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The Resolution of Overlapping Echos
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Abstract—We present a new method for estimating the number and
arrival times for overlapping signals with a priori known shape from
noisy observations received by a sensor. The method is based on a re-
cently developed eigenstructure technique for multitarget direction
finding with passive antenna arrays and exploits the structure of the
received signal covariance matrix. This problem is important in various
applications such as radar and sonar data processing, geophysical/seis-
mic exploration, and biomedical engineering. In many of these appli-
cations, a known signal is launched into a scattering medium and the
returning response—in the form of delayed overlapping echos in noise—
has to be processed to yield information on the nature and location of
scatterers. The method presented also solves more general problems of
signal detection and resolution.

I. INTRODUCTION

N many applications such as radar and sonar data pro-

cessing, geological acoustic sounding, ultrasound-based
nondestructive testing, and medical imaging procedures,
one is faced with the problem of resolving an unknown
number of closely spaced, overlapping, and noisy echos of
a signal with a priori known shape. Several approaches
for solving this problem have been studied so far. These
include detection/deconvolution schemes, inverse filter-
ing, least-squares, and maximum likelihood methods; see,
e.g., [1]-[9]. The problem has many variations and is, in
fact, a combined detection—estimation problem: one has
to determine the number of returning echos and then apply
an estimation procedure to determine their location in
time.

Consider that a signal of known shape s(-) is sent
through a medium that returns its echos from various lo-
cations. Over a window in time, beginning, say, at the
moment the probing signal is emitted, a sensor receives a
superposition of delayed and randomly scaled versions of
s(+). The received signal can thus be written as

D
r(t) = Zl m; s(t — 6) + n(f) (1)
i=
where we assume that

1) the 6; are the delay parameters, related to the loca-
tion of the scattering objects

2) the m; are random gains incorporating both scatterer
characteristics and propagation fading through the me-
dium, and
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3) n(-) is an additive white noise process.

Note that in the above model, we assumed a baseband
situation. This is done simply for convenience, and in the
case of RF-modulated signals, we have a similar model
for the received complex signal. In this circumstance, we
would also have to deal with a random phase component
multiplying the gains m;, and the known shape of the prob-
ing pulse would simply be the envelope of the RF pulse.
This and several other extensions will be discussed in more
detail later, except for the remark that the randomness in
amplitude (and phase) assumed in our method is more
readily at hand in radar problems, arising from tiny vari-
ations in component echo delay that are small on the scale
of estimation accuracy, but large enough to randomize the
carrier phase of the echo. The significance of the random-
ness assumption will be evident in the analysis presented
in Section II.

Suppose that the mode of probing is repetitive, i.e., at
some predetermined rate, identically shaped pulses are
launched into the medium. Assuming also that over the
repetition period of, say, length T all returns have died out
already, the succession of received signals may be consid-
ered as resulting from repeated independent experiments
on the medium. Many conventional radar/sonar systems
operate exactly in this way; in geological and other acous-
tic sounding applications, we would require a set of iden-
tical experiments to be performed.

Therefore, by assumption, we have access to an ensem-
ble of K responses

D
{r} = {El my st — 0) + nj(t)} j=1,2---K

in which the random components are results of indepen-
dent trials. The problem we address is the following: given
a set of responses as above, determine

1) the number of delayed echos present

2) the delays corresponding to each return

3) the second-order statistics of the gain parameters.
Our solution to this problem is based on a time-domain
reinterpretation of an ingenious method developed and
used in the context of multitarget direction finding with
passive sensor arrays. We shall show that this so-called
“multiple signal characterization” (or MUSIC) algorithm
of Schmidt [10] and Bienvenu [11], which is used toc de-
termine the number of radiating sources and their loca-
tion, can be used to provide the solution to a whole class
of signal resolution problems of the type we are discuss-
ing. The direction finding algorithm cleverly exploits the
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eigenstructure of the covariance matrix of the received
signals at the M sensors in the passive array. In a similar
way, the signal resolution procedure relies on the eigen-
structure of covariance matrix of M samples of the re-
sponses r;(+). This is described in Section IL

In Section III, we discuss several extensions of the basic
problem that can also be handled with the MUSIC ap-
proach, and Section IV presents a series of simulation re-
sults exhibiting the performance of the proposed signal
resolution method.

II. UsinG Music To RESOLVE OVERLAPPING EcHoOs
The MUSIC Algorithm

Suppose an array of M sensors monitors the signals pro-
duced by D radiating sources. Assume further that the
sensor array is-in the far field of the sources so that only
the radial direction of the sources is relevant in the pattern
of received signals. (The waves generated by each source
behave like plane waves coming from its direction.) Then
the signals received by the M sensors can be modeled as
follows [9]-[12]:

ri(® 51D ny(r)

t 55(2) n,(t)
r2(:) =[AG)AG) - A0 | | + |

ru(?) sp(?) (1)

or, more compactly,
r(t) = As(® + n(@® 3

where r;(-) is the signal received at the ith sensor, 5;() is
the signal generated by the jth source, A(6) is the “sig-
nature’ of a source in the direction 6, and »; is an inde-
pendent noise affecting the ith sensor.

The parametrized set of signature vectors {A(8)}4co
where O is the parameter set—usually [0, 27]—is appro-
priately called the ““array manifold” since it characterizes
the directional properties of the sensor array. The pa-
rametrized array manifold may be obtainable in a closed
analytical form (for simple spatial geometries like linear
or circular arrays) or can be measured through field cali-
bration procedures and then stored in a computer memory.
It is usually assumed that, by careful choice of the array
geometry, it has the following property: for any set of pa-
rameters 6 with less than M elements, the array manifold
vectors are linearly independent. This property ensures
that there will be no ambiguities in the signal model (3)
since a linear combination of two or more direction sig-
natures will never provide the “‘phantom” signature of
some different direction. This property is trivially satis-
fied by linear sensor arrays (for 6 € [0, «]) since their array
manifold has Vandermonde-type columns; see, e.g., [10],
[12]. However, the significance of the MUSIC method is
that it can apply to arbitrary arrays geometries, a feature
that will be important in our applications. For a linear ar-

ray, MUSIC is closely related to several previously known
algorithms for spectral analysis and for direction finding
(see, i.e., [9], [12], [171-[19]). From (3), it is readily
seen that the covariance of r(+) can be written as

R = ASA* + N @)

where S and N are the covariance matrices of the sources
and the noise, respectively. The noise is usually assumed
spatially and temporally uncorrelated with intensity N =
ol. It is obvious that if D < M and S is positive definite,
then the matrix R — of will have rank D, and therefore it
has a nullspace of dimension M — D. It also readily fol-
lows that all columns of A4 are orthogonal to this nullspace.
As noted by Schmidt [10] and Bienvenu and Kopp [11]
(see also [12] and [13]), the above observations lead to the
following way to determine, from a perfectly known R,
the number of sources D, their directions {6,}, the source
covariance S, and the noise power o.

1) Compute the eigenvalues and eigenvectors of the
M X M matrix R.

2) D and ¢ are determined by the facts that the mini-
mum eigenvalue, equal to o, has multiplicity M — D.

3) The M — D eigenvectors corresponding to the min-
imal eigenvalues are orthogonal to all the D signature vec-
tors A(f;). Therefore, by a linear search on the array man-
ifold, we can determine the D directions orthogonal to the
subspace determined by the eigenvectors corresponding to
the M — D minimal eigenvalues.

4) Finally, we can compute

S = (A*A) "' A*(R — ol) A(44*)"". (5)

The determination of the source directions 6; is usually
performed by plotting, as a function of 6, some measure
of orthogonality of A(f) to the subspace determined by the
eigenvectors E;. This measure is often chosen to be

A@)* A
3(0) = 72240 ©

_21 (A(O)*E)*
=

The K points at which $(0) peaks to infinity (ideally) are
the directions of the sources.

In the real-world situation, the steps of the idealized
procedure presented above have to be replaced by corre-
sponding estimation methods. References [9]-[16] pro-
vide thorough discussions of these, so we only briefly note
two key steps.

1) Estimate R, say, by the sample covariance matrix (1/
K) TPy r(t) r¥(@).

2) Either perform a hypothesis testing, based on like-
lihood ratios with thresholding, to achieve desired signif-
icance levels [10] or use a model-order identification
method [14], based on some information-theoretic criteria
(Akaike’s I.C. or Rissanen’s minimum description length)
to determine the multiplicity of the smallest eigenvalue
(i.e., the number of elements in. the cluster of smallest
eigenvalues of R). This provides an estimate of D, and the
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arithmetic mean of the M — D smallest eigenvalues is an
estimate of the noise power o.

Application to the Overlapping Echos Problem

Here we have available, by assumption, a sequence of
outputs of a single sensor. Over successive data windows
of length 7, which are synchronized to the repetitive cycle
of radar transmission and reception, we sample the re-
ceived waveforms r;(-) at M instants and stack the suc-

J
cessive samples in a vector of length M. Then, we have

ri(ty)

_ ri(%)
T

ri(ty)

where the time-domain “‘signature’” of an echo delayed by
6 is simply the vector

AB) = [s(t) = 0), st = 0) - - sty — OI* ()

where * denotes matrix transpose.

The above representation is a direct consequence of the
assumed model for the signal equation (1). In this formu-
lation, it becomes clear that the sampled waveform’s co-
variance eigenstructure contains all the information
needed for the recovery of the delay parameters, the noise
level, and the second-order statistics of the random gains
my;, provided only that M > D.

Therefore, the one-sensor multiexperiment signal reso-
lution problem is seen to have an identical structure to the
problem of multitarget direction finding with an array of
antennas. The nice feature of this correspondence is the
fact that the “‘array manifold” for the signal resolution
problem is trivially obtained from the signal shape, which
is assumed to be given. Furthermore, the desired array-
manifold property—linear independence of the A(6)’s for
any set of less than M delays—is readily satisfied, pro-
vided we work with any finite-span pulse-type waveforms.

In practical radar systems, the probing signal is an am-
plitude modulated high frequency sinusoidal signal, with
the envelope a pulse of shape s(-), i.e.,

sge(® = s(P) cos (wot + ¢). )]

In this case, the echos received at the radar antenna are
modeled by the following equation:

D
ree(t) = 25 mis(t — 6) cos (wglt = 6) + ¢ + ¥)

+ n() (10)

where the ¢;’s stand for random phases due to propagation
through the medium. Now, the signal may be either sam-
pled in its original version or a conversion to baseband
may be performed. In both of these cases, the random
phase will have the effect of multiplying the signal enve-
lope by an additional random factor. It is also quite natural
to assume that the random phases corresponding to differ-

= [A(0) A@,) -
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ent echos are uncorrelated. This shows that for the RF
case—even if the random factors due to, say, Rayleigh fad-
ing, would be slowly changing and this would make their
covariance matrix nearly singular—the gains m; due to
random phases will provide a nonsingular overall gain
covariance, rendering the MUSIC algorithm applicable.
To determine the number of echos and estimate their
location, we apply the MUSIC algorithm, as described
above. First, estimate the received signal covariance by

my; n;(ty)

m2j N I’lj (.tz)

M

Mp; ni(ta)

/K EJK=, r;rf, and perform a spectral decomposition on
the estimated covariance. This yields

M
R= 2 NV
i=1

IA

where we order the eigenvalues as A\; < A, < - - -
Au

Determination of Number of Echos and Noise Level

The number of echos present in the returning wave-
forms can be estimated by using one of the two ap-
proaches described below.

1) Perform a sequence of hypothesis tests by comparing
the likelihood ratio for the first p eigenvalues being equal
forp =M, M — 1, ---, 1, to a suitably chosen set of
thresholds. The likelihood ratio is, under Gaussian as-
sumptions for all random factors, given by

p tip pg-
il
— (n
(1/p) i\,

LR(p) =

The choice of thresholds in this so-called Bartlett-Lawley
method is rather complicated and is dictated by the desired
significance level from a x ? distribution (see [10] and [14]),
and the first p for which LR(p) exceeds the threshold is
accepted as an estimate of the multiplicity of the minimal
eigenvalue.

2) Compute forp = M, M — 1, - - -, 1 the value of an
information-theoretic criterion such as Akaikes’s IC or
Rissanen’s MDL, given, respectively, by

AIC(p) = log {LR(p)} + M —ppM +p + 1) (12)

MDL(p) =
log {LR(p)} + M —p)M + p + 1)log K (13)
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and estimate the multiplicity of the minimal eigenvalue by
the value of p that minimizes the chosen (preferred) cri-
terion. This approach, paralleling model order identifica-
tion methods in time series analysis, was recently pro-
posed by Wax and Kailath; see [14].

Once an estimate for the multiplicity of the minimal ei-
genvalue becomes available, the number of sources is es-
timated by D = M — p, and the maximum likelihood es-
timate of the noise power is simply the mean of the p
smallest eigenvalues [9]-[13]:

1 p
§=- 2\, (14)

We note that, although the above procedures are derived
under Gaussian assumptions, they are, in fact, reasonable
tests for more complicated situations too. The likelihood
ratio, for example, by comparing the geometric mean of p
smallest eigenvalues to their arithmetic mean, provides a
measure of their uniformity. The closer this measure is to
1, the more similar are Ny, Ay* * * A,
Estimation of Echo Delays

From a singular value decomposition, the estimate of
the nullspace of R is obtained as the span of
{E}izl,z,. ..y—p with E; = V,. The estimation of echo
delays is performed by a search over 6 € [0, T] for the b
peaks of the following measure of orthogonality to the

nullspace:
A(0)*A0

Zl (AO)*E)
=

It is important to note that the above algorithm implies a
search over all possible values of the delays, i.e., 6 € [0,
T1, and that, in practice, we will have to search on a sam-
pled parameter space. The sampling of the parameter
space is, however, independent of the sampling done for
the received signal. Provided the sampling of the signals
and that of the parameter space jointly provide an “array
manifold”” with the required linear independence proper-
ties, the algorithm will produce high resolution estimates
of the echo delays. (For signals that are not piecewise con-
stant, this is always the case.)

In the above development, we implicitly assumed that
the number of echos present is less than the number of
samples we take from the received signal, a requirement
that can be easily met by sampling the data at a sufficiently
high rate.

We note that the search procedure involves the forma-
tion of M — D inner products for each point in the param-
eter space, and if we want high resolution, this will imply
a rather lengthy computation. Research is needed on more
efficient search techniques and perhaps on special-purpose
hardware for such purposes.

An estimate of the covariance structure of the random
gains {m;} also becomes available in the process of apply-
ing the MUSIC algorithm [via (5)], and it can be used to
obtain more information on the nature of the scatterers.

For example, in a radar problem, some of the echos are
direct target images; others represent multipath propaga-
tion of the signals reflected by those targets. It is expected
that the gains of the multipath echos are strongly corre-
lated with that of the directly returned signal, so that the
gain correlation matrix estimate can help determine the
number of real targets in a multipath environment. In geo-
physical applications, the echos from a layered medium
comprise both direct returns and reverberations; there-
fore, seismic sounding experiments may be regarded as
results of remote sensing in a dense multipath environ-
ment. In this case too, an estimate of the gain statistics is
extremely useful for recovering the properties of the me-
dium.

III. SOME VARIATIONS OF THE SIGNAL RESOLUTION
PROBLEM

The procedure presented in the previous section can be
applied in a variety of situations in which some further
information is available on the way the obstacles return
and modify the probing signal and the effect of free prop-
agation of the signal in the medium. Also, the problem of
determining the number and identity of waveforms com-
ing from a finite collection of signals is seen to be readily
accommodated within the eigenstructure approach. The
search in this case will simply be conducted on the set of
possible signals which will constitute the underlying “sig-
nal manifold.”

Dispersive Propagation and Obstacle Signatures

Suppose that the propagation in the medium makes pre-
dictable changes in the signal shape. This information may
become available either through measurements or by
proper modeling of the propagation in a dispersive envi-
ronment. Also assume that there are P types of obstacles
whose effect, or signature, on the returned signal is de-
scribed by a convolution of the impinging signal with a
given kernel parametrized by the type of obstacle. Then,
if the probing signal is s(-), the signal received at a delay
6 and due to a single obstacle of type L will have the form

s0.0(1) = m®Pgp {H,(t) * [ {s(O}1} (16)

where ®, is an operator describing the modifications in
signal shape due to propagation in the medium for a time
0, H,(+) describes the modification due to an obstacle of
type L€ {1,2, - - -, P}, and, again, m is a random gain
factor.

With these assumptions, the resolution of a series of
overlapping echos and the determination of the types of
the respective obstacles can be done invoking the MUSIC
algorithm. Equation (16) simply redefines the “signal
manifold”’ over which the MUSIC search will have to be
conducted. In the above case, it will imply P linear
searches, one for each type of obstacle. The simplest case
of dispersive propagation might be described by

1 -6
20} =26 <tq(0)> an

‘o
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which implies that the signal simply “spreads out™ ac-
cording to a given function of the propagation time g ().
The problem of obstacle signatures is, of course, of great
importance in radar target identification. To apply the
MUSIC algorithm to this problem, one needs good char-
acterizations of target influences on the returned signals,
i.e., of the kernels H; (+). These may be obtained from
calibration experiments or via some theoretical consider-
ations; however, it is fair to note that in many practical
situations such information may be very difficult to gather.

Resolution of Uncertain Signals

Consider the following problem: we are given a set of
signals {s(z, 8)}, with the parameter 6 ranging over {1, 2,
- -+, P}, that are known to be approximations of a set of
signals {so(z, 6)}. Suppose further that for each value of
the parameter, this approximation was chosen as follows:

s, 0) = so(z, 0) + up (1) (18)

where u, () is a sample of white noise with power II,. The
uy (+) sequences are thought of as a model for the uncer-
tainty in our knowledge of sy(f, #). Assume that we are
given a sample of K observations

D
{rj(t)}j=1,2. K= {,‘;1 m,j S(t, 0,) + nj(t)}

j=1,2- K
6,€{1,2, -, P} (19)

and we wish to obtain estimates of the number of signals
present and their identity. Note that we have uncertain ver-
sions of the signals that compose the observations. For the
estimate of the number of signals present, this is irrele-
vant; however, the search procedure should clearly be
modified to account for the degrees of uncertainty to which
we know the signals. Such a problem also occurs in
the framework of eigenstructure methods for direction
finding with noisy array calibrations. The result of a sim-
ple analysis is that the search has to be done using a
weighted cost function IT:

1 A(@)* A0
@(9)=ﬁ_M___D()_L 20)

EPINCO0 AL
2

where A(0) = [s(¢y, 0) s(t2, 0) - - - s(ty, )]*. This is not
an unexpected result since it shows that the more uncer-
tain we are about a signal, the more reluctant we shall be
in giving it as an estimate for one of the signals present.
This solution can also be adapted to the echo delay esti-
mation for the case in which we assume that the returning
signal gets more and more distorted, in an unpredictable
way, as its return delay increases.

A variety of further problems may be addressed within
the framework of eigenstructure methods; here are just a
few of them.

1) Location of displaced and scaled overlapping objects
of known shapes in a scanned image.

2) Resolving for the elements of a composite probabil-
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ity density function from observations of random realiza-
tions.

3) Tracking of multiple target echos by repeated appli-
cation of the MUSIC algorithm, with reduced search re-
quirements, based on prior information on delays.

4) Estimation of abrupt impedance changes for layered
earth models or transmission lines from repeated scatter-
ing experiments.

IV. SimuLATION RESULTS

To demonstrate the performance of the proposed signal
resolution method, we performed a set of simulations on
artificially generated data sets. Three types of probing
pulse shapes were chosen: a decaying sine wave, a trian-
gular pulse, and a bell-shaped (Gaussian) pulse, all of sig-
nificant time span of 1000 ms.

For the first set of simulations, the data were generated
by superimposing three pulses of the same shape, delayed
by arbitrarily chosen times, in the span [0, 1000], and
weighted by random gains with Rayleigh distribution hav-
ing a mean of 1.0. (This type of random weighting is com-
monly used to model fading due to propagation of signals
in random lossy media.) To the resulting signals over the
interval [0, 2000], white noise was added, with various
intensities resulting in signal-to-noise ratios (SNR) that
varied between 0-40 dB. (The definition of SNR adopted
here was the ratio of average signal energy and the noise
variance over the sampling window.) For each SNR, the
MUSIC algorithm was applied to the estimated covariance
when this estimate was obtained from 50, 100, 200, 500,
and 1000 independently generated data sets (snapshots).
The sampling interval was uniform at 80 ms, with a total
of M = 25 samples gathered per data set. First; the num-
ber of signals was estimated using the AIC and the MDL
criteria; then a search on the delay space of [0, 1000] was
performed. The sampling of the parameter space was done
at intervals of 1.0 ms (as we stressed. before, the method
enables us to resolve signals delayed by fractions of the
data-sampling interval). Plots of the distance measure
given by (15) were obtained, and we superimposed on the
same coordinates the results obtained with the various
numbers of data sets for the same SNR.

Fig. 1 shows the results of applying the signal resolution
algorithm to the case of superimposed decaying sinusoidal
signals. The delays were 6, = 200, §, = 260, and 0; =
400. Fig. 1(a) shows the probing signal shape s(-), and
Fig. 1(b) shows the values of the information-theoretic
criteria (AIC and MDL) for determining the number of
returns present, for 10 dB SNR, for the most difficult case
of only 50 snapshots. Both criteria were found to provide
perfect estimates for the number of signals present in ail
the scenarios that were tested. Fig. 1(c) and (d) shows
typical data waveforms at O and 10 dB SNR, with three
overlapping delayed and weighted pulses. Fig. 1(e) and (f)
presents the results of the search on the parameter space
using (15).

The second simulation involved three types of probing
pulse shapes: a decaying sine wave, a triangular pulse,
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: For K= 50 and S/N =10 dB:

atco) | aicn) | atc) | arc@) | Aic) | Arci) | oaic(e) | Alcin)

007.43 518.08 358.50 159.29 175.30 189.47 208.22

MDL(0) { MDL(1) | MDL(2} | MDL(3) | MDL(4) | MDL(5) | MDL(s) | MDL(7)

$07.43 504.49 334.00 112.20 117.80 12197 128.22

ampl.

arcs) | aice) | arcto) | arc(y) | Aicaiz) | Alcis) | arc(4) | Aic(15)

215.40 227.31 238.79 249.90 200.43 260.49 278.78 287.57

MpL(s) | MpL(s) | MDL(10) | MDL(11) | MDL(12) | MDL(13) | MDL(14) | MDL(15)

129.40 13281 136.29 139.90 143.43 145.69 149.28 152.57

1 1 1

-.30

.00 $00.00 1000.00 1500.00 2000.00

time

single pulse

(a)

Fig. 1. (a) The decaying sine test signal sgn (7). (b) AIC and MDL for
SNR = 10 dB and 50 snapshots. (c), (d) Typical data waveforms at 0 and
10 dB SNR. (¢), (f) Results of the MUSIC search for 0 and 10 dB SNR
for K = 50, 100, 200, 500, 1000. The delays were 200, 260, and 400 ms.

Alc(18) | Alc(17) | Atc(is) | Arc(19) | Alc(z0) | Aic(z1) | Alc(z2) | AIC(23) | AIC(21)

204.78 300.62 304.23 300.93 314.06 316.85 319.78 322.18 324.00

and a bell-shaped (Gaussian) pulse, all of significant time
span of 1000 ms. There were nine signals, three of each
type, overlapping at various delays. In this case, the MU-
SIC algorithm performs three one-dimensional searches for
their resolution. The results are plotted in Fig. 2(a)—-(c) for
various ensemble sizes (K = 50, 100, 200) at an SNR of
20 dB.

From the simulations that we performed, it appears that
the method has the following tradeoffs: at low SNR’s, a
high number of snapshots are required for good perfor-
mance, whereas at high SNR’s, about 100 returns already
provide good resolution and delay estimates. Also, it is
clear that the method needs either more data or higher SNR
to resolve very closely spaced signals. There is no prob-
lem, however, in resolving delays that are noninteger mul-
tiples of the sampling intervals, and this is clearly an ad-
vantage of the eigenstructure method.

We attempted to make some comparisons to conven-
tional matched filter techniques, but due to the random
gains of the signals, these techniques failed very badly.

V. CONCLUSIONS

In this paper, we presented a novel solution to the signal
resolution problem which arises in many radar and sonar
signal processing, geophysics, and imaging problems. The
algorithm is a time-domain version of a procedure devel-
oped for direction finding with a passive antenna array

[10], [11], and is, in fact, a particular case of a statistical
factor analysis methods [15], [16]. To apply this method,
we had to redefine the concept of “‘array manifold” to be
the set of possible deterministic signals (or factors), and
to assume that the data are a randomly weighted combi-
nation of an arbitrary number of those signals measured
in additive noise with known covariance structure. This is
indeed the natural form in which data are obtained in many
practical applications.

We should mention that notions of finite dimensional
signals and their orthogonal spaces were also exploited in
the context of identifying exponential components in a
waveform for system identification and spectral analysis
applications. Many useful results along these lines were
obtained in parallel and independently of the work done
by the array processing community, as exemplified by [9],
[17]-[19]. However, it should be noted that model-based
methods, MUSIC or Kalman filtering, can be quite sen-
sitive to differences between the actual and assumed
models, and more work is needed to obfain robust solu-
tions; see, e.g., [20].

Some further problems to which the MUSIC algorithm
can be applied were briefly discussed. An important ap-

plication of these methods would be their incorporation

into multitarget tracking procedures. Suppose we can as-
sume a Markovian (state-space) model for the random
movement of the targets in space. Then, considering the

MDL(16) | MDL(17) | MDL(18) | MDL(19) | MDL(20) | MDL(21) | MDL(22) | MDL(23) | MDL(24)

154.76 156.13 155.73 157.93 150.08 159.35 1€0.28 161.18 182.00

(b)
Fig. 1. (Continued.)

slowly varying covariance of the observed data as a non-
linear function of the state (target positions), one can de-
velop an extended Kalman filter for target tracking which
uses MUSIC as an intermediate step.
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Fig. 2. (a), (b), (c) Results of MUSIC search for three types of pulses at

various delays. SNR = 20, K .= 50, 100, 200. The tifee curves are the
results of three independent searches over “signal manifolds™ corre-

sponding to the decaying sine (4), triangular (B), and Gaussian pulse
shapes (C).
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