δxiyi+1 + δxiδyi+1 − xi+1δyi − δxi+1yi

− δxi+1δyi

= A(t + δt) − A(t) (55)

Still, we have an under-determined and nonlinear system of
equations with many variables and dissimilar imposed con-
straints. This system is hard to solve algebraically, and the
use of some geometric intuition can simplify matters consid-
erably. First, notice that instead of requiring the deformation
method to obey constraints on both perimeter and area, we
can restrict it to only obey the correct shape factor, 4πA/L2.
In this case, the shape can be scaled to regain the desired
dimensions. Sections 5.1 and 5.2 introduce two new solu-
tions to the above problem. Section 5.1, like Sect. 3 above,
presents a method that is “global” in the sense that its ef-
fect is not restricted to a local polygonal region. Section 5.2
on the other hand follows the “local evolve global rescale”
principle presented for the continuous case in Sect. 4.

5.1 Pentagonal Deformation Model for Polygonal
Boundaries

The pentagon model is a perimeter preserving and area
constrained contour deformation method that works by re-
stricting the global polygonal boundary deformation to be
a piece-wise Euclidean transformation. We shall hence geo-
metrically transform the problem of solving (54) and (55)
into a problem that can be completely algebraically ad-
dressed. In order to obey preservation of shape factor, let us
designate by X̃(t) a scaled version of X(t), that is, X̃(t) �
X(t)/λ(t). The method proposed below will therefore be
allowed to produce instantaneous evolution equations for
X̃(t) that do not obey the given L(t) and A(t) constraints,
but instead, preserve X̃’s perimeter while its area deforms
such that it obeys A(X̃(t))/L2(X̃(t)) = A(t)/L2(t). The
first new constraint, perimeter preservation, is given by
L(X̃(t)) = L(0), the new desired area evolution rule is
therefore:

Ã(t) = L2(0)A(t)/L2(t) (56)

and the time varying scaling parameter is then given either

by λ(t) = L(t)/L(0) or by λ(t) =
√

A(t)/Ã(t).
To start with, consider three consecutive contour points.

If we require the two corresponding edges to stay rigid with
respect to each other, the displacement of the middle point
is determined by the motion of the edge connecting the first
and the third points. That way, the number of variables in
the problem is reduced by the two displacement variables
of the middle point. We can similarly handle longer discrete
curve segments by defining their motion via the motion of
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Fig. 5 Examples of arbitrary pentagons selections. Notice that the
pentagon need not be convex and it can self intersect as long as it
obeys increasing parametrization. The arrows point in the directions
of the integrals shown in the first and second rows of (58), a different
line type for each colum

the edge connecting their endpoints. Using this principle we
reduce the original problem into the deformation of a pla-
nar polygon with five vertices only. At this point, as shown
below, the problem becomes fully tractable algebraically.

A general deformation step of this method is defined by
a set of five of the contour’s points. The pentagon defined
by edges connecting these five points (in the order of tra-
versal of the boundary, i.e., increasing order of parametriza-
tion, the starting point being chosen at the first special point)
need not be convex, and it can even self-intersect as shown
in Fig. 5. The deformation of the original curve segments
between every pair of consecutive pentagon points will be
rigid and hence will be the Euclidean transformation defined
by the motion of the corresponding pentagon edge (see e.g.
Fig. 6). This, by no means restricts the domain of shapes for
which this deformation can be applied or the range of shapes
that can be eventually obtained. An example of perimeter
and area preserving deformation is shown in Fig. 7. The
Euclidean motion assures that the length of the curve seg-
ment remains constant and so is the (possibly negative) area
between the curve segment and the pentagon edge. The con-
tour is deformed by exploiting the parametric freedom in
changing the pentagon’s angles while the pentagon edges’
lengths remain fixed. The overall perimeter is preserved be-
cause it is preserved by each of the five segments separately
(and it is in all obeying the required perimeter constraint,
L(t), since the shape is suitably scaled). The area is chang-
ing at the right pace because the only change in area arises
from the change in the pentagon’s area, and this can be
designed to obey an instantaneous rate of Ãt (t). Formally
speaking, by denoting a(p) � C(p) × Cp(p), the area of
the contour may be written as follows:

A(C) = 1

2

∮
C

a(p)dp

= 1

2

∫ p2

p1

a(p)dp + 1

2

∫ p3

p2

a(p)dp + · · ·

+ 1

2

∫ p1

p5

a(p)dp (57)

To A(C) we can add and subtract the similar integral over
the edges of the pentagon (in the opposite direction, with any
parametrization, p̃, and with ã(p̃) denoting an infinitesimal
area element, defined similarly to a(p) on the edges of the
pentagon):

A(C)

=
∫ p2

p1

a(p)

2
dp +

∫ p3

p2

a(p)

2
dp + · · · +

∫ p1

p5

a(p)

2
dp

+
∫ p̃1

p̃2

ã(p̃)

2
dp̃ +

∫ p̃2

p̃3

ã(p̃)

2
dp̃ + · · · +

∫ p̃5

p̃1

ã(p̃)

2
dp̃

+
∫ p̃2

p̃1

ã(p̃)

2
dp̃ +

∫ p̃3

p̃2

ã(p̃)

2
dp̃ + · · · +

∫ p̃1

p̃5

ã(p̃)

2
dp̃

(58)

Notice that the first terms of the first and second rows ex-
press together the area of the region bounded between the
first pentagon edge and the corresponding curve segment. In
the same way, the second terms of these rows express the
area between the second pentagon edge and its correspond-
ing segment, and so forth for all five term-pairs. Notice also
that the third row is a piecewise integral expressing the area
of the pentagon itself. Having said that, and denoting by
Ai, i = 1, . . . ,5 the signed areas bounded by the pentagon
edges and the contour, we can write:

A(C) =
5∑

i=1

Ai + Apentagon (59)

Since the five regions with areas Ai discussed above are
“attached” to the corresponding pentagon edges and un-
dergo only Euclidean, hence area preserving, transforma-
tions,

∑5
i=1 Ai is constant during the deformation. It is clear

therefore that all the change in the area of the contour results
from the change in the area of the pentagon.

The next issue that we shall address is the freedom we
have in deforming the pentagon. A pentagon is defined by
ten parameters; two for each of its vertices. since we only
deal with a shape’s deformation, we can disregard its posi-
tion and orientation by choosing a coordinate system whose
origin is fixed to the first pentagon point and the x-axis
points in the direction of the edge to the second pentagon
point. The seven parameters left are subject to five edge
length constraints and another constraint for the pentagon’s
area, hence a single degree of freedom. How is the pen-
tagon deformed? As laid out in [12], changing one of its
angles explicitly determines all others, that is, completely
determines the pentagon’s shape up to Euclidean transfor-
mation. Deforming the pentagon and setting the Euclidean
motion it undergoes, determines {(δxi, δyi)} for the five pen-
tagon points. All other {(δxi, δyi)}m−1

i=0 displacements are
calculated by applying to each of these points the Euclidean
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Fig. 6 Pentagon shape
deformation: (a) Contour before
deformation. (b) Choice of
pentagon defines curve
segments. (c) Pentagon
deformation. (d) Curve
segments repositioned on
pentagon. (e) Contour after
deformation

Fig. 7 An example of a random
perimeter and area preserving
shape deformation produced via
the pentagonal deformation
method

transformation that produced the displacement of the corre-
sponding pentagon edge.

However, why use a pentagon? Why not rely on polygons
with fewer or with more edges? It turns out that a pentagon
is the simplest polygon allowing area and edge length pre-

serving deformations. Clearly, higher order polygons could
also be used. They however require one more parameter for
each additional edge above five, and will enable more com-
plex deformations at the expense of much higher complex-
ity.
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Fig. 8 (a) The green curve
marks the locus of points onto
which the blue stared point can
be moved satisfying the desired
shape factor constraint for the
special case of perimeter and
area preserving deformation.
(b) The blue contour is the
result of scaling the red contour
about the new position of the
stared point

The pentagonal deformation model can be applied to both
discrete and continuous curves. It has the advantage of pre-
serving the curve’s parametrization, however, it does not
preserve the curve’s smoothness since directional discon-
tinuities are introduced at the vertices of the selected pen-
tagon. The smoothness breaks do not raise any problem in
the context of polygonal curves, but in general, the local
changes should be minimized at each step. There are two
ways to ensure “smoothness”. First, the deformation may be
applied via (infinitesimally) small steps ensuring that the se-
lected points are barely moving and none of them undergoes
a significant distortion or bending. Another option is to fol-
low a significant, global, deformation step by a local process
of curvature minimization via pentagons defined over five
consecutive curve points (see Sect. 7 for relevant optimiza-
tion techniques).

5.2 Moving One Point at a Time

For a polygonal contour, another way to express an infini-
tesimal deformation is via the “local evolve global rescale”
principle, that is, to move a single point at a time, followed
by a second, rescaling, stage that affects all points, see e.g.
Fig. 8. For every point, Xi , there is a one dimensional locus
of points, a planar curve, along which it can be moved such
that after rescaling, the contour obeys its desired perimeter
and area constraints. Conveniently, this curve can be explic-
itly expressed (details in [12]).

The rescaling stage itself also contains some degree of
freedom that can be employed to our advantage. The choice
of an origin point about which the shape is scaled is equiv-
alent to the choice of a translation vector. The origin may
be designed to keep the shape’s center of mass fixed and
thereby eliminate the global motion associated with the
local evolution. Alternatively, rescaling around the locally
evolved area creates a more intuitive and natural shape flow
effectively modelling random locomotion.

6 Constrained Deformation of Splinegons

A shape’s boundary may also be expressed as a splinegon,
i.e., a spline guided by a polygon of control points. Sev-

eral studies propose methods that enable enforcing var-
ious global constraints to the intuitive approach of con-
tour deformation via control points editing. A B-spline
representation is appropriate because of its locality prop-
erties (moving a single control point has a limited do-
main effect). Elber [6] presents a method for multireso-
lution editing of B-spline curves subject to various lin-
ear constraints. Then, he expands this method to the area
constraint. The area of a B-spline contour may be written
via A = ∑

i

∑
j XiYjBij where {(Xi, Yi)} are the control

points and {Bij } are constant coefficients (pre-computed
integrations over the B-spline basis functions in use). El-
ber suggests that this bilinear equation can be dealt with
as a pair of interchangeable linear constraints; one for
{Xi}, one for {Yi}. In [24], Sauvage et al. present a fast
and detail preserving generalization of the above work for
deforming 3D B-spline surfaces subject to volume con-
straints.

Another useful curve description method is via multires-
olution representation. Sauvage et al. suggested methods
for multiresolution editing of curves such that either their
perimeter [21, 23] or their area [22] is preserved. In all those
methods, a deformation is applied to the curve by modify-
ing any control point at any resolution level. Then, the curve
is iteratively optimized for smoothness and minimal devia-
tion from its (modified) shape subject to perimeter or area
constraints. However, these authors never dealt with contour
deformations subject to both perimeter and area constraints.

Following the “local evolve global rescale” principle
once again, we suggest to deform a contour by moving
one or more control points in a way that obeys the desired
shape factor, 4π A(t)/L2(t). As before, this shape can later
be scaled (by scaling the control points) to the required
perimeter, L(t), and area, A(t). A control point position
has two degrees of freedom, Xk and Yk , while the area vs.
length ratio imposes only a single constraint. As in Sect. 5.2,
it turns out that for every control point there is a planar
curve along which it can be moved while obeying the de-
sired shape factor constraint (and of course, the curve passes
through the point for shape factor preserving deformations).
Again, there are several possible parameterizations describ-
ing points along this curve. The scale factor, λ, is a natural
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Fig. 9 One step of perimeter
and area preserving shape
deformation via B-spline control
point editing. An up-right
motion of the top right control
point is followed by a rescaling
of all control points centered
around the “active region”

Fig. 10 Perimeter and area
preserving random shape
deformation via B-spline control
point editing. The above cubic
B-spline contour is defined
using twelve control points

choice for that single degree of freedom, but the step size or
direction can also be used. Unfortunately, solving for the
locus of control point positions, (Xk(λ),Yk(λ)), is by no
means explicit or trivial.

As seen in [6, 27], the area constraint leads to lin-
ear equations in Xk and Yk . However, the perimeter con-
straint imposes a need for a numerical solution for the con-
trol point’s displacement. An example of shape deforma-
tion via B-spline control points editing is shown in Figs. 9
and 10.

7 Optimal Shapes

In many applications we are interested in shapes that opti-
mize a certain quality measure under various constraints. It

is sometimes assumed that cell membranes, under surface
area and volume constraints, seek to minimize their total
bending energy, a surface integral over the square of the
mean curvature, E = M2 dA, see e.g. [16]. In aeronau-
tics, wing designers try to maximize a wing’s lift force un-
der drag, weight, size and strength constraints, etc. Our gen-
eral approach to constrained shape deformations is useful
in obtaining some of these optimal shapes. The deformation
methods enable us to evolve arbitrary shapes toward optimal
ones while preserving their perimeter and area.

An interesting recent work done by Arreaga et al. [1],
Capovilla et al. [2] studied the shapes of contours having
minimal boundary bending “elastic energy” subject to con-
straints of constant perimeter and area. The functional for
minimization is defined by F (C) �

∮
C

K2(s) ds. The con-
straints are added to the functional via Lagrange multipliers,
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Fig. 11 The curve of potential,
V (K), takes one of the two
possible types of curves shown
above. The curve on the left
shows some of the discrete set
of energy levels corresponding
to closed curves (curves taken
from Arreaga et al. [1])

as follows:

F̃ (C) = F (C) + μ
(
L(C) − L

) + σ
(
A(C) − A

)
(60)

The starting point of the analysis is the Euler-Lagrange
equation satisfied by these optimal shapes (see e.g. [17]):

2K ′′ + K3 − μK − σ = 0 (61)

Then, an interesting way of solving this complicated differ-
ential equation of the fourth degree in stages is proposed.
Since a plane curve is determined, up to rigid motions, by its
curvature, the first stage of the solution can be to solve for
the curvature in terms of the arc-length. This step is done by
rewriting (61) in the following form:

K ′′ = − d

dK
V (K), V (K) ≡ 1

8
K4 − μ

4
K2 − σ

2
K (62)

This is a very clever mapping of the optimal contours prob-
lem into a problem of determining the motion of a fictitious
particle in a quartic potential, K being the displacement of
the particle and s playing the role of time (notice that the
same “trick” can be used in solving other problems as long
as their equation of motion is of the form K ′′ = f (K)). As
in the physical world, the “total energy” is defined by the
sum of the kinetic and potential energy (taking a unit mass),

E = 1

2
K ′2 + V (K) (63)

and we can see that it is conserved along the motion of the
fictitious particle, as follows:

dE

ds
= d

ds

(
1

2
K ′2 + V (K)

)

= K ′K ′′ + dV

dK

dK

ds
= K ′K ′′ + (−K ′′)K ′ = 0 (64)

The optimal, stationary, shapes correspond to the motion
of the fictitious particle on the curve of potential, V (K).
Every selection of the μ and σ parameters produces a dif-
ferent potential curve. Two such curves reproduced from [1]

are shown in Fig. 11. Different potential curves result in dif-
ferent optimal contours. In addition, for any given potential
curve, there is an infinite but discrete set of possible “total
energy” levels, each corresponding to a different stationary
contour. (This set is discrete because it consists only of the
energy levels that correspond to closed curves. The feasible
energy levels are found via a numerical procedure.) Each
such (μ,σ,Ei) triplet corresponds to a different equilibrium
shape. For each triplet, K(s) is obtained via a numerical in-
tegration process over the equation of motion of the particle
in the “potential-well”. Then, a second numerical integration
stage produces C(s) from K(s) up to Euclidean transforma-
tions. Figure 12 shows a few examples of optimal contours
so obtained, again reproduced from [1]. When the fictitious
particle is given a higher total energy (a feasible energy level
other than the lowest possible, not to be confused with the
contour’s bending energy), the corresponding optimal con-
tour is more complex and has a higher type of symmetry as
can be seen in Figs. 12b–d, f–h.

Note that the technique proposed above does not enable
setting the perimeter and the area of the minimal shape we
look for. The only parameters it allows to adjust freely are
μ and σ and these affect the perimeter and the area via an
implicit function that is, in fact, not even continuous. We
here propose a direct method of numerically obtaining op-
timal shapes of a priori set perimeter and area. Given the
set of global constraints, we propose to start with an arbi-
trary selected initial shape having the exact perimeter and
area requirements. Notice that such shapes are easily found
since, for example, we can take as an initial shape a rectan-
gle or an ellipse satisfying these conditions; a task that is
equivalent to finding the right horizontal and vertical scal-
ing factors of the unit square or circle. As can be seen in
Fig. 13, given an initial shape, it is deformed toward opti-
mality under constraints of constant perimeter and area. The
deformation methods that are more suitable for this process
are the “global” ones, like the basis-functions curve evolu-
tion (Sect. 3) and the pentagonal deformation (Sect. 5.1). In
each of these methods, at each iteration of the flow, a small
set of parameters is randomly selected to describe the de-
formation. For the basis-functions evolution, a set of basis
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Fig. 12 Optimal shapes in
terms of bending elastic energy
under perimeter and area
constraints (taken from Arreaga
et al. [1]). Figures (b–d) and
(f–h) have a high order
symmetry and they correspond
to a fictitious particle given a
higher energy. As seen in
Figs. (e–h), certain values of μ

and σ cause the contour to self
intersect

Fig. 13 An optimization
process initialized with a
rectangle. The rectangle’s edges
are easily set to obey desired
perimeter and area constraints

functions is determined and while some of the coefficients
are randomly set, other coefficients may be varied to opti-
mize the bending energy functional (a third group of coef-
ficients is determined by satisfying the global constraints of
(17), (18) and (19)). For the pentagonal method, five random
boundary points are selected, leaving a single degree of free-
dom in the deformation of the pentagon. For all deformation
methods, in each step of the optimization process, setting
the values of the parameters defining the instantaneous de-
formation may take several forms. It can be a unit step in
the negative energy gradient direction or a full gradient de-

scent process determining the values that minimize the en-
ergy the most. It can also be an annealing like process in
which values are randomly drawn and are then accepted at
probabilities that depend on their contribution to the bending
energy measure. All these processes are repeated with dif-
ferent selections of parameters resulting in the evolution (or
convergence) of shapes toward stationary optimal shapes.
Figure 14 shows some “optimal” shapes we obtained via the
pentagonal deformation method.

For a given and fixed perimeter, as the constrained area
decreases, the optimal shapes become the ones shown in
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Fig. 14 Curves of minimal
elastic energy under area and
length constraints. Shapes were
obtained using the pentagonal
deformation method

Fig. 15 Curves of minimal elastic energy under area and length con-
straints as obtained using the pentagonal deformation method. Rela-
tively to Fig. 14, the above shapes have a lower shape factor (4πA/L2).
Shapes in the top row were allowed to form self intersections and so

they all produce negative area regions (middle pieces). Shapes in the
bottom row were not allowed to self intersect and so they preserved
their initial shape topology

Fig. 15. In the top row, we show the curves that were ob-
tained when we allowed the curves to cross themselves. In
that case, the shapes resemble the ones obtained by Arreaga
et al. in [1], that is, they approximately obey the Euler-
Lagrange expression of (61). The shapes shown in the bot-
tom row were not allowed to self-intersect during the opti-
mization flow, and so, they converged to “optimal” non-self-
intersecting shapes that could not be obtained via the method
presented in [1], and cannot obey the Euler-Lagrange ex-
pression anymore.

Figure 16 presents more complex shapes. These optimal
shapes are results of optimization flows in cases where the
initial shapes had numerous self intersections. Notice that
if a contour’s turning number is defined by the (integer)
number of cycles around the origin completed by its unit
tangent, these shapes have a turning number that is not re-
stricted to one (actually, the turning number is always one
less than the number of “leaves” growing out of the central
region of the contour). Similar shapes were not presented
in [1], since (11) therein restricts the analysis to unit turn-
ing number contours. It restricts the angle by which the tan-
gent gets rotated in one full oscillation of the particle to be
2π/n, n = 2,3, . . . . By allowing this angle to be 2πm/n,
n = 2,3, . . . ,m = 0,1, . . . , more complex optimal shapes
obeying the Euler-Lagrange conditions may be obtained, re-
sulting in shapes like those presented in Fig. 16.

The shapes having complex symmetries as presented by
Arreaga et al. (and reproduced here in Fig. 12b–d, f–h) are
optimal in the sense that they obey the Euler-Lagrange equa-
tion. However, they correspond to local rather than global
minima. These shapes are known to have higher bending

Fig. 16 Minimal elastic energy under area and length constraints. Ini-
tial contours had numerous self intersections and resulting optimal
shapes have a winding number that is not one

energies than the peanut-like shapes of equal perimeter and
area, [1], shapes similar to those seen in Fig. 14. The higher
order symmetry shapes correspond to stationary points that
are so sensitive (in the sense of being local minima with a
very small attraction basin) that they practically never re-
sult in an optimization process. Even when we initialized
the optimization processes with “locally optimal” shapes
of a higher type of symmetry (sampled from Fig. 12) and
used very slow and smooth deformations, the optimization
processes readily deformed these shapes toward peanut-like
shapes of the same dimensions, as can be seen in Fig. 17.

So far, we have discussed optimal shapes as a function of
given perimeter and area. Alternatively, these shapes can be
considered via their shape factor and a scaling term. Since
scaling a contour by λ scales it perimeter by λ and its in-
stantaneous curvature by λ−1, its bending energy,

∮
K2 ds,

is scaled by λ(λ−1)2 = λ−1. Therefore, we can introduce a
normalized measure of the bending energy by multiplying
F by the curve’s perimeter. This scale invariant energy mea-
sure was introduced by Weiss [28] and by Bruckstein and
Netravali [3]. For optimal shapes, this measure clearly de-
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Fig. 17 An optimization
process initialized with a higher
order “locally optimal shape” as
sampled from Fig. 12. Notice
that the shape flows toward the
global minimizer peanut

pends only on the shape factor, 4πA/L2, that is,

Fnorm �
(

F (L,A)
)
L = f

(
4πA

L2

)
(65)

The methods for obtaining optimal shapes discussed above
enabled us to experimentally obtain a function describing
this normalized bending energy as a function of the shape
factor as seen in Fig. 18. A similar function was discussed
by Arreaga et al. [1] (see Fig. 14 therein). However, only
the horizontal and vertical asymptotes of this function could
be analytically derived, and the function itself was drawn by
asymptote-directed interpolation.

Our experimentally derived curve of Fig. 18 might turn
out to be important in understanding some real life phenom-
ena. It turns out that vesicles are seen in cells in quite a va-
riety of sizes and morphologies [14, 15]. Under certain con-
ditions, a large vesicle might split and produce smaller vesi-
cles which might then split at their turn. In fact, a process of
vesicle splitting due to volume reduction can be analyzed
in conjunction with the tendency of membranes to mini-
mize their boundary bending energy. For simplicity, con-
sider a two dimensional vesicle of perimeter L and area A.
Its minimal boundary bending energy is given by F (L,A) =
f (4πA/L2)/L. If the vesicle’s area decreases while its
perimeter remains the same, say, due to a change in the envi-
ronment’s osmotic pressure, its elastic energy increases con-
siderably, and the vesicle becomes less stable, more likely

to break and reshape. Indeed, as can be seen in Figs. 15
and 18, the optimal configurations for low shape factor con-
tours (i.e. small area) are shapes in which membranes from
opposite sides come very close together. The membranes in
these shapes divide the vesicle into two separate sides where
transport of matter between them is practically impossible.
Suppose the closest opposite points of the membrane attract
each other and stick together inducing a vesicle split, this
process will generate two new vesicles with a twice higher
shape factor (A → A

2 ,L → L
2 ⇒ 4πA

L2 → 4π(A/2)

(L/2)2 = 2 4πA

L2 ).
This process can of course reoccur upon further area de-
crease; each of the halves can split, and so on.

Using deformation methods similar to those described
above we can optimize shapes with respect to other criteria.
Examples of possible objective functionals can be integrals
over higher order curve derivatives (

∮
k′(s) ds, . . .) and/or

associated powers (‖k‖, k3, . . .), moment of inertia (
∮

r2 da)
and other moments, potential functions due to various exter-
nal forces, and more.

We note that such methods may also allow the study of
the forces and laws governing the formation of certain real
world shapes. Given an object of some (possibly temporary)
“optimal shape”, a “reverse engineering” process may be
able to retrieve its energy functional. Take the shape of a
vesicle for example, besides a desire to minimize bending
energy, vesicle shape is also influenced by osmotic pres-
sures, adhesion forces, and the electric properties of the
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Fig. 18 A curve describing the
normalized bending energy of
optimal shapes as a function of
their shape factor (optimal
shapes are ones which minimize
their bending energy under
perimeter and length
constraints). Each point on the
curve corresponds to a certain
optimal shape and any arbitrary
scaled version of it

membrane’s molecules [16]. Given the shape of a vesicle,
it may be possible to figure out the forces acting on it. Ex-
pressing the forces parametrically defines a function that
measures, for any set of parameters, the deviation of an op-
timal shape with respect to the functional induced by these
forces from the target shape. This function may be mini-
mized yielding the true forces present.

8 Running Times

The implementation of all deformation methods was done
in MatlabT M over an intel� coreT M2 Duo CPU with 2 G
of RAM. The “local evolve global rescale” level sets amoe-
bae evolved over a 200 by 200 pixels grid at about eight
frames (deformation steps) per second. It is safe to assume
that an optimized C/C++ code using a narrow band [26]
could easily generate “real time” smooth deformations. The
same statement holds for the pentagonal deformation model
that evolved 300 edges polygonal amoebae at over 80 steps
per second.

Shape optimization is a computationally heavier process.
A rectangular polygon of 50 by 100 edges sides converged
into an approximately optimal shape using the pentagonal
deformation method in about six seconds. This process takes
longer than a random walk with the same number of steps
because each pentagonal step involves a one dimensional
numeric optimization. A smoother initial shape, e.g. an el-
lipse, converges much slower because of the limited ad-
vancement made by every pentagonal step.

9 Generalizations

The most obvious generalization of perimeter and area con-
strained planar shapes is that of volume and surface area
constrained 3D shapes. Some of the deformation methods
proposed above may be adjusted to enable the deforma-
tion of such 3D shapes while others may not. The same
principles that were used for continuous curve evolution
methods in Sects. 3 and 4 may be used to state constraints
on ε(s1, s2), a bivariate function describing the evolution
rule of a closed 3D surface in the direction of its normals.
These constraints may be written as a series of basis func-
tions yielding linear constraints over the coefficients (as in
Sect. 3), or they may be satisfied by a two dimensional bump
function, some natural flow (mean curvature flow for in-
stance), and a scaling term (as in Sect. 4). The pentagonal
deformation method on the other hand has no obvious 3D
generalization.

The perimeter and area constraints are certainly not the
only global constraints that may be enforced over a deform-
ing planar shape. Other constraints may include a shape’s
moment of inertia, (

∫∫
r2 da), or higher order moments, av-

erage curvature, boundary bending elastic energy, or other
accumulative curve derivatives and/or associated powers,
curve or area integrals of external force fields, fixed curve
points and/or tangents, etc. Some of the deformation meth-
ods proposed above may be easily adjusted to follow other
constraints. The boundary bending energy constraint for ex-
ample yields the following constraint on the ε(s) deforma-
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tion function (as in (17) and (18)):
∮

C

2K3ε(s) − εss(s) ds = 0 (66)

This equation can be treated in the same manner as (12) and
(13) for the perimeter and the area. It can either be written
as a linear constraint over basis functions coefficients as in
(17) and (18), or it can be used to set the coefficients of a
“natural” and a scaling flow terms that are used in order to
overcome the effect of a local bump function evolution as in
Sect. 4.

The number of global constraints in use may also be
altered. Such changes will of course require some adjust-
ments, for example, replacing the pentagon with a higher
order polygon (one additional edge for each new constraint)
or adding linear constraints over the basis functions coeffi-
cients in the continuous curve evolution method of Sect. 3.

10 Concluding Remarks

This work presented a series of methods for carrying out
perimeter and area constrained planar shape deformations.
The methods studied involved both continuous and dis-
crete (polygonal and splinegonal) shape representations and
highlighted the difficulties in dealing with the complex in-
teractions between local rules of deformation and global
constraints. One application we studied is that of globally
constrained shape optimization processes that can be imple-
mented using goal-directed gradient-descent annealing-type
shape deformation processes. We hope that this study will
lead to further work in this area.
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