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Abstract

Trilinear relationships among the image point coordinates obtained by perspective projection of several feature points
over three views have been investigated, and it has been shown that seven point correspondences are su$cient to
determine the coe$cients involved. We show that analogous trilinear relationships exist for the weak perspective and
paraperspective projections, and that only four point correspondences are necessary for the determination of the
coe$cients. When the trilinear relationships are known, the position of the image of a point in one camera system can
be determined from its image in the two other camera systems through linear equations. ( 2000 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, the trilinear relationships that exist among
three perspective views of an object have been discussed
by several authors [1}4]. In particular there exists a trio
of 3]3 matrices, called the `trifocal tensora [4], whose
elements are the coe$cients in a set of linear equations
involving the three sets of image coordinates of a feature
point. This set of matrices has also appeared [5,6] in the
context of determining motion from structure using line
correspondences. Shashua [3] and Zhang [4] report
that a minimum of seven point correspondences across
the three views are necessary in order to solve for all the
coe$cients.

Shimshoni et al. [7] give a geometric interpretation of
the problem of motion recovery from three weak per-
spective views. The approach provided combines the

results of analyzing pairs of images, a direct and natural
approach to such problems. In this paper we show that
there exist analogous trifocal tensors for the weak per-
spective and paraperspective projections. However, only
four point correspondences over three views are neces-
sary in order to solve for all the components of the three
matrices involved, as several of these components are
always zero. As in the perspective case, knowledge of
the trifocal tensor and the images of a point in two of the
views allows the immediate computation of its position
in the third view, as long as the point is in general
position.

2. Notation

Let P, P@, and PA be the coordinates of a point in
three-space in the three camera coordinate systems, and
let p, p@, and pA be the corresponding image points, under
either weak perspective or paraperspective projection.
Let the relations between the systems be given by

P@"R@P#T@ PA"RAP#TA, (1)
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with R@ and RA being rotation matrices.
For the weak perspective and paraperspective projec-

tions, we take each camera coordinate system to have its
origin O at the focal point and the Z-axis as its optic axis.
For the paraperspective camera we take Z"F as its
image plane, where F is the focal length. The focal lengths
of the di!erent cameras are assumed to be known but
need not all be equal, so we take F@ and FA as the focal
lengths of the second and third cameras. The weak per-
spective projection is an orthographic projection
combined with a scaling, and as such does not have a
well-de"ned focal length, so we just set F"F@"FA"1.
If P"(X,>, Z) is a point in space, then its weak per-
spective projection is p"(x, y, 1), where

x"wX, y"w>, (2)

where w is a positive constant that equals 1 for ordinary
orthographic projection and otherwise is unknown for an
uncalibrated camera. These constants may di!er among
the cameras, and the scaling factors will be denoted by
w, w@, and wA. Knowledge of the values of these is not
necessary for the determination of the position of the
image of a point in one camera when given its image in
the other two, so we will assume w, w@, and wA are
unknown.

The paraperspective projection is a better approxima-
tion to true perspective projection than the weak per-
spective, while still retaining linear relationships between
the feature point and image point coordinates. A point
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projected onto the plane Z"C
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Note that the weak perspective projection is the special
case of the paraperspective projection when C is taken
to be the point (0, 0,F/w). The chosen centroids may be
di!erent in the three views, so we will denote them by
C, C@, and CA (C@ and CA are expressed in terms of the
second and third camera coordinate systems, respect-
ively). In an ideal situation they will be approximated
well enough so that we can assert C@"R@C#T@ and
CA"RAC#TA, but we will not make that assumption as
it is not necessary to prove our results.

We also denote by [p]
C

the skew-symmetric matrix
such that [p]

C
v"p]v for all 3]3 vectors v, so that

[p]
C
"C

0 !F y

F 0 !x

!y x 0 D.
3. The trifocal tensor

A compact representation of the trilinear constraints is
given by Zhang [4]. The trifocal tensor consists of three
3]3 matrices K, L, and M, and they satisfy a relation of
the form

[p@]
C

(xK#yL#FM) [pA]
C
"0, (4)

where 0 is the 3]3 zero matrix. Thus each point corre-
spondence gives rise to nine linear equations, although
just four of them are independent [3,4]. These equations
are all homogeneous in the components of K, L, and M,
so at least 26 independent equations, and hence seven
points, are necessary to solve for all the components
(up to a common scale factor).

4. Weak perspective projection

We seek an identity of the form (4) that holds in the
case of weak perspective projection. Such a relation can
be found after some algebra applied to Eqs. (1) and (2).
One method is to substitute (x, y,x@, y@, xA, yA)"
(wX,w>,w@X@,w@>@,wAXA,wA>A) in Eq. (4), then express
X@, >@, XA, and >A in terms of X, >, and Z through the
use of Eq. (1), and set all the coe$cients of terms of the
form Xi>jZk equal to zero. The result, which can be
veri"ed by direct substitution, is
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An alternative way of expressing these is
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Since there are 16 nonzero elements of the trifocal

tensor, just 15 independent equations are needed to solve
for all the components. As is the case with the perspective
trifocal tensor [3,4], there are four independent linear
equations among the nine present in Eq. (4); for example
the equations corresponding to the upper left 2]2 sub-
matrix are linearly independent. Consequently, four
points in general position are su$cient to determine all
the components of K, L, and M.

Knowing the location of an image point tells us a line
in space on which the corresponding feature point
lies. A point whose images are (x, y), (x@, y@), and (xA, yA)
in the three cameras lies on the lines (x/w, y/w, 0)#
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t, u, and v are parameters that may take on any real value.
From this, it can be seen that the trifocal tensor approach
fails when the optic axes of at least two of the cameras
are parallel. This condition may be characterized
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Now if the trifocal tensor is known and the image of
a point in two views is given, then its position in the third
image can be determined as the solution of a set of nine
linear equations (four of them independent) in two un-
knowns. For example, given x, y, x@, and y@, we can deter-
mine xA and yA as the least-squares solution of these four
independent equations:
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Both m
3
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6

cannot be zero when no two of the three
optic axes are parallel, so this recovery is always possible
in this case. Note that since the scale factors w, w@, and wA
do not appear in Eq. (4), their values are not necessary for
the determination of the location of the image point in
one camera given the corresponding positions in the
other two.

5. Paraperspective projection

We proceed just as in the previous section, but here the
expressions involved are much more complicated. A rela-
tion of the form (4) can be found after a great deal of
algebra applied to Eqs. (1) and (3). One direct method is
to make the substitutions for x and y, and the analogous
ones for x@, y@, xA, and yA, given by Eq. (3), into Eq. (4).
Then, again express X@, >@, XA, and >A in terms of X, >,
and Z through the use of Eq. (1), and set all the coe$-
cients of terms of the form Xi>jZk equal to zero. The
result, which can be veri"ed by direct substitution, can be
expressed as
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where RI @ is R@ with the third row replaced by zeros,
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This solution reduces to Eq. (5) when C"

[0 0 1/w]T, C@"[0 0 1/w@]T, and CA"[0 0 1/wA]T,
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Fig. 1. Average errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) 4, (b), 5, and (c) 6 feature points placed at the vertices of a regular tetrahedron, trigonal bipyramid arrangement, and
regular octahedron, respectively. D is the distance from each camera to the center of the sphere from which the feature points are chosen.
In each case, from bottom to top the graphs are for 1, 2, 5, and 10 pixel discretization errors.

with all the coe$cients of K, L, and M scaled by the
factor 1/(ww@wA).

As is the case with the weak perspective projection,
the trilinear relationships run into di$culty if the lines
in space determined by the image point in two of the
cameras are parallel. Here a point whose images are (x, y),
(x@,y@), and (xA, yA) in the three cameras lies on the lines
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can be determined that the trifocal tensor approach does
not work when at least two of C, R@~1C@, and RA~1CA are
parallel.

The situation now is essentially identical to that with
the weak perspective projection. Four points in general
position are su$cient to determine all the components of
the paraperspective trifocal tensor, and once that is

known, the image of a point in the third camera can be
determined from its image in the "rst two.

6. Experimental results

In order to determine the applicability of the weak
perspective and paraperspective trifocal tensors to data
obtained from true perspective projections, we ran sev-
eral experiments on synthetic data. Since the true per-
spective trifocal tensor requires seven points while the
others need just four, their greatest use will be in cases
where we have exactly four, "ve, or six point correspond-
ences.

In our "rst set of experiments, we took four feature
points "xed at the corners of a regular tetrahedron in
scribed in the unit sphere, so that these points form an
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Fig. 2. Maximum errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) and (b) 4, (c), 5, and (d) 6 feature points regularly spaced points. (b) is a close-up of (a) drawn with the same scale as (c)
and (d). In each case, from bottom to top the graphs are for 1, 2, 5, and 10 pixel discretization errors.

optimum arrangement for pose determination as in Ref.
[8]. This tetrahedron was then given a random 3-D
rotation. Then three more random rotations were chosen
for the cameras. Trifocal tensors are not useful when the
viewing directions of the three cameras are similar, so the
viewing directions were chosen to be within 303 of three
mutually orthogonal directions. Speci"cally, one rota-
tion was randomly chosen from a uniform distribution of
rotations whose third columns, when expressed as 3]1
vectors, were within 303 of the Z-axis. The other two
rotations were chosen in a similar manner, but within 303
of the X- and >-axis. The translations for the cameras
were then taken to be [0 0 D], so that the point P in
the world coordinate system is P@"RP#T in the cam-
era coordinate system. Thus the center of the original
tetrahedron is at distance D from each camera. The
quantity D took the values D"5, 10,2, 100.

A "fth point P
0

was then chosen randomly from the
unit sphere. The collection of "ve points was then trans-
lated by a vector randomly chosen from the ball of radius
M centered at the origin, where M was either 0, D/8, or
D/4. The latter corresponds to keeping the object within
a 283 "eld of view of a camera. It was found that the value
of M had little impact on the results, so we set M"D/4
in all the following experiments.

We assumed a focal length of one for each camera. The
images of the "rst four feature points were computed
using true perspective projection, and then we added
discretization errors in the x- and y-coordinate of each
point. These errors were uniformly selected from the
interval [!Ke,Ke] for e"0.001 and K"1, 2, 5, 10,
which corresponds to a K-pixel error in an image with
resolution 1000]1000 pixels. With this data, we cal-
culated the trifocal tensor of the form (5) or (7). That is,
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Fig. 3. Average errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) 4, (b) 5, and (c) 6 feature points randomly chosen from balls of radius 1/2 surrounding the vertices of a regular
tetrahedron, trigonal bipyramid arrangement, and regular octahedron, respectively, inscribed in the unit sphere. D is the distance from
each camera to the center of the sphere from which the feature points are chosen. In each case, from bottom to top the graphs are for 1, 2,
5, and 10 pixel discretization errors.

we assumed that the 11 elements that are zero in Eqs. (5)
and (7) do indeed vanish, and found optimal least-
squares "ts on the remaining 16 elements. We then took
the "fth point and added the same discretization error in
two images. Then we computed its image for the third
camera by using Eq. (6). The distance from this computed
image point to the actual location of the image point
assuming no error was then recorded. The results are
shown in Figs. 1 and 2. The error in the position of the
image of P

0
in the third camera is denoted by DDp(

0
!p

0
DD

in the graphs. The programs and "gures were all produc-
ed with the symbolic manipulation program Maple
[9,10].

With four original feature points, the results are best
for D'15. For smaller values of D the weak perspective
projection is not a good approximation for the true
perspective. For a one or two pixel error in the image

points, the value of DDp(
0
!p

0
DD remains small for D up to

100, but with larger errors, particularly when DKe'0.4,
we occasionally come up with a bad example. With the
larger values of D, the discretization error becomes signif-
icant in comparison with (at least 25% of) the distance
between the image points. These occur when the image
points cluster in at least one of the views. When the
discretization error is no more than "ve pixels, DDp(

0
!p

0
DD

is nearly constant for 20)D)70, and for a one or two
pixel error it is nearly constant for 20)D)100, with a
value of approximately 1.3Ke.

We repeated these experiments for "ve and six original
feature points. In order to have results as stable as pos-
sible, the distances between the points were maximized
while keeping them within the unit sphere. The arrange-
ment for "ve points can be described as placing two of
them at the north and south poles, and the other three on
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Fig. 4. Maximum errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) and (b) 4, (c) 5, and (d) 6 feature points randomly chosen from balls of radius 1/2 surrounding the vertices of a regular
tetrahedron, trigonal bipyramid arrangement, and regular octahedron, respectively, inscribed in the unit sphere. (b) is a close-up of (a)
drawn with the same scale as (c) and (d). In each case, from bottom to top the graphs are for 1, 2, 5, and 10 pixel discretization errors.

the equator 1203 apart (trigonal bipyramid). Six points
were placed at the vertices of a regular octahedron. The
maximum values of DDp(

0
!p

0
DD decrease by about a factor

of two with each additional feature point, while the
average errors only decrease slightly. The latter are ap-
proximately 1.2Ke and 1.0Ke for "ve and six original
feature points, respectively.

We note that for the purposes of determining the
location of an image point in the third camera image, the
weak perspective and paraperspective trifocal tensors
have the same form insofar as the same 11 components
are always zero for each. Thus, it does not matter which
of these we say we are using for this image point deter-
mination. The di!erence between the two matters for
pose determination, where the rotation and translation
between the camera coordinate systems must be com-
puted. Here the paraperspective assumption will yield

better estimates by exploiting some additional informa-
tion.

In the second set of experiments, rather than being
"xed at the vertices of a regular tetrahedron, trigonal
bipyramid, or octahedron, the feature points are random-
ly chosen from spheres of radius 0.5 about the vertices of
these objects. The rest of the experiments were the same
as for the "rst set, with 1000 trials run for each value of D.
This increases the frequency of bad cases due to the
feature points not being so well spaced, but again these
are con"ned to D(10 and DKe'0.4. The results are
shown in Figs. 3 and 4. For "ve or six points, the
average errors are almost the same as with the well
spaced points of the "rst set of experiments, while with
four points, the values of DDp(

0
!p

0
DD are about 12%

greater than the corresponding values in the "rst set of
experiments.
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Fig. 5. Average errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) 4, (b) 5, and (c) 6 feature points. h is the angle formed by the optic axes of each pair of the three cameras. The distance
D is "xed at 20. In each diagram, from bottom to top, the graphs are those for which the discretization errors are 1, 2, 5, and 10 pixels.

In the third set of experiments, we investigated how
the errors change as a function of the angles between the
optic axes of the cameras. We "xed D"20, and let the
three optic axes form angles of h with each other for
h"53, 103,2, 903. The cameras were then given random
spins about their optic axes. The rest of the setup was the
same as in the "rst set of experiments, with the feature
points forming the vertices of solids inscribed in the unit
sphere. Upon adding a test point from the unit sphere,
the whole collection of points was translated by a ran-
dom vector selected from the ball of radius M"D/4"5.
Again, 1000 trials for each value of h were conducted. The
results for four, "ve, and six feature points are shown in
Figs. 5 and 6. The average errors change very little as
h varies, with DDp(

0
!p

0
DD being roughly 0.0013K, 0.0012K,

and 0.0011K for four, "ve, and six feature points, respec-
tively. The maximum errors are close to constant for

K)2, while they are erratic and fairly large when
h(303 and K'2 for four points. For "ve and six
points, the maximum errors are bounded by 0.0064K and
0.0049K, respectively.

7. Conclusions

We have shown that trifocal tensors that are analog-
ous to that for perspective projection also exist for the
weak perspective and paraperspective projections. Since
there are only 16 nonzero matrix components to solve for
compared to the 27 essential parameters in the perspect-
ive trifocal tensor, fewer point correspondences, in fact,
four point correspondences across three views instead of
seven, are needed in order to determine the trifocal tensor
in the weak perspective and paraperspective cases. Thus
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Fig. 6. Maximum errors in the position of an image point p
0

in the third camera image, as computed by the weak perspective trifocal
tensor based on (a) and (b) 4, (c) 5, and (d) 6 feature points. h is the angle formed by the optic axes of each pair of the three cameras. (b) is
a close-up of (a) drawn with the same scale as (c) and (d). The distance D is "xed at 20. In each diagram, from bottom to top, the graphs
are those for which the discretization errors are 1, 2, 5, and 10 pixels.

when these approximations to true perspective projec-
tion are suitable, these linear algorithms are more likely
to be stable than those for true perspective, and to pro-
vide better starting points for more accurate nonlinear
algorithms for image point determination.
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