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Abstract
We propose a new ‘Mark-Ant-Walk’ algorithm for robust and efficient
covering of continuous domains by ant-like robots with very lim-
ited capabilities. The robots can mark places visited with pheromone
marks and sense the level of the pheromone in their local neighbor-
hood. In the case of multiple robots, these pheromone marks can be
sensed by all robots and provide the only way of (indirect) communi-
cation between the robots. The robots are assumed to be memoryless,
and to have no information besides that mentioned above. Despite the
robots’ simplicity we show that they are able, by running a very simple
rule of behavior, to ensure efficient covering of arbitrary connected
domains, including non-planar and multidimensional domains. The
novelty of our algorithm lies in the fact that, unlike previously pro-
posed methods, our algorithm works on continuous domains without
relying on some induced underlying graph effectively reducing the
problem to a discrete case of graph covering. In addition, we demon-
strate various benefits of our algorithm such as ability to cope with
arbitrary initial pheromone profile and a bounded constant time be-
tween two successive visits of the robot at the same location, making
it suitable for patrolling. Finally, we provide a new theoretical bound
on covering time of a wide family of such mark and walk algorithms.
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1. Introduction

Suppose we want to cover (or clean or search or paint) a con-
nected domain in �2 using one or more simple robots having
effectors (or arms) that can sweep a well-defined neighbor-
hood of the robots when they are stationary. We say that a do-
main was covered by the (team of) robots if each and every
point of the domain was swept by a robot effector. In fact,
every time we want to build an automatic machine suitable
for applications such as floor cleaning, snow removal, lawn
mowing, painting, mine-field de-mining, unknown terrain ex-
ploration and so on, we face the problem of complete covering
of continuous domains by such devices.

1.1. Problem Constraints

The approach to solving covering problems depends, of
course, on the capabilities we assume for our robots and on
various environmental constraints. Many algorithms can be,
and actually have been, developed to accommodate constraints
and assumptions on the robots used for the covering problem.
The various considerations include:

1. domain type (e.g. discrete versus continuous, simply-
connected or multiply-connected region, a general graph
or a grid, etc.)�

2. robot capabilities (their communication capabilities, the
amount of on-board memory, the size of their footprint
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and the areas swept by the effectors and range of robots’
sensors)�

3. the type of information the robots are assumed to be able
to get or gather via their sensors either globally or lo-
cally, off-line or on-line�

4. local behavior and interaction model in case of multiple
robots (such as synchronous or asynchronous operation,
centralized or distributed control, etc.).

In this paper we adopt the model proposed in Yanovski et
al. (2001), which assumes that the robots are anonymous (i.e.
all robots are identical), memoryless (i.e. have no ability to ‘re-
member’ anything from the past) and have no means of direct
communication which means there is no direct exchange of
information between the robots. The only means of (indirect)
communication is via some marks they leave in their environ-
ment. This model was originally inspired by ants and other
insects using chemicals called pheromones that are left on the
ground as a means of achieving indirect communication and
coordination. (Note that recent publications show that ants are
not memoryless, e.g. Harris et al. (2005). However, it is cer-
tainly true that for certain ant species these individual capabil-
ities play a limited role in navigation and trail-laying or trail-
following mechanisms.)

Ant colonies, despite the simplicity of single ants, demon-
strate surprisingly good results in global problem solving and
pattern formation (Schöne 1984� Hölldobler and Wilson 1990�
Bruckstein 1993� Dorigo et al. 1996, 1999). Consequently,
ideas borrowed from insects (and especially ants) behavior
research are becoming increasingly popular in robotics and
distributed systems (Dorigo et al. 1996, 1999� Russell 1999�
Bonabeau and Théraulaz 2000� Koenig and Liu 2001� Wag-
ner and Bruckstein 2001). Simple robots were found capable
of performing quite complex distributed tasks while enjoying
benefits of being small, cheap, easy to produce and easy to
maintain.

This paper is organized as follows. Our formal robot model
is presented in Section 2.1. In Section 2.2 we define the Mark-
And-Walk (MAW) covering algorithm, followed by a short
survey of previously proposed covering algorithms in Sec-
tion 3. As mentioned earlier the number of such algorithms
is fairly large� we therefore limited our survey to those that
share some common principles with the algorithm suggested in
this paper. Formal proofs of complete coverage and efficiency
analysis are given in Sections 4.1 and 4.2, respectively. In Sec-
tion 5 we provide various extensions of the basic MAW algo-
rithm including its multi-agent or swarm-system performance
and its behavior when the environment contains some initial
pheromone profile (false pheromone marks). Results of simu-
lations are presented in Section 6. Section 8 provides a sum-
mary of our results and a discussion of possible extensions and
implementation details.

Fig. 1. Robot’s sensing (dark gray) and marking (light gray)
areas.

2. The Basic Mark-Ant-Walk (MAW) Covering
Algorithm

2.1. Robot Model

We define the mathematical problem of robot covering along
with the model for the robots that we use throughout this paper.

The domain to be covered is denoted �. We currently only
consider two-dimensional (2D) domains (however, extensions
will be given in Section 5.4). Given any two points a� b � �,
the geodesic distance between a and b is denoted �a � b�, i.e.
the length of the shortest path restricted to lie entirely in the
domain � that connects a and b. For the sake of brevity we
shall omit the word ‘geodesic’ and simply use ‘distance’. At
the moment, we assume that this length is measured as a com-
mon Euclidean length in 2D space� extensions to other mea-
sures are discussed in Section 5.4. We shall then assume that
the robot is able to sense the pheromone level at its current
position p and in a closed ‘geodesic’ ring R�r� 2r� p� lying be-
tween the internal radius r and the external radius 2r around p
(Figure 1). R is formally defined as

R�r1� r2� c� �
�

a � �
��� r1 � �a � c� � r2

�
� (1)

and r is considered to be an intrinsic parameter of the robot.
Additionally, our robot is able to set a constant arbitrary

pheromone level in the area swept by its effector which is, we
assume, an open disk D�r� p� of radius r around its current
location p. The formal definition of D is:

D�r� c� �
�

a � �
��� �a � c� � r

�
� (2)

Note that, as mentioned before, all distances are measured
as geodesic distances. Hence, for example, only area� in Fig-
ure 2 will be available to the robot. Area �, on the other hand,
will not be ‘visible’ to the robot since the distance from the
robot location p to any point in � is greater than 2r .

Furthermore, we shall assume that our time steps are dis-
crete. We denote the pheromone level of point a � � at time
instance t (t � 0� 1� 2� � � �) by ��a� t�.
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Fig. 2. Geodesic distance example.

Fig. 3. MAW step rule.

2.2. The Mark-Ant-Walk (MAW) Algorithm

Initially, we consider the case where no point is marked with
the pheromone, thus all � values are assumed to be equal to
zero:

��a� 0� � 0� �a � �� (3)

Suppose further that a starting point is (randomly) chosen for a
(single) robot and then a MAW step rule (as described in Fig-
ure 3) is applied repeatedly. Note that there is no explicit stop-
ping condition for this algorithm. Nevertheless, one can use an
upper bound (that will be provided later in this paper) on the
cover time in order to stop robots after a sufficient time period
has elapsed, effectively guaranteeing complete covering.

It is easy to see that the robot markings create some kind
of potential field, where high values of the pheromone level

roughly indicate areas that have been visited many times and
lower values of the pheromone level correspond to a smaller
number of robot visits. According to the MAW rule, the robot
tries to avoid areas with high pheromone values by moving
toward lower levels, striving to reach areas yet uncovered.

3. Related Work

A first step toward a ‘pheromone-marking’-oriented model
was taken by Blum and Sakoda (1977) and Blum and Kozen
(1978) where pebbles were used to assist the search. Pebbles
are tokens that can be placed on the ground and later removed.
The idea of using pebbles for unknown graph exploration and
mapping was further developed in Bender et al. (1998).
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3.1. Discrete Domain Covering Problems

The covering of discrete domains (graphs) is an important
problem in theoretical computer science and thus a number of
solutions have been proposed and comprehensively analyzed
by researchers. Well-known examples are the Breadth-First
Search (BFS) and the Depth-First Search (DFS) algorithms
for graph traversal. Both algorithms provide excellent results
in terms of time complexity. Formal proofs of complete cov-
erage and efficiency analysis can be found in texts on discrete
mathematics and algorithms (e.g. Rivest and Leiserson 1990).
Note that the DFS algorithm can be readily adapted to fit our
robot model as opposed to the BFS algorithm, which requires
additional on-board memory in order to maintain a queue of
already discovered but yet unvisited vertices. Moreover, the
amount of on-board memory required depends on the graph to
be explored.

Two further algorithms that fit our paradigm entirely, i.e.
they rely on a group of identical autonomous robots that mark
the ground with pheromones, were suggested for efficient and
robust graph covering. The Edge-Ant-Walk marks the graph
edges (Wagner et al. 1996). The Vertex-Ant-Walk leaves marks
on graph vertices instead (Yanovski et al. 2001� Wagner et
al. 1998). Both algorithms provided significant improvement
over DFS in terms of robustness along with quite efficient
cover times. Both are capable of completing the traversal of
the graph with multi-robot teams even in the case when al-
most all robots die and/or the environment graph changes
(edges/vertices are added or deleted) during the execution.

Different research related to our subject work was pub-
lished in de Silva and Ghrist (2006) where the authors deal
with coverage in coordinate-free sensor networks via homol-
ogy.

3.2. Continuous Domain Covering Problems

Covering continuous domains is a relatively new problem.
Several algorithms addressing this problem are summarized in
a good survey paper by Choset (2001). We shall provide a short
review of algorithms developed for robot models that are close
to that used in this paper.

3.2.1. Random Walk and Probabilistic Covering

Random walks were defined for both discrete and continuous
domains and enjoy unrivaled robustness and scalability (i.e.
adding more robots does not require any change in the al-
gorithm and can only improve the coverage time). However,
they cannot guarantee complete coverage and can only be an-
alyzed in terms of expected coverage time. Although some re-
searchers have demonstrated a way to estimate this expected
coverage time, i.e. in terms of electrical resistance of the do-
main (Chandra et al. 1989�Wagner et al. 2000), in this work we
would like to have solutions that guarantee complete coverage
after a deterministic and bounded time period.

3.2.2. Motion Planning Guided by a Potential Field

A popular approach is to introduce an artificial potential field
concept in order to accomplish the robot motion planning task
(e.g. Khatib 1986� Zelin sky et al. 1993). In Zelinsky et al.
(1993), for example, the authors used the distance transform as
the potential field. Such an approach could also be adopted by
our robots, the potential being represented by the odor level.
However, this type of work assumes that the potential field
can be constructed prior to the start of the robot’s motion and
thus requires a global knowledge of the domain boundaries and
obstacles. Such knowledge is not available in our model.

3.2.3. Trail-laying Algorithms for Continuous Domains

Several authors proposed the use of trails that mark the path
traveled by the robot so far, and proposed local behavior for
the robots resulting in some kind of peeling/milling of the do-
main. Two major approaches for organizing the motion exist:
contour-parallel and direction-parallel. In the former approach,
the robot moves along the boundaries of the domain. In the
latter approach, the robot moves back and forth in some pre-
defined direction. These approaches often fail for non-convex
domains and thus the whole domain must be approximated as
a union of convex non-overlapping cells which, in turn, can be
covered with the assumed type of motion (Choset and Pignon
1997� Butler 2000� Acar et al. 2003).

Another representative of trail-based algorithms is the
Mark-And-Cover (MAC) algorithm presented in Wagner et al.
(2000), which is actually an adaptation of the DFS algorithm
to continuous domains. This algorithm provides efficient and
effective coverage with a provable bound on cover time. Ad-
ditionally, the robot model used in the paper fits our paradigm
very well. Nevertheless, the drawback of the MAC algorithm
and, in fact, of all trail-based algorithms, is their sensitivity to
false trails and robot failure. Moreover, in the multi-robot case
trails of the robots interfere with the motion of the others and
may hamper their efficiency. Another shortcoming of these al-
gorithms is seen in the situation where the domain needs to be
covered repeatedly, e.g. in surveillance tasks or in the scenario
described in Gage (1994) where autonomous robots are used to
de-mine minefields using imperfect sensors (in the sense that
the probability of a mine detection is less than 1). Our algo-
rithm guarantees that the whole domain is covered repeatedly,
time after time. Furthermore, the time between successive vis-
its at any point can be bounded in terms of the (unknown) size
of the problem (see Section 5.1).

3.2.4. Tessellating Algorithms for Continuous Domains

Another possible approach is to split the domain into tiles such
that each tile is easily covered by the robots (e.g. convex tiles
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are suitable for ‘onion peeling’ or ‘back and forth’ algorithms).
After a particular tile is covered, the robot goes to a new one
that is a neighbor of the current tile (Choset and Pignon 1997�
Koenig and Liu 2001� Koenig et al. 2001). This approach, in
fact, takes us back to a graph covering of an underlying graph
whose vertices are associated with the tiles, the edges between
vertices being defined according to the inter-tile connectivity.

4. The MAW Algorithm: Formal Proof and
Efficiency Analysis

4.1. MAW: Proof of Complete Coverage

Let us first show that a single robot governed by the MAW
rule covers any connected bounded domain in a finite number
of steps. The outline of the proof is as follows.

First, we prove that any two points are close enough at any
time, i.e. their distance from each other is � r and they must
have pheromone levels that differ by one at most. This property
closely resembles the Lipschitz continuity for functions f �	�:


 f �p1�� f �p2�
 � ��p1 � p2�� (4)

for some constant � . However, our � function measuring the
level of the pheromone at each location is, by definition, not
continuous and thus cannot be Lipschitz continuous. Instead,
� obeys the following inequality:


��p1�� ��p2�
 � ��p1 � p2� � 1� (5)

We call this the proximity principle, and it has also been
used in several previous papers (Wagner et al. 1996, 1998�
Yanovski et al. 2001).

Second, we look at the diameter d of the domain, defined as
the length of the longest geodesic path that can be embedded
in the domain: consider a pair of points a� b � �. Since � is
connected, there is at least one path that connects a and b and
lies entirely in the domain �. Among all such paths (connect-
ing a and b, that are restricted to lie entirely in the domain �),
there is at least one that is the shortest. We call the length of
this shortest path the distance between a and b and denote it
by �a� b�. Among all possible pairs of points a� b � �, there
exists a pair �a0� b0� that has the greatest possible distance be-
tween them, i.e.

�a0 � b0� � �a � b� �a� b � �� (6)

We call the length of this longest geodesic path the diameter
of the domain and denote it by d. In other words:

d � sup
�a�b���

�a � b�� (7)

Assuming that d is finite, we easily conclude with the aid
of the proximity principle that, at any time t for any two points

a� b � �, the difference between the pheromone levels of these
two points is upper bounded by d	r�. This in turn means that
once a value of d	r� � 1 is reached by ��� at any point,
no unmarked point may exist and thus the whole domain has
been covered by the robot. Finally, we show that the maxi-
mal pheromone marker value goes to infinity as time goes to
infinity� hence we shall surely, at some time, reach the value
of d	r� � 1. Formal proofs are given below.

Lemma 1 The difference between marker values of nearby
points is bounded.

�t � �a� b � � : if �a � b� � r then 
��a� t�� ��b� t�
 � 1�

Proof. Note that the distance �a � b� is the length of the
shortest path between these two points, which is restricted to
lie entirely in the domain �. We shall prove the lemma by
mathematical induction on the step number. The lemma is
clearly true at t � 0 when all the marks are assumed to be
zero. Assuming it is also true at time t , we shall show it re-
mains true at time t � 1. Let us look at two arbitrary points
a� b � �, such that �a � b� � r . In the trivial case neither a
nor b change their marker values at the �n � 1�th step� there-
fore, the lemma continues to hold. If both a and b change their
values, then ��a� t � 1� � ��b� t � 1� since the algorithm as-
signs the same values to all the points it changes. Hence the
only interesting case is when only one point (say a) changes
its marker value, while the other one remains unchanged. As-
suming the current robot’s location is pt we conclude that a
belongs to D�r� pt�, otherwise it could not change its marker
value. Therefore, �a � pt� � r . However, b does not change
its marker value and thus �b� pt� � r . Combining these con-
straints, we obtain:

����
���
�a � b� � r

�a � pt� � r

�b � pt� � r

� r � �b � pt� � 2r� (8)

or, equivalently, b � R�r� 2r� pt�. Now let us recall how the
new marker value of a is determined. First, we look for the
minimal marker value among all points in R�r� 2r� pt�. As-
sume that this value is attained at some point x � R�r� 2r� pt�.
The new marker value of a is then set if and only if the
pheromone level at the current robot’s location is smaller than
or equal to that at x: ��pt � t� � ��x� t�. In this case we have:

��a� t � 1� � ��x� t�� 1� (9)

Since both points x and b belong to R�r� 2r� pt�, we have

��b� t� � ��x� t�� (10)
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Fig. 4. The difference between marker values of any two points is bounded.

because of the way the point x was chosen. On the one hand,
we have:��
�

��a� t�� ��b� t�
 � 1

��b� t� � ��x� t�
� ��a� t� � ��x� t�� 1� (11)

and on the other hand:��
�

��a� t�� ��pt � t�
 � 1

��pt � t� � ��x� t�
� ��a� t� � ��x� t�� 1� (12)

Combining inequalities (11) and (12), we obtain


��a� t�� ��x� t�
 � 1� (13)

Using the system of inequalities (11), we conclude that

0 � ��b� t�� ��x� t� � 2� (14)

Combining the above inequality with the fact that ��a� t�1� �
��x� t� � 1 and ��b� t � 1� � ��b� t�, we derive the desired
result:


��a� t � 1�� ��b� t � 1�
 � 1� (15)

Thus the lemma is proved.

Lemma 2 The difference between marker values of any two
points is bounded at any time instance, i.e.

�t � �a� b � � : 
��a� t�� ��b� t�
 �
�

d

r

	
�

where d is the diameter of �.

Proof. Let us consider a path connecting the points a and
b. We can always split the path into sub-paths of length r , as
depicted in Figure 4. According to Lemma 1 the difference
between the marker values at the endpoints of every such sub-
path is limited by 1� we can therefore conclude that


��a� t�� ��b� t�
 �
�

l

r

	
� (16)

where l represents the length of the path. Obviously, among
all paths connecting a and b the shortest path will provide best
upper bound on the difference between the pheromone levels
at a and at b. Since the longest geodesic path in � is limited
by d we obtain the desired result:


��a� t�� ��b� t�
 �
�

d

r

	
� (17)

It is implied by Lemma 2 that the difference between
marker values is bounded. Our next step will be to show that
the maximal marker value tends to infinity as t goes to infinity.
First, we prove that marker values can only grow and never de-
crease.

Lemma 3 Pheromone level values at any point form a non-
decreasing sequence, i.e.

�t � �u � � : ��u� t � 1� � ��u� t��

Proof. Let us assume the contrary, i.e. there exists a point
u � � and time instance t such that the pheromone level of u
decreases during the t th step, i.e.
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��u� t � 1� � ��u� t�� (18)

Let us now look at point pt , the location of the robot at time t .
Obviously u belongs to D�r� pt� (otherwise it could not change
its value), hence �u � pt� � r . Assume that the minimal
marker value among all points in R�r� 2r� pt� was attained at
some point x . We know also that ��pt � t� � ��x� t�� other-
wise, the robot does not change the pheromone values. Thus
we have ����

���
��x� t�� 1 � ��u� t � 1� � ��u� t�

� �pt � t� � ��x� t�
�u � pt� � r�

(19)

This implies ��
�

��u� t�� ��pt � t�
 
 1

�u � pt� � r�
(20)

which contradicts Lemma 1.

Next, we show that the maximal value of the pheromone
level grows together with the step number t .

Lemma 4 At any time instance t maximal pheromone level
in � is bounded from below by t	n for some constant n.

Proof. Imagine that the domain � is tessellated into n cells
so that the diameter of every such cell is less than r (for con-
vex cells we can, alternatively, require that the diameter of the
circumscribing circle be less than r ). Let us examine the fol-
lowing expression:

St �
n


i�1

mi
t � ��pt � t�� (21)

where mi
t is the minimal marker value over the i th cell at time

t and ��pt � t� is the marker value at the robot’s location pt at
time instance t . It was shown in Lemma 3 that marker values
of any point inside � form a non-decreasing sequence. Hence
we claim that

St�1 
 St � (22)

Indeed, for the non-marking step, the sum of the minima does
not change:

�n
i�1 mi

t �
�n

i�1 mi
t�1. However, ��pt � t� 


��pt�1� t � 1� and therefore St�1 
 St . For the marking step,
assuming that the robot goes from cell k into cell l, we have
��pt � t� � ��pt�1� t � 1� and therefore mk

t � ��pt�1� t � 1�.
Additionally, the whole cell k was marked during this step and
thus mk

t�1 � ��pt�1� t � 1�� 1. Hence we have��
�

mk
t � ��pt � t� � 0

mk
t�1 � ��pt�1� t � 1� � 1�

(23)

Since the sum of the other minima cannot decrease as was
shown in Lemma 3, we conclude again that St�1 
 St . Given
that S0 � 0, we readily conclude that

St � t �
n


i�1

mi
t � t �t� (24)

which leads us to the conclusion that there exists k �
1� 2� � � � � n such that

mk
t �

t

n
� (25)

Hence the lemma is proved.

At this point we are ready to prove the main result of this
work.

Theorem 1 The domain � will be covered within a finite
number of steps.

Proof. According to Lemma 4, after nd	r��1 steps at least
one of the mi values will be greater than d	r� and thus the
whole domain will be covered.

4.2. MAW: Efficiency Analysis

As proved in Theorem 1 the domain � will be covered by a
single robot after nd	r� � 1 steps where d is the diameter
of the domain, r is the covering radius of the robot’s effector
and n is the number of cells in some tessellation of � (see
Lemma 4 for the definition of n). We shall now analyze how
good this upper bound is. In order to make such a comparison
we shall find an approximation to n to find out what is the best
upper bound possible.

Let us denote by Nr the minimal number of steps required
by the robot to cover the whole domain �. Here we only as-
sume that the robot can cover an open disk of radius r at every
step. However, no assumption is made regarding the algorithm
governing the robot’s behavior implying, among other things,
that the robot is allowed to make steps of arbitrary length.

Clearly Nr � A�	ar , where A� and ar are the areas of the
domain� and the robot’s effector, respectively. Obviously, this
is an ultimate lower bound and no algorithm can beat it. How-
ever, this bound fails to be tight enough for domains whose
shape factor (ratio of the squared domain perimeter to its area
multiplied by 4� ) is far from 1 (not round). For example, do-
mains comprising a finite number of curves and line segments
would have zero area yielding a lower bound of zero, which is
of course meaningless. A possible solution is to use the area
of the ‘augmented’ domain �� which results from an inflation
or expansion � in all directions by r , i.e. � has undergone a
morphological dilation with a disk of radius r (Wagner et al.
2000). In this case we have:

A �� � A� � r P� � �r2� (26)
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where A� and P� are the area and the perimeter of �, respec-
tively.

We suggest another way of performance assessment which
is correct by construction and does not depend on geometric
properties such as area or perimeter. Consider the best possi-
ble algorithm that covers an open disk of radius r	2 in each
step. Note that here we consider any algorithm with the only
limitation being the coverage radius� we do not limit the algo-
rithm in any other way. Assume that the domain� can be cov-
ered by such an algorithm, i.e. there exists a finite sequence of
points P1� P2� � � � PN of robots’ locations that results in com-
plete coverage, that is:

� �
N�

i�1

D
r

2
� Pi

�
� (27)

Alternatively, we can say that for every point a in � there
exists a number k (1 � k � N ) such that a � D�r	2� Pk�.
If we consider the best possible algorithm, denoting its cover-
age time by Nr	2 as before, we easily conclude that the upper
bound on the number of steps required by MAW algorithm is:

Nr	2

�
d

r

	
� 1� (28)

Indeed, if we consider a particular coverage path or the ro-
bot described by the sequence of its successive positions:
P1� P2� � � � PNr	2 we can always perform Voronoi tessellation
around these points. Each cell in this tessellation will have di-
ameter smaller than r and thus this tessellation will be like the
one we used in Lemma 4.

We have only to estimate the d	r fraction. Obviously,
d	r � Nr	2 on one hand and on the other hand we can es-
timate the lower bound d	r � �	4

�
Nr	2 (for domains that

have a shape close to a circle). Hence we have shown that the
upper bound time is polynomial with respect to best possible
time of algorithm whose covering radius is r	2, i.e.

tcoverage � N x
r	2� (29)

where 0�5 � x � 2.
The main question here is whether we can conclude that

tcoverage � N x
r � (30)

i.e. whether our coverage time is bounded by a polynomial
function of Nr , which is the best possible coverage time among
all algorithms whose covering radius is r . The general answer
is ‘no’. A general theorem regarding limitations of such a type
of algorithms is as follows.

Theorem 2 Given an algorithm whose marking area is an
open disk of radius r and step size is� r , the time for complete
coverage tcoverage of a continuous domain is (tightly) limited
from below by Nr	2. Moreover, tcoverage cannot be expressed as
a bounded function of Nx for any x 
 r	2.

Fig. 5. A ‘pathological’ star-shaped domain.

Proof. The proof is by example of such a domain. We con-
sider a domain comprising n line segments emanating from
common origin O, as shown in Figure 5. Assuming that the
length of each line segment is r	2 we easily verify that Nr	2 �
n and that tcoverage � n (assuming that the robot’s initial posi-
tion was an end point of any line segment). Hence tcoverage is
(tightly) bounded from below by Nr	2. If we assume that n is
infinite we easily conclude that such a domain cannot be cov-
ered in a finite number of steps by our algorithm (again, pro-
vided that the initial robot location was at an end point of any
line segment), while this domain can be covered in two steps
by an optimal algorithm whose covering radius is 
 r	2. We
simply go to the origin O in the very first step and the whole
domain will be covered in the next step. Hence, the theorem is
proved.

The above theorem is of course quite general and, for a par-
ticular domain, one can have

Nr � Nr	2� (31)

The best possible time would therefore be linear in terms of
Nr and MAW’s coverage time would be limited from above
by N 2

r multiplied by some constant.
Let us elaborate more about the relationship between Nr

and Nr	2. Consider a domain of area A and perimeter P . Con-
sider also an optimal coverage with radius r . According to our
definitions, this coverage requires exactly Nr steps. Let us now
look at the Voronoi tessellation around corresponding robots’
locations� there are Nr cells in this tessellation. Cells that do
not include the boundary of the domain are convex, those that
do include domain boundaries may not be convex. Each con-
vex cell in this tessellation can be covered by a finite (and well-
defined) number of disks of radius r	2� for these cells we can
therefore conclude that Nr � Nr	2. For non-convex cells this
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claim may not be correct� for domains whose tessellation con-
sists mainly of convex cells we therefore have approximately
Nr � Nr	2. Note that a similar analysis was carried out on
the MAC algorithm (Wagner et al. 2000) where the authors
claim that MAC algorithm is asymptotically linear for domains
that obey A 

 Pr . This is, in fact, equivalent to saying that
the number of cells in the Voronoi tessellation described above
which do not contain the domain boundary is large compared
to the number of the cells that do.

5. Extensions

5.1. Repetitive Coverage

In some scenarios we might be interested in repetitive cover-
age of the domain. For example, repetitive coverage is nec-
essary in the aforementioned scenario when robots perform
minefield de-mining and their mine detection is not perfect,
i.e. the probability of detecting a mine when the robot’s sen-
sors sweep above it is less than one. Repetitive coverage is
therefore required to minimize the probability of leaving any
mines undetected. In this case, we have to give an upper bound
on the time between two successive visits of the robot in order
to guarantee an improvement in detection probability. This re-
quirement also arises naturally in tasks such as surveillance or
patrolling where robots are required to visit every point over
and over and the time between two successive visits must be
limited by a constant. We shall now show that our algorithm
has the property of patrolling. Before we can provide this re-
sult, we need the following lemma.

Lemma 5 For any two time instances t1 and t2, if t2 
 t1
then the following inequality must hold:

St2 � St1 � t2 � t1�

Proof. Let us write t2 � t1 � n for some natural n and prove
the lemma by mathematical induction on n. For n � 1, the
lemma holds due to Equation (22). Assuming that the lemma
holds for some n, we can easily conclude that the lemma also
holds for n � 1.

Theorem 3 For any point a � �, the time period between
two successive visits of the robot is bounded from above by

2n

��
d

r

	
� 1

�
�

Proof. If we show that after a sufficient time period the
pheromone level changes at all locations in the domain �, we
can obviously be sure that all points were re-visited by the ro-
bot during this time period. Let us look at time instance ts when

the robot covers our point of interest a. We denote by �max�ts�
the maximal pheromone level over � at that time. If we show
that at some time instance te the minimal pheromone level de-
noted by �min�te� becomes greater than the maximal value at
time ts , i.e.

�min�te� 
 �max�ts�� (32)

then we can easily conclude that during the time period te � ts
the pheromone level changed at all points and thus all points
(including a) were re-covered by the robot. Let us examine Sts
and Ste as defined in Equation (21). On the one hand:

Sts �
n

i

mi
ts � ��pts � ts� �

n

i

mi
ts � �max�ts�

�
n

i

�min�ts�� �max�ts� � n �min�ts�

� �max�ts� (33)

and on the other hand:

Ste �
n

i

mi
te � ��pte � te� �

n

i

mi
te � �min�te�

�
n

i

�max�te�� �min�te� � n �max�te�

� �min�te�� (34)

According to Lemma 5,

te � ts � Ste � Sts

� n �max�te�� �min�te�� n �min�ts�� �max�ts�

� n ��max�te�� �min�ts��� ��max�ts�

� �min�te��� (35)

From Equation (32), we obtain

te � ts � n ��max�te�� �min�ts��� (36)

According to Lemma 2,

�min�t� � �max�t��
�

d

r

	
� (37)

Therefore, from Equation (36) we obtain

te � ts � n ��max�te�� �min�ts��

� n

��
�min�te��

�
d

r

	�
�
��

d

r

	
� �max�ts�

��

� n

�
2

�
d

r

	
� �min�te�� �max�ts�

�
� (38)
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Fig. 6. Repetitive coverage illustration: (a) pheromone level
along some path in � and (b) the worst case that guarantees
that the whole domain was re-covered.

Since te is the first time instance such that �min�te� 

�max�ts� and the pheromone levels can change by at most 2,
we obtain

�min�te�� �max�ts� � 2� (39)

Substituting the above inequality into Equation (38) yields

te � ts � Se � Ss � 2n

��
d

r

	
� 1

�
� (40)

which completes the proof.

We now make two important observations. First, the upper
time bound between two successive visits by the robot does
not depend on the current pheromone level distribution. This
is determined completely by the geometric parameters of the
problem: r , n and d. Second, we observe that this time limit is
twice as long as the time period needed for complete coverage.
This situation is quite intuitive. Indeed, observe the pheromone
level along some path in�, such as that shown in Figure 6a. In
this case, the robot may start by ‘filling’ the hollow area on the
right until it becomes a hill and only then covers the left-hand
part, which used to be a summit point and has now became
the lowest point in the pheromone level profile as shown in
Figure 6b.

5.2. Initial Pheromone Profile

So far, we have always assumed that the robot starts with a
domain that does not contain any pheromone marks. Unfor-
tunately, such a clean environment is not always available in

reality. For example, spurious pheromone marks may arise as
a result of previous attempts to explore the domain by similar
robots, which might have used other algorithms and thus the
initial pheromone level distribution does not necessarily obey
the proximity principle. In general, we assume that the initial
pheromone level distribution is given by some function

N : � �� �
�� (41)

where �� denotes the set of non-negative integers. As a short
digression we have to note that such initial pheromone marks
pose a severe problem to all trail-based algorithms. The rea-
son is that such algorithms, for the sake of efficiency, do not
get close to their own trails and thus any initial pheromone
marks would be interpreted as trails, resulting in uncovered ar-
eas around such marks. The result may be even worse if such
false trails split the domain into several disconnected parts, in
this case the robot will not be able to exit the part where it
was located initially. Our algorithm, on the contrary, can eas-
ily overcome this problem as we prove below. Actual covering
times in the presence of an arbitrary initial pheromone profile
are demonstrated in Section 6.3. Let us start with several lem-
mas.

Lemma 6 Immediately after point a � � has been marked
by the robot for any point b � � such that �a � b� � r , we
have

��b� t � 1� � ��a� t � 1�� 1� (42)

where t denotes the time instance when the new pheromone
level was assigned to a.

Proof. Since the pheromone value of a changes during the
t th step we conclude that a � D�r� pt�, where pt denotes the
robot’s location at time t . We also know that �a � b� � r
and thus b either belongs to D�r� pt� or to R�r� 2r� pt �. Hence
there are two possible scenarios: either b belongs to D�r� pt�
or b belongs to R�r� 2r� pt�. In the former case, ��b� t � 1� �
��a� t � 1� since the algorithm assigns the same value to all
points in D�r� pt� and the lemma clearly holds. In the latter
case, b � R�r� 2r� pt�, we recall that the algorithm seeks for
the minimal pheromone value inside R�r� 2r� pt �, say attained
at some point x and sets a new pheromone level inside D�r� pt�
to be equal to ��x� t�� 1. Hence we have��

�
��b� t � 1� � ��b� t� � ��x� t�
� �a� t � 1� � ��x� t�� 1�

(43)

This leads us again to the conclusion

��b� t � 1� � ��a� t � 1�� 1� (44)

Hence the lemma is proved.
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Although this lemma resembles Lemma 1, it does not guar-
antee that the proximity principle is obeyed in the case of
an environment with arbitrary initial pheromone level. We
demonstrate a stronger result in Lemma 8. We shall first prove
that the pheromone level at marked points, i.e. pheromone left
by the robot, never decreases.

Lemma 7 Pheromone level values at any marked point form
a non-decreasing sequence� that is

�t �u � � : ��u� t � 1� � ��u� t�
given that u was marked by the robot at the time prior to t.

Proof. Let us assume the contrary, i.e. for some time instance
t and for some point u � � we have:

��u� t� � ��u� t � 1�� (45)

Let t be the first such time instance. As usual we denote
by pt the robot’s location at time t . According to the MAW
algorithm, the robot seeks the minimal pheromone level in
R�r� 2r� pt �. Say this minimal level is attained at some point
x � R�r� 2r� pt�. Since u changes its value during the t th step
we conclude that

��pt � t� � ��x� t�� (46)

Otherwise no change occurs, according to the MAW algo-
rithm. Since all points in D�r� pt� get the same value in the
marking step, we conclude

��u� t�1� � ��pt � t�1� � ��x� t��1 � ��pt � t��1� (47)

Moreover, according to our assumption,

��u� t� 
 ��u� t � 1�� ��u� t� � ��pt�� 2� (48)

Thus, if we assume that the pheromone level at some point u
decreases at time instance t , Equation (48) must hold. Showing
that this inequality is wrong we actually obtain a contradiction
to the assumption and thus prove the lemma. Let us look at
the time instance tu when the current pheromone level of u
(��u� t�) was set. According to Lemma 6,

��pt � tu � 1� � ��u� tu � 1�� 1� (49)

Since tu � t and t was chosen to be the first time when the
pheromone level at any point in� decreases, we conclude that

��pt � t� � ��pt � tu � 1�� (50)

Substituting it into Equation (49) we obtain

��pt � t� � ��u� t�� 1� (51)

The inequality in Equation (48) therefore does not hold. This
contradiction completes the proof of Lemma 7.

Lemma 8 If both a and b had been marked by the robot at
some time instance t, their pheromone levels obey the proxim-
ity principle, i.e.

if 
a � b
 � r� then 
��a� t�� ��b� t�
 � 1� (52)

Proof. Since both a and b had been marked prior to time
instance t there exist time instances ta and tb when a and b
obtained their current pheromone levels accordingly. Applying
Lemma 6, we get��

�
��b� ta � 1� � ��a� ta � 1�� 1

��a� tb � 1� � ��b� tb � 1�� 1�
(53)

Or, substituting ��b� tb � 1� � ��b� t� and ��a� ta � 1� �
��a� t�, ��

�
��b� ta � 1� � ��a� t�� 1

��a� tb � 1� � ��b� t�� 1�
(54)

Since t 
 ta and t 
 tb we can apply Lemma 7, i.e.��
�
��b� t� � ��b� ta � 1�

� �a� t� � ��a� tb � 1��
(55)

Substituting it into Equation 54, we get��
�
��b� t� � ��a� t�� 1

��a� t� � ��b� t�� 1�
(56)

which means

��a� t�� ��b� t�
 � 1� (57)

Hence the lemma is proved.

Lemma 9 The maximal pheromone level tends to infinity as
t goes to infinity.

Proof. The proof is identical to that of Lemma 4. We again
introduce a virtual tessellation of domain� into n cells so that
every such cell can be inscribed into a circle of diameter less
than r . As before, we look at the sum

St �
n


i�1

mi
t � ��pt � t�� (58)

The only difference is that here mi
t denotes the minimal marker

value that was set by the robot and not as a result of the initial
pheromone profile. As in Lemma 1, we get

St � t�t� (59)

Thus the lemma is proved.
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Theorem 4 For any initial pheromone profile N : � �� Z�,
the domain � will be covered after n�MN �mN � n	r��� 1
steps, where MN and mN denote the maximal and the minimal
pheromone levels at time t � 0, respectively.

Proof. Let us denote by MN and by mn the maximal and
minimal values of the initial pheromone level given by N , re-
spectively. According to Lemma 9, the maximal pheromone
level in � grows and will eventually reach the value of MN �
n	r� � 1. We claim that at this moment the whole domain
is covered by the robot. Indeed, let us look at some point
a � � that obtained this pheromone level at step t . Accord-
ing to Lemma 6, for any point b � � such that �a � b� � r
we have

��b� t � 1� � ��a� t � 1�� 1 � MN �
�n

r

�
� (60)

Since MN � n	r� 
 MN we conclude that all such points
are covered. In the same manner, we determine that all points
with distance from a less than or equal to 2r are also covered.
The maximal distance between points in� is bounded by d� if
any one point reaches the pheromone level of MN �n	r��1
we are therefore assured that the minimal possible pheromone
level is MN � 1, meaning that the whole domain � has been
covered. The time needed to cover the domain is

tcover � n


MN �mN �
�n

r

��
� 1� (61)

where mN denotes the minimal pheromone level at time t �
0. Since the whole domain is covered we can guarantee, by
Lemma 8, the proximity principle is obeyed by any two points
in� and further repetitive coverage is governed by Theorem 3.

5.3. Multiple Robots

As a natural extension we would like to analyze how the MAW
algorithm can be applied to multi-robot environments. First of
all, we must address problems such as collisions between the
robots themselves (if we deal with physical robots and not pro-
grams) and between different pheromone levels when two (or
more) robots try to mark the same point in the domain.

At the moment we shall assume that the clock phases of
all robots are slightly different so that no two robots are ac-
tive at the same time. Each robot therefore sees other robots as
regular stationary obstacles and acts accordingly. With this ap-
proach, we avoid the problem of simultaneous attempts to set
(probably different) pheromone levels at a particular location
by multiple robots, since only one robot is active at any given
time.

Let us find the upper bound for complete coverage provided
we have n robots. Using the same notation as in Equation (21),
we have

St �
n


i�1

mi
t �

n

j�1

��p j
t � t�� (62)

Fig. 7. Use of different metrics: (a) L1 metric� (b) L2 metric�
and (c) L� metric.

where p j
t denotes the location of the j th robot at time t . Using

the same reasoning as before, we again obtain

St�1 
 St (63)

and consequently
St � t� (64)

which leads us to the same upper bound as for a single ro-
bot. Hence, adding more robots does not necessarily guaran-
tee better coverage time. However, simulations (see Section 6)
demonstrate that there is a substantial improvement when we
use more robots.

5.4. Generalization for Other Metrics

Until now, we have always assumed that the domain� is a flat
2D domain and the usual Euclidean notion of the distance was
used. Nevertheless, it is easy to verify that all the proofs re-
main valid if we change the Euclidean (often referred to as L2)
distance to another valid metric. For example, we could use L1

distance or, alternatively, the L� distance which is particularly
suitable for computer simulations. Of course, each choice of
the metric changes the form of the robot’s effector. Three dif-
ferent forms, shown in Figures 7a–c, correspond to the L1, L2

and L� metrics accordingly.
We can therefore use the algorithm in any metric space, e.g.

we are not limited to 2D spaces as the results remain valid for
higher dimensions. For example, we can use the same algo-
rithm for covering 3D volumes assuming the robot’s effector
is a ball of radius r or, more probably, a regular octahedron or a
cube if we choose to work with L1 or L� metrics, respectively.

6. Simulations and Experiments

6.1. General Notes

We used L� metric in our experiments as the square shape of
the effector and the sensing area that correspond to this met-
ric is particularly suitable for computer simulations. In experi-
ments with an initial pheromone profile, the robots were forced
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Fig. 8. Simulation domains: (a) A� (b) B� and (c) C.

to start at an unaffected location, i.e. at locations with minimal
pheromone level at time t � 0. Additionally, in all experiments
the robots were modeled as points and multiple robots were al-
lowed to occupy the same location. We always measured the
number of time steps until the robots covered the domain for
the first time, averaged over 100 runs. Experiments were con-
ducted on the domains shown in Figure 8.

All domains are of size 100 � 100 pixels and the marking
radius in all experiments was set to 3, i.e. each step robot marks
a square of 5� 5 pixels.

6.2. Comparing MAW to other algorithms

In this experiment we studied the performance of three differ-
ent algorithm: MAW, MAC (Wagner et al. 2000) and Random
Walk. All algorithms used the same square effector of size 5�5
pixels� additionally, the steps of the Random Walk algorithm
were restricted to the interval [r� 2r ] as in the steps in the MAW
algorithm.

As we can see, the MAW algorithm is a clear winner when
we use three or more robots. For fewer robots, the MAC al-
gorithm performs better on complex domains. Note that the
MAW algorithm generally performs better than the theoretical
upper bound obtained in Section 4.2. (Recall that the bound is
quadratic and results were better than that of MAC, which is
asymptotically linear). Cover time of the Random Walk was
omitted from Figures 9b and 9c as the values were so big that
the difference between the MAC and the MAW algorithms be-
came invisible on this scale.

Note that our upper bound on coverage time is quadratic,
while the above results suggest that the actual coverage time
is linear. We can demonstrate the predicted quadratic coverage
time by tailoring specific tie-breaking rules for specific do-
mains. For example, we can use a domain comprising n loops
as shown in Figure 10.

For this domain and specific tie-breaking rules we can ob-
tain quadratic coverage time for the MAW algorithm, while the
MAC algorithm still demonstrates linear coverage time. These
results are shown in Figure 11.

6.3. MAW in an Environment with an Initial Pheromone
Profile

In this section we present the results of our simulation of
the MAW algorithm in the presence of an initial pheromone
profile. In the first scenario, we ran one robot on Domain A,
each time changing the amount of affected pixels (having non-
zero pheromone level at t � 0). The initial pheromone level
values are uniformly distributed in interval [1� 10], i.e. given
that 60% of the pixels are affected there are about 6% that ob-
tained a value of 1 and 6% that obtained a value of 2, etc. An
example of such a profile with 60% of affected pixels is shown
in Figure 12a.

In Figure 12b we demonstrate the cover time as a function
of the amount of affected pixels in this scenario.

In another scenario, we chose to explore the influence of the
pheromone profile with constant values on the performance
of the algorithm. This time, the initial pheromone values in
each experiment were constant and again randomly distributed
in the space. An example of such a pheromone profile for a
constant value of 10% and 30% affected pixels is shown in
Figure 13a.

We ran a series of experiments with initial pheromone
profile values of 10, 20, 30, 40 and 50. The results of cover
time versus the percentage of affected pixels is shown in Fig-
ure 13b.

As we can see, the value of the initial pheromone profile
does not play a significant role in this scenario, at least in the
limits from 10 to 50 used here. This is probably due to the
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Fig. 9. Cover time: (a) domain A� (b) domain B� and (c) domain C.

Fig. 10. Domain comprising n loops.

nature of the algorithm that discards high pheromone values
in the presence of lower values. To check this we conducted
another experiment where the initial pheromone profile oc-
cupies a compact space in the domain, i.e. given 40% of af-
fected pixels we form a plateau of the pheromone level as
shown in Figure 14a. In this case, the influence of the initial
pheromone level value is quite pronounced as expected. See
Figure 14b for covering time versus affected pixels percent-

age for the initial pheromone level values of 10, 20, 30, 40
and 50.

As our experiments demonstrate, the MAW algorithm
has little sensitivity to ‘non-compact’ distribution of initial
pheromone profile. Note that the initial pheromone profile
does not affect the Random Walk but completely destroys the
MAC algorithm, making it unable to cover the domain com-
pletely.

7. Practical Implementation

We would like to address several issues that may arise in
a hardware implementation of the algorithm. First, using
pheromones as marking is a widespread phenomena in nature.
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Fig. 11. Worst-case coverage time of specific domain.

Fig. 12. MAW in presence of initial pheromone profile 1: (a) example of initial pheromone profile 1 and (b) cover time.

However, in robotics such an approach is rare due to complex-
ity of ventilation systems and odor sensors. A much better al-
ternative would be the use of color or electromagnetic mark-
ings.

Another practical problem may be associated with the re-
quirement to mark an open disk. This requirement can be eas-

ily eliminated, however, if we extend the robot’s sensing range
to 3r . In this case the robot does not need to mark an open disk�
instead, a single point at its current location can be marked.

Note also that current analysis does not address some issues
of a practical implementation such as imperfect sensors and/or
actuation. These issues will be addressed in further research.
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Fig. 13. MAW time in presence of initial pheromone profile 2: (a) example of initial pheromone profile 2 and (b) cover time.

Fig. 14. MAW time in presence of initial pheromone 3: (a) example of initial pheromone profile 3 and (b) cover time.

8. Conclusions

This work has two major contributions. First, we presented a
new ant-inspired algorithm for continuous domain covering.
We provided a formal proof of complete coverage and up-
per time bounds for complete coverage and the time interval
between two successive visits of the robot. We also proved
that the algorithm is capable of coping with arbitrary initial
pheromone profile. A formal proof was provided for multi-

agent or multi-robot coverage under the assumption that the ro-
bots have different clock phases. Second, a new method of per-
formance analysis was suggested which provides some bounds
on possible coverage time of any such mark-and-walk algo-
rithm.
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