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Abstract In this paper, we propose an orientation-matching
functional minimization for image denoising and image in-
painting. Following the two-step TV-Stokes algorithm (Rah-
man et al. in Scale space and variational methods in com-
puter vision, pp. 473–482, Springer, Heidelberg, 2007; Tai
et al. in Image processing based on partial differential equa-
tions, pp. 3–22, Springer, Heidelberg, 2006; Bertalmio et
al. in Proc. conf. comp. vision pattern rec., pp. 355–362,
2001), a regularized tangential vector field with zero diver-
gence condition is first obtained. Then a novel approach to
reconstruct the image is proposed. Instead of finding an im-
age that fits the regularized normal direction from the first
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step, we propose to minimize an orientation matching cost
measuring the alignment between the image gradient and
the regularized normal direction. This functional yields a
new nonlinear partial differential equation (PDE) for recon-
structing denoised and inpainted images. The equation has
an adaptive diffusivity depending on the orientation of the
regularized normal vector field, providing reconstructed im-
ages which have sharp edges and smooth regions. The addi-
tive operator splitting (AOS) scheme is used for discretizing
Euler-Lagrange equations. We present the results of various
numerical experiments that illustrate the improvements ob-
tained with the new functional.

Keywords Orientation-matching minimization ·
TV-Stokes equation · Image denoising · Image inpainting

1 Introduction

Digital image processing methods based on partial differ-
ential equations (PDEs) and variational formulations have
been extensively studied for last 20 years both theoreti-
cally and in a variety of practical applications. Starting with
the Perona-Malik (PM) model in image denoising (Perona
and Malik 1990), via directional diffusion methods (Catté
et al. 1992), which were preceded by ideas of Gabor (Lin-
denbaum et al. 1994), and the original Masnou and Morel
paper on image inpainting or disocclusion (Masnou and
Morel 1998), followed by the work of Bertalmio-Sapiro-
Caselles-Ballester (BSCB) model (Bertalmio et al. 2000),
hundreds of research papers described various ways to im-
prove the quality of denoising and inpainting. The Rudin-
Osher-Fatemi (ROF) model (Rudin et al. 1992) introduced
the total variation (TV) based functional to remove noise
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while preserving edges and became a fundamental frame-
work in developing variational methods in image process-
ing (Chan and Shen 2005).

Many of the methods for denoising and inpainting im-
ages rely heavily on good estimation of image derivatives,
and more accurate gradient estimates should lead to bet-
ter results. Obtaining good estimates of image gradients is
a challenging task in image processing because the given
image is often degraded or even totally missing over some
regions in the image plane. Several researches (Hahn and
Lee 2009; Sochen et al. 2004; Perona 1998; Tang et al.
2000; Tschumperlé and Deriche 2002; Chessel et al. 2006;
Weickert 1999; Vese and Osher 2002; Spira et al. 2007;
Weickert and Welk 2006; Chan et al. 2008) reported impres-
sive results by applying advanced estimation methods for the
derivative information. In particular, TV-Stokes (TVS) mod-
els regularize the estimation of image gradients and have
been successfully applied to image denoising (Rahman et
al. 2007) and image inpainting (Tai et al. 2006). The TVS
model regularizes the tangential vector field of images by in-
voking a natural “incompressibility” of flow condition. This
constraint guarantees the existence of an image which fits
the regularized tangential vector field. Even though the reg-
ularized derivatives obtained by the TVS methods are very
good, methods of reconstructing images from the regular-
ized vector fields have not been fully explored yet. In this
paper, we focus on the reconstruction methods to obtain de-
noised and inpainted images from the regularized gradient
information.

The spatial structures of images are often roughly clas-
sified into three categories: flat regions, edges, and ridges
or valleys. The flat regions are constant gray-value areas
where the level curves of images are not defined. Better de-
noising and inpainting algorithms recover images preserving
more structures. The total variation based functional (Rudin
et al. 1992) is very effective for recovering the flat regions
and anisotropic diffusion (Weickert 1999) is adjustable to
flow-like images. In some sense, these are the second or-
der PDEs for image denoising. It is well known that higher
order PDEs (Lysaker et al. 2003) are required to preserve
ridges and valleys. In Lysaker and Tai (2006) and Terzopou-
los (1988), the authors proposed a smart combination to pre-
serve discontinuities of the image and discontinuities of the
gradients of the image surface. We provide more details of
the related previous works for image denoising in Sect. 2.1
and image inpainting in Sect. 3.1.

In this paper, inspired by previously introduced two-step
algorithms (Rahman et al. 2007; Tai et al. 2006; Bertalmio
et al. 2001), we use a regularization of the tangent vector
field of an image with zero divergence condition. Then we
propose a different approach to reconstruct denoised images
and inpainted images from the regularized normal vector
field, based on what we call an orientation-matching min-
imization. We use an orientation matching cost functional

measuring the alignment between the image gradient and the
regularized normal direction. As opposed to denoising and
inpainting models based on the TVS equation (Rahman et
al. 2007; Tai et al. 2006), we minimize the direction between
the image gradient and the regularized normal direction. The
proposed minimization yields a new nonlinear PDE for re-
constructing denoised or inpainted images, which exhibits
an adaptive diffusivity depending on the orientation of the
regularized normal vector field. This provides reconstructed
images which have sharp edges and smooth regions.

The paper is organized as follows. In Sects. 2 and 3, we
thoroughly review the previous related works and observe
some connections between models. Also, we introduce the
proposed model for image denoising and image inpainting.
Detailed numerical algorithms are explained in Sect. 4. Sev-
eral numerical examples are presented and different models
are compared in Sect. 5. The paper concludes in Sect. 6.

2 Image Denoising

2.1 Review of TV-Stokes Denoising Algorithm

Let us consider a true gray level image I : � ⊂ R2 → [0,1].
We assume a noisy image I0 is given as a version of I de-
graded by additive Gaussian white noise η as follows:

I0(p) = I (p) + η(p), p = (x, y) ∈ �.

The normal and tangential vector fields of the level curves
of the image I are

n = ∇I (p) =
(

∂I

∂x
,
∂I

∂y

)T

and

(2.1)

t = ∇⊥I (p) =
(

∂I

∂y
,−∂I

∂x

)T

,

where T denotes a transpose. These vector fields satisfy the
condition:

∇ × n = 0 and ∇ · t = 0, (2.2)

hence n is an irrotational vector field and t is an incompress-
ible vector field. These properties are crucial when an image
must be reconstructed from either n or t.

The TVS denoising model (Rahman et al. 2007) performs
two steps to obtain a denoised image. For the first step, a
tangential vector field is regularized with the constraint of
incompressibility. The regularized tangential vector field t
is obtained by minimizing the functional:

min∇·t=0

∫
�

(
|∇t| + δ

2
|t − t0|2

)
dp, (2.3)
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where t0 = ∇⊥I0, δ is a positive parameter, and |∇t| is de-
fined by

|∇t| =
√(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

,

∇t =
(∇u

∇v

)
, t =

(
u

v

)
.

The Euler-Lagrange equation and the gradient flow yields
the following PDE for regularizing the tangential vector
field:

∂t
∂τ

(p, τ ) = ∇ ·
( ∇t

|∇t|
)

− δ(t − t0) + ∇λ in � × (0, T1] ,

∇ · t = 0 on � × (0, T1] ,
(2.4)( ∇t

|∇t| + λE

)
· ν = 0 in ∂� × (0, T1] ,

t(p,0) = t0 in �,

where E is the identity matrix, ν is the outward unit normal
vector to the boundary of an image domain ∂�, λ is a La-
grange multiplier function to penalize the incompressibility
condition. Note that it is not straightforward to apply the PM
model (Perona and Malik 1990) or the ROF model (Rudin
et al. 1992) directly to regularize derivative information of
an image (Hahn and Lee 2009). One of reasons to regularize
the tangential vector field is that the incompressibility con-
dition, ∇ · t = 0, is numerically computed using the Chorin
projection type method which is well developed in the fluid
dynamics; see details in Sect. 4. Moreover, the condition
guarantees the existence of an image I such that its normal
vector field satisfies the relation (2.2).

Once the regularized tangent vector field t = (u, v)T is
obtained in the first step, the regularized normal vector field
n is defined by (v,−u)T. Then, the two-step algorithms for
image denoising (Lysaker et al. 2004; Rahman et al. 2007)
and image inpainting (Tai et al. 2006) suggested to solve
the following minimization problem in the second step to
reconstruct an image I from n:

min‖I−I0‖2=σ

∫
�

(
|∇I | − ∇I · n

|n|
)

dp, (2.5)

where ‖·‖2 is the L2(�) norm and σ is the standard devia-
tion of a Gaussian white noise. The Euler-Lagrange equation
and the gradient flow equation yield the following PDE for
recovering the image:

∂I

∂τ
(p, τ ) = ∇ ·

( ∇I

|∇I | − n
|n|

)
− μ(I − I0)

on � × (0, T2] ,( ∇I

|∇I | − n
|n|

)
· ν = 0 in ∂� × (0, T2] , (2.6)

I (p,0) = I0(p) in �,

where μ is a positive parameter. If n
|n| = 0 in the above

model, it reduces to the ROF model. Thus, it is natural to
expect the TVS model to have a different performance from
the TV denoising model; see Fig. 3.

2.2 Orientation-Matching Minimization

In this paper, we use the regularized tangential vector field
with zero divergence condition in the first step and pro-
pose to combine with a new approach for reconstructing a
denoised image in the second step. In contrast to finding
an image whose gradient fits the regularized normal direc-
tion (2.5), we minimize an orientation matching cost func-
tional measuring the alignment between the image gradient
and the regularized normal direction:

min‖I−I0‖2=σ

∫
�

(
−|∇I · n|

|∇I ||n|
)

dp, (2.7)

where ‖ · ‖2 and σ are same as in (2.5). The Euler-Lagrange
equation and the gradient flow equation provide here a new
PDE for recovering the clean image:

∂I

∂τ
(p, τ ) = ∇ ·

( |∇I · n|
|∇I |2|n|

∇I

|∇I | − sgn(∇I · n)

|∇I |
n
|n|

)

− μ(I − I0) on � × (0, T2] ,

( |∇I · n|
|∇I |2|n|

∇I

|∇I | − sgn(∇I · n)

|∇I |
n
|n|

)
· ν = 0 (2.8)

in ∂� × (0, T2] ,

I (p,0) = I0(p) in �,

where sgn(·) is the sign function and μ is a positive parame-
ter.

We expect two differences between the previous model
(2.5) and the proposed model (2.7). The first is that we have
smaller orientation difference between the gradient of an
original image and the gradient of a denoised image. The
second is that the result in our model will have sharper edges
in a denoised image, specially where the original image has
smoothly changing pixel values near sharp edges. These
phenomena were indeed observed in numerical experiments
and there are some plausible reasons for this behavior.

In order to see the first difference, we denote θ as the
angle between ∇I

|∇I | and n
|n| . Then, the functional in the pro-

posed model (2.7) is written as
∫

�

(
−|∇I · n|

|∇I ||n|
)

dp =
∫

�

(−| cos θ |)dp (2.9)

and the functional in the previous model (2.5) is presented
by
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∫
�

(
|∇I | − ∇I · n

|n|
)

dp =
∫

�

|∇I |
(

1 − ∇I · n
|∇I ||n|

)
dp

=
∫

�

|∇I |(1 − cos θ)dp. (2.10)

The previous energy functional minimizes both |∇I | and the
angle θ . If an image I has some regions where |∇I | is large
enough, the minimization of angle difference between ∇I

|∇I |
and n

|n| has quite an weak effect. In case of |∇I | � 0, any
angle will fit to n

|n| . It is clear that the graph of a denoised
image is easily deformed to different shapes if the orienta-
tion of ∇I is changed very small. Since the proposed energy
functional minimizes the orientation difference, a denoised
result is more sensitively changed in order to fit the origi-
nal image. We numerically show the orientation difference
in Table 2 using different methods.

The second difference is observed when we assume that
∇I is approximately parallel to n. The proposed PDE can
be written by

∇ ·
( |∇I · n|

|∇I |2|n|
∇I

|∇I | − sgn(∇I · n)

|∇I |
n
|n|

)

� ∇ ·
(( ∇I

|∇I | − (±)
n
|n|

)
1

|∇I |
)

.

If |∇I | is large, the proposed model (2.8) is dominantly in-
fluenced by the data fidelity term and slightly affected by
the regularization term. However, the previous model (2.6)
is still affected by the additional force term, ∇ · ( n

|n| ), from
the regularized normal vector field. Since we may have some
numerical errors of the vector field, it is difficult to know
whether the additional force will generate a good result or
not. Even though the extra force reduces the stair-case effect
in the TV denoising model on smooth regions, it may derive
an erroneous effect near edges where |∇I | is large. We nu-
merically show qualities of denoised images when the orig-
inal image has smoothly changing pixel values near sharp
edges; see Figs. 3, 4, and 5.

The functional in the proposed minimization (2.7) is the
weighted orientation-matching for each level curve of the
image. By using the Coarea formula, the proposed func-
tional is written
∫

R

( |∇I · n|
|∇I ||n|

)
dp

=
∫

R

( |∇I · n|
|∇I |2|n|

)
|∇I |dp

=
∫ ∞

−∞

(∫
I−1(c)

1

|∇I (s)| |cos(θ(s))|ds

)
dc,

where θ(s) is the angle between the normal vector to the
level curve I−1(c) of the image and the regularized normal
vector n. In the edge integration context, a similar idea for

fitting the angle between the normal vector to level curves
of image and the normal vector of the evolving curve was
introduced in Kimmel and Bruckstein (2001).

3 Image Inpainting

3.1 Review of TV-Stokes Inpainting Algorithm

Let a gray image be a real-valued function I defined on an
open set �. We assume that a proper open subset R of �

is the region where the image data is missing or corrupted.
In Bertalmio et al. (2000), the PDE-based inpainting model
was designed by a deep observation of real inpainting work
and a transportation phenomenon. It is to obtain a steady
state solution of the PDE with the Dirichlet boundary con-
dition on ∂R:

∂I

∂τ
(p, τ ) = ∇ (∇ · ∇I ) · ∇⊥I, with I = I0 on ∂R.

(3.1)

The smoothness measure ∇ · ∇I on the boundary ∂R is
transported along the extended isophotes direction into the
inpainting domain. Since it may develop shocks in the do-
main, an additional diffusion should be used.

In Bertalmio et al. (2001), the authors use an analogy to
fluid dynamics in order to extend the smoothness measure
along the isophotes direction and the inpainted image is si-
multaneously reconstructed by the Poisson equation. If we
consider an image I as a stream function, the fluid veloc-
ity will be ∇⊥I and the vorticity ω will be the smoothness
measure. Looking at the similarity of the vorticity trans-
port equation in the incompressible Newtonian fluids, the
smoothness measure is obtained by a solution of the PDE:

∂ω

∂t
+ ∇⊥I · ω(ω) = ν∇ · (g(|ω|)∇ω) , (3.2)

where g(·) makes an anisotropic diffusion with the diffusiv-
ity constant ν. Note that g ≡ 1 gives the vorticity transport
equation in the fluid dynamics. As the vorticity generates
the stream function, the inpainted image is simultaneously
reconstructed by

∇ · ∇I = ω with I = I0 on ∂R. (3.3)

It smears out edges because the solution should be continu-
ous on �.

The strong continuation of the gradient of the image is
considered in Ballester et al. (2001) and the inpainted im-
age is simultaneously recovered by an anisotropic diffusion
equation based on the following minimization:



312 Int J Comput Vis (2011) 92: 308–324

min
n,I

(∫
R

|∇ · n|p (c1 + c2|∇k ∗ I |) dp

+ ζ

∫
R

(|∇I | − n · ∇I ) dp
)

, (3.4)

where k denotes a regularizing kernel and the detail admis-
sible sets and other variables are explained in Ballester et
al. (2001). Note that the reconstruction which is the sec-
ond term in the above minimization is very similar to the
second step in two-step methods models (Tai et al. 2006;
Lysaker et al. 2004; Rahman et al. 2007).

A different approach based on variational formulation,
the TV inpainting model, is mathematically studied in Chan
and Shen (2002);

∂I

∂τ
(p, τ ) = ∇ ·

( ∇I

|∇I |
)

, with I = I0 on ∂R, (3.5)

Even though it has the stair-case effect and a lack of visual
connection, it has been a fundamental framework to under-
stand the inpainting process. The curvature-driven diffusion
(CCD) model (Chan and Shen 2001) deals with the con-
nectivity principle. Moreover, the authors (Chan et al. 2002)
used the strong connection property based on Euler’s elas-
tica in Masnou and Morel (1998):

min
I

∫
R

φ(κ)|∇I |dp, (3.6)

where φ(s) = a + bκ2 and κ is the curvature of level curves
in the image. From the Euler-Lagrange equation and the gra-
dient flow equation, we have:

∂I

∂τ
(p, τ )

= ∇ ·
(

φ(κ)

|∇I | ∇I

)
+ ∇

(
− Dt

(
φ′(κ)|∇I |)
|∇I |2

)
· ∇⊥I,

with I = I0 on ∂R, (3.7)

where Dt(·) is the directional derivative along t. The PDE-
based approach to overcome the long connection has been
studied in Bertalmio (2006) and Kornprobst and Aubert
(2006).

Similar to the TVS denoising model, the TVS inpainting
model also consists of two steps. Interestingly, the two-step
method in the TVS models can be interpreted by a splitting
into the second-order PDEs of the fourth-order PDE in the
Lysaker-Lundervold-Tai (LLT) model (Lysaker et al. 2003).
The regularization term in the LLT model is

∫
�

(∣∣∣∣∇
(

∂I

∂x

)∣∣∣∣
2

+
∣∣∣∣∇

(
∂I

∂y

)∣∣∣∣
2
) 1

2

dp. (3.8)

Now, the integrand is same as

∣∣∣∣∇
(

−∂I

∂x

)∣∣∣∣
2

+
∣∣∣∣∇

(
∂I

∂y

)∣∣∣∣
2

= |∇v|2 + |∇u|2 = |∇t|2

Instead of solving the fourth-order PDE from the regulariza-
tion term in the LLT model, the TVS models divide it into
two second-order PDEs, the first one is to regularize the tan-
gent vector field with the divergent free condition and the
second one is to reconstruct the image with the regularized
normal vector field from the first step. This approach has
been already introduced in Lysaker et al. (2004) and a differ-
ent formulation is used to regularize the normal vector field
with the constraint of the unit vector. Based on the similar
method, the authors in Dong et al. (2009) improved results
in image denoising by using the minimization of the angle of
the normal vector fields. Recently, some remarkable results
in image denoising, specially suitable for recovering sharp
vertices and X junctions in the presence of heavy noise, were
obtained by estimating double orientations and then recon-
structing the image from the estimated information (Steidl
2009).

Now, we briefly review the essential idea of the TVS in-
painting. The first step is to obtain construct a regularized
tangential vector field t by minimizing the functional:

min∇·t=0

∫
R

|∇t|dp, with t = t0 on ∂R. (3.9)

From the Euler-Lagrange equation and the gradient flow
equation, we have the PDE for regularizing the tangential
vector field:

∂t
∂τ

(p, τ ) = ∇ ·
( ∇t

|∇t|
)

+ ∇λ in R × (0, T1] ,

∇ · t = 0 on R × (0, T1] , (3.10)

t(p, τ ) = t0 in ∂R × [0, T1] ,

where λ is a Lagrange multiplier function to penalize the in-
compressibility condition. The total variation norm |∇t| is
a reasonable choice because the discontinuity of t0 on ∂R
should be propagated into the inpainting region R. The in-
compressibility condition is crucial to guarantee the exis-
tence of an image whose normal vector field satisfies the
relation (2.1).

In the second step, the inpainted image I is obtained by
minimizing the functional with a regularized normal vector
field n = t⊥:

min
I

∫
R

(
|∇I | − ∇I · n

|n|
)

dp, with I = I0 on ∂R.

(3.11)
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From the Euler-Lagrange equation and the gradient flow
equation, we obtain the PDE for reconstructing an image:

∂I

∂τ
(p, τ ) = ∇ ·

( ∇I

|∇I | − n
|n|

)
on R × (0, T2] ,

(3.12)
I (p,0) = I0(p) in ∂R × [0, T2] .

Unlike reconstructing an image directly from the boundary
information of the inpainting region (Bertalmio et al. 2000),
the regularized tangential vector field is firstly propagated
into the region with the incompressibility condition and then
the reconstruction is secondly obtained from the image in-
tensity in ∂R and the regularized normal vector field on R.
The main merit of the TVS inpainting method is that it does
not make the stair-case effect on a large inpainting region.

3.2 Orientation-Matching Minimization

It is straightforward to apply a similar idea in Sect. 2.2 to the
inpainting problem. However, if we only use the orientation-
matching term in the energy functional with the fixed bound-
ary values, it will easily fall into the local minimum and it
will be difficult to set the initial condition when we find the
minimum from the gradient descent method. As we use the
fidelity term for the data in image denoising, we also con-
sider such a fidelity term for the vector data because there
is no information of the image data in the inpainting region.
Now, we propose the functional to reconstruct an image on
the inpainting region from the regularized tangential vector
field (3.10):

min
I

(
μ̄

∫
R

(
−|∇I · n|

|∇I ||n|
)

dp +
∫

R
|∇I − n|dp

)
, with

I = I0 on ∂R, (3.13)

where μ̄ is a positive constant and n = t⊥. The second term
is already introduced in Litvinov et al. (2009) and the au-
thors analyze mathematical properties, such as existence and
uniqueness of the minimizer. We understand this term as the
fidelity for the vector field and it also generates an adaptive
regularization effect in the image. The main contribution in
this paper is to propose to use the orientation-matching func-
tional in image inpainting and to understand desirable ef-
fects from the proposed functional.

From the Euler-Lagrange equation and the gradient flow
equation, we obtain a new PDE for reconstructing an image
on the inpainting region:

∂I

∂τ
(p, τ ) = μ̄∇ ·

( |∇I · n|
|∇I |2|n|

∇I

|∇I | − sgn(∇I · n)

|∇I |
n
|n|

)

+ ∇ ·
( ∇I − n

|∇I − n|
)

on R × (0, T2] , (3.14)

I (p, τ ) = I0(p) in ∂R × [0, T2] .

As we have seen some differences between the TVS denois-
ing model and the proposed model in Sect. 2, similar dif-
ferences between inpainting models (3.11) and (3.13) are
observed in numerical experiments.

More interestingly, the PDEs in the TVS inpainting
model and the proposed model show additional difference
if they are decomposed into a diffusion term and an advec-
tion term along the tangent vector field. We decompose the
regularized normal vector field into orthogonal directions:

n =
(

n · ∇I

|∇I |
) ∇I

|∇I | +
(

n · ∇⊥I

|∇I |
) ∇⊥I

|∇I | .

Letting θ be the angle between ∇I
|∇I | and n

|n| , the TVS in-
painting model (3.12) can be written as

∂I

∂τ
(p, τ ) = ∇ ·

( ∇I

|∇I | − n
|n|

)

= ∇ ·
( ∇I

|∇I | −
(

n
|n| · ∇I

|∇I |
) ∇I

|∇I |

−
(

n
|n| · ∇⊥I

|∇I |
) ∇⊥I

|∇I |
)

= ∇ ·
((

1 − cos θ

|∇I |
)

∇I

)
+ ∇

(
sin θ

|∇I |
)

· ∇⊥I.

Note that ∇⊥I
|∇I | · n

|n| = − sin θ and ∇I · ∇⊥I = 0. The pro-
posed inpainting model (3.14) is written as

∂I

∂τ
(p, τ ) = μ̄∇ ·

( |∇I · n|
|∇I |2|n|

∇I

|∇I | − sgn(∇I · n)

|∇I |
n
|n|

)

+ ∇ ·
( ∇I − n

|∇I − n|
)

= μ̄∇ ·
[( | cos θ |

|∇I |2
)

∇I

− sgn(cos θ)

|∇I |
((

n
|n| · ∇I

|∇I |
) ∇I

|∇I |

+
(

n
|n| · ∇⊥I

|∇I |
) ∇⊥I

|∇I |
)]

+ ∇ ·
[(

1

|∇I − n|
)

∇I

− |n|
|∇I − n|

((
n
|n| · ∇I

|∇I |
) ∇I

|∇I |

+
(

n
|n| · ∇⊥I

|∇I |
) ∇⊥I

|∇I |
)]

= μ̄∇
((

sgn(cos θ)

|∇I |
)

sin θ

|∇I |
)

· ∇⊥I
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+ ∇ ·
(( |∇I | − |n| cos θ

|∇I − n||∇I |
)

∇I

)

+ ∇
(( |n|

|∇I − n|
)

sin θ

|∇I |
)

· ∇⊥I.

Comparing with the TVS inpainting models in Tai et al.
(2006) and Litvinov et al. (2009), the proposed orientation-
matching functional yields additional transportation effect.
It explains that the proposed model (3.13) have better con-
nectivity property then the TVS inpainting models from the
same regularized normal vector field in the first step. It is
numerically observed in Fig. 8.

We see that the TVS inpainting model and the proposed
inpainting model have an adaptive diffusivity depending on
the angle θ and an adaptive transportation effect. When the
angle θ = π , it means that the gradient of image is exactly
opposite direction to the regularized normal vector. A strong
diffusion along the direction fill in the image data from
the boundary into the inpainting regions. Moreover, when
the angle θ = ±π

2 , the diffusion does not happen and the
smoothness measures are transported into the inpainting re-
gions along the isophotes direction. The adaptive advection
reduces the shock effect in the inpainting region because
θ = π or 0 makes the smoothness measure zero. We draw an
attention that the TVS inpainting method and the proposed
model consists of the adaptive diffusivity and the transporta-
tion phenomenon in PDEs (3.12) and (3.14). Note that we
do not discretize the decomposed equations to compute the
reconstructed images.

Comparing with the diffusivity depending on the cur-
vature of the level curves in Chan and Shen (2001) and
Bertalmio (2006), the TVS inpainting model and the pro-
posed inpainting model seems to be troubled with the con-
nectivity principle (Chan and Shen 2001). However, the con-
nectivity is easily achieved as long as the regularized normal
vector field is well obtained in the first step. Even though the
obtained vector field is smooth across the edges, we numer-
ically observe the connectivity property if μ̄ is large; see
Fig. 8.

4 Numerical Aspects

We use the standard staggered grid suggested in Tai et al.
(2006) and Rahman et al. (2007). An example of grid sys-
tem for discretizing PDEs (3.10), (3.12), and (3.14) in image
inpainting is shown in Fig. 1. The red region is a given in-
painting domain. All black nodes are computational nodes
and all blue nodes are boundary nodes. In the regulariza-
tion step for the tangent vector field, u and v in (4.1) are
defined at � nodes and ◦ nodes, respectively, and λ in (4.2)
is defined at � nodes. In the reconstruction step, the image
intensity I is defined at • nodes. We also use a similar grid

Fig. 1 (Color online) A grid system for discretizing PDEs of image
inpainting: The red region is an inpainting region. All black nodes are
computational nodes and all blue nodes are boundary points. u and v

in (4.1) are defined at points marked by � and ◦, respectively. λ in (4.2)
is defined at points marked by �. The image intensity I is defined at
points marked by •

system for discretizing PDEs (2.4), (2.6), and (2.8) in image
denoising with a rectangular red region which is the domain
of the image. In this section, some issues of discretization
are discussed in image denoising. In the case of image in-
painting, we briefly comment what should be changed.

4.1 A Regularization of the Tangent Vector Field

The minimization problem (2.3) for regularizing the tangent
vector field with the constraint of the incompressibility con-
dition is solved by the method of Lagrange and the Chorin
projection type method. We apply the Chorin projection type
method and the AOS method (Lu et al. 1992) to solve the
PDE (2.4). The algorithm we present below is essentially
the same algorithm as the one used in Lu et al. (1992) for
Navier-Stokes equations.

1. Calculation for the intermediate tangent field t∗ which is
not incompressible vector field:

t∗ − tn

�τ
= ∇ ·

( ∇t∗

|∇tn|ε
)

− δ(t∗ − t0), (4.1)

with the boundary condition

∇t∗ · ν = 0,

where |∇tn|ε ≡ √
ε + |∇tn|2 and tn is the tangent vec-

tor field at the nth time step. The AOS method (Lu et al.
1992; Weickert et al. 2001) of the linearized equation for
the component u is

un+ 1
2 − un

2�τ
= ∂

∂x

(
1

|∇tn|ε
(

∂u

∂x

)n+ 1
2
)
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− δ

2

(
un+ 1

2 − u0

)
,

ũn+ 1
2 − un

2�τ
= ∂

∂y

(
1

|∇tn|ε
(

∂ũ

∂y

)n+ 1
2
)

− δ

2

(
ũn+ 1

2 − u0

)
,

u∗ = 1

2

(
un+ 1

2 + ũn+ 1
2

)
.

The first and second equations yield tridiagonal systems

of equations for un+ 1
2 and ũn+ 1

2 , respectively. The spatial
derivatives with respect to x and y are approximated by
the standard one-sided finite differences. Similar equa-
tions hold for the component v. More details are shown
in Tai et al. (2006) and Rahman et al. (2007). In the case
of image inpainting, δ = 0 and the Dirichlet boundary
condition are used. Since the computational domain is ir-
regular, the splitting into x and y directions in the AOS
method (Lu et al. 1992; Weickert et al. 2001) should
be carefully done. It is basically a line by line selec-
tion to apply the method in the irregular domain. For in-
stance, we need to solve 11 systems of equations along
the x-direction and 5 systems of equations along the y-
direction for updating u∗ defined at points marked by
black � in Fig. 1. The boundary values on each line are
obtained by ends of the line.

2. Solving for λ such that
⎧⎨
⎩

tn+1 − t∗

�τ
= ∇λ,

∇ · tn+1 = 0.

This gives the Poisson equation for λ with zero Neumann
boundary condition; see Lu et al. (1992):

∇ · ∇λ = − 1

�τ
∇ · t∗. (4.2)

λ is approximated at nodes marked by � in Fig. 1 and
the right hand side of the above equation at same nodes
is easily discretized because the ends of five stencil at
the mark � are the marks � and ◦ for approximating
u and v, respectively. In the case of image inpainting,
we use the standard finite element method to deal with
irregular inpainting domains and the Neumann boundary
condition.

3. Updating the tangent vector field by

tn+1 = t∗ + �τ∇λ.

For the stopping criterion, we use the steady state condi-
tion for the flow t = (u, v)T:

max

(‖un+1 − un‖∞
‖un‖∞

,
‖vn+1 − vn‖∞

‖vn‖∞

)
≤ α,

where n and n+1 are consecutive time steps and ‖·‖∞ is the
L∞(�) norm. Note that α = 10−4 and α = 10−5 are fixed
for image denoising and image inpainting, respectively.

4.2 A Reconstruction of an Image

After the regularized tangent vector field t = (u, v)T is
computed from the first step, we propose the orientation-
matching minimization (2.7) and (3.13) to reconstruct a de-
noised image and an inpainted image, respectively, from the
regularized normal vector field n = (−v,u)T. The Euler-
Lagrange equation and the gradient descent flow yields new
PDEs (2.8) and (3.14). We also apply the AOS method to
solve the PDE (2.8) for image denoising:

In+ 1
2 − In

2�τ
= ∂

∂x

(
An

(
∂I

∂x

)n+ 1
2
)

− μ

2
In+ 1

2 + Fn

2
,

Ĩ n+ 1
2 − In

2�τ
= ∂

∂y

⎛
⎝An

(
∂Ĩ

∂y

)n+ 1
2
⎞
⎠ − μ

2
Ĩ n+ 1

2 + Fn

2
, (4.3)

In+1 = 1

2

(
In+ 1

2 + Ĩ n+ 1
2

)
,

where

An = |∇In · n| + ε

|∇In|3ε |n|ε ,

(4.4)

Fn = −∇ ·
(

sgnε(∇In · n)

|∇In|ε
n

|n|ε
)

+ μI0.

The first and second equations (4.3) give tridiagonal sys-

tems of equations for In+ 1
2 and Ĩ n+ 1

2 , respectively. The spa-
tial derivatives with respect to x and y are approximated by
the standard one-sided finite differences. More details are
shown in Rahman et al. (2007) and Tai et al. (2006). The
initial condition I (p,0) is the noisy image.

In the case of image inpainting, μ = 0 is used in the
above equations and the diffusivity and the force term
in (4.3) is changed for discretizing the proposed PDE (3.14):

An = μ̄
|∇In · n| + ε

|∇In|3ε |n|ε + 1

|∇In − n|ε ,

F n = −μ̄∇ ·
(

sgnε(∇In · n)

|∇In|ε
n

|n|ε
)

− ∇ ·
(

n
|∇In − n|ε

)
.

(4.5)

The Dirichlet boundary condition is used. Since the com-
putational domain is irregular, the splitting into x and y di-
rections in the AOS method (Lu et al. 1992; Weickert et al.
2001) should be carefully done. It is basically a line by line
selection to apply the method in the irregular domain. For in-
stance, we need to solve 10 systems of equations along the
x-direction and 5 systems of equations along the y-direction
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for updating In+1 defined at points marked by black • in
Fig. 1. The boundary values on each line are obtained on
ends of the line. The initial condition I (p,0) is zero in the
inpainting domain.

A parameter ε is used to avoid division by zero in numer-
ical experiments:

|∇In|ε ≡
√

ε + |∇In|2, |n|ε ≡
√

ε + |n|2.
The ε in the numerator of An in (4.4) and (4.5) is neces-
sary in order to prevent an infinitesimal diffusivity. Note that
sgnε(·) is a smeared sign function (Chan and Vese 2001).

sgnε(s) ≡ 2Hε(s) − 1,

(4.6)

Hε(s) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 s > ε,

0 s < ε,

1

2

(
1 + s

ε
+ 1

π
sin

(πs

ε

))
otherwise,

we use ε = 1 for examples in image denoising and we use
small ε in image inpainting. Specific values are shown in
each example. The parameter should not be too small be-
cause the positive ε makes adaptive diffusion effect in im-
age denoising. Considering the decomposition of the regu-
larized normal vector field n of Fn in (4.4) along ∇In

|∇In| and
∇⊥In

|∇In| , sgnε(·) is related to the diffusivity in the previous time
step. The reason we obtain sharp edges in the presence of
such a relative large ε is that the diffusivity is changed adap-
tively depending on the regularized normal vector field. Un-
fortunately, it is no longer to solve the approximate solution
which satisfies (2.7) when ε > 0. The numerical method to
solve the proposed PDE in image denoising should be stud-
ied further to obtain more exact results. In case of image in-
painting, the parameter ε can be a small value because (3.14)
has the regularization term of the image which can be inter-
preted as the fidelity term for the vector data.

For the stopping criterion in image denoising, we use the
steady state condition for the relative difference in the en-
ergy (2.7). That is,

|En+1 − En|
|En| ≤ β,

where En is the energy value at the time step n approxi-
mated by

En ≈
∑
i,j

(
− |∇In · n|

|∇In|ε |n|ε
)

.

The value of β may be different for images and we use
10−2 ≤ β ≤ 10−4. The energy (2.5) is similarly computed
and it is used for the stopping criterion of the second step in
the previous model (2.6). For the stopping criterion in image

Fig. 3 Comparison with other methods in image denoising: (a), (b),
and (c) are the graph of images from top to bottom of the test 5 in
Fig. 2, respectively. (d) is the result of the TVS denoising model and
(e) is the result of the TV denoising model. (f) is the result from (5.1).
Note that (c) is the result from the proposed model

inpainting, we use the steady state condition for the energy.
That is, we stop the numerical computation for reconstruct-
ing images when the graph of energy in Fig. 9 is almost
horizontal.

The right choice of parameters is crucial for qualities of
reconstructing images. The parameters, δ and μ, controls the
balance between data smoothing and the fidelity term. The
parameter ε is used to avoid a division by zero, which also
influences the diffusivity for smoothing a data. The AOS
scheme provides us a wide range of the time step. However,
if �τ is too large, then visual qualities of a denoised image
are deteriorated.

5 Examples

In this section, we show numerical experiments for denois-
ing and inpainting images based on the proposed meth-
ods. With synthetic images and real images, we discuss the
strength of the proposed orientation-matching minimization
and compare with results from other methods. For simplic-
ity, the notations in Table 1 are used to indicate parameters
in different methods. For the TV inpainting model, �τ is the
time step and ε indicates the same regularization parameter
to prevent from dividing zero when we discretize (3.5) in the
standard method.

Information of orientation of the gradient of images has
also been used in for image restoration (Brox et al. 2006;
Weickert 1999; Spira et al. 2007; Weickert and Welk 2006;
Chan et al. 2008). Here we use the regularized vector n to
obtain the orientation of the gradient and put this into the
PDE-based model (Brox et al. 2006; Weickert 1999) for im-
age denoising and image inpainting. The diffusivity tensor
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Table 1 Some notations to
indicate different parameters in
PDEs for image denoising and
image inpainting

Parameters in image denoising Parameters in image inpainting

V (�τ, δ, ε): (2.4) V (�τ, ε): (3.10)

M1(�τ,μ, ε): (2.8) M1(�τ, μ̄, ε, ε): (3.14)

M2(�τ,μ, ε): (2.6) M2(�τ, ε): (3.12)

M3(λ): the TV denoising method in Bresson and Chan (2008) M3(�τ, ε): the TV inpaiting method

M4(μ,ρ, ε): (5.1) M4(�τ,ρ, ε): (5.1)

Fig. 2 Results from the
proposed method: the first row
is original images, we add a
Gaussian white noise with zero
mean and the standard deviation
10 for all images in the second
row, and the last row is the
result from the proposed method

Table 2 Comparison of the orientation difference γ in (5.2): (A) is the
result of the proposed method, (B) is the result of the TVS denoising
method, (C) is the result of the TV-filter method. The denoised image
from the prosed method is shown in the third row of Fig. 2

Images Test 1 Test 2 Test 3 Test 4 Test 5

(A) 0.9706 0.8693 0.7668 0.5681 0.4936

(B) 0.9316 0.8478 0.6304 0.4983 0.4051

(C) 0.7466 0.6825 0.6218 0.3891 0.3228

is constructed from n = (−v,u)T and we solve the follow-
ing PDE with the free flux boundary condition to obtain a
denoised image:

∂I

∂τ
(p, τ ) = ∇ · (g(

Gρ ∗ nnT)∇I
) − μ(I − I0), (5.1)

where (Gρ ∗ M)ij = Gρ ∗ mij for a matrix M = (mij ) and
Gρ ∗ f is the convolution of f with the two-dimensional
Gaussian kernel with the standard deviation ρ. The function
g is defined on a set S of real semi-positive symmetric 2 × 2
matrices:

g(M) ≡ 1√
ε + �1

v�1v�1
T + 1√

ε + �2
v�2v�2

T,

Fig. 4 (a) is an original image. We add a Gaussian white noise with
zero mean and the standard deviation 20 in (b) which is larger noise
than in test 4 in Fig. 2. (c) is the result of the proposed model. (d) is
the result of the TVS denoising model and (e) is the result of the TV
denoising model. (f) is the result from (5.1)

where (�1, v�1) and (�2, v�2) are eigenpairs of M ∈ S ,
�1 ≥ �2. In the case of image inpainting, μ = 0 and the
Dirichlet boundary condition is used. The same type of grid
system in Fig. 1 is applied to discretize the PDE (5.1) and we
use the standard explicit method for discretizing the time.
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Fig. 5 (a) is a part of a tangent
vector field from (2.3). (a1),
(a2), and (a3) in the first row are
a part of the images (c), (d), (f)
in Fig. 4, respectively. In the
second row, we compute less
smooth tangent vector field (b)
in the first step and use the same
method for the second step as
the first row

Fig. 6 There is a Gaussian
white noise with zero mean and
the standard deviation 10 in (a)
from Martin et al. (2001). (b) is
the result from the proposed
model. (c) is the result of the
TVS denoising model and (d) is
the result of the TV denoising
model. The size of image is
240 × 124

Table 3 Comparison of the orientation difference γ (5.2) for images
in Fig. 8

Images in Fig. 8 (b1) (b2) (b3) (b4)

The first row 0.7018 0.6675 0.6495 0.5977

The third row 0.9155 0.9152 0.9103 0.8856

Example 1

We numerically check how well the orientation of the gradi-
ent of a denoised image is fitted to the gradient of the origi-
nal image. In Table 2, we measure the orientation difference

for different test images:

γ = 1

|�|
∫

�

∣∣∣∣ ∇Ie

|∇Ie| · ∇Ic

|∇Ic|
∣∣∣∣dp, (5.2)

where Ie is the original image, Ic is the computed denoised
image, and |�| is the area of the domain. In the first step
in (A) and (B), V (0.1,1,104) is fixed for all test images.
In the second step in (A) and (B), M1(10−3,1,10−3) and
M2(10−3,1,10−6) for test 1, M1(10−3,1,5 · 10−3) and
M2(10−3,1,2.5 · 10−5) for test 2, M1(10−3,1,2.5 · 10−5)

and M2(103,1,5 · 10−3) for test 3, M1(10−3,1,10−3) and
M2(10−3,5,10−3) for test 4, and M1(10−3,2,3 ·10−3) and
M2(10−3,3,3 · 10−3) for test 5 are used, respectively. In
(C), all results are obtained by M3(60). As we explain in
Sect. 2.2, the proposed model has better performance for fit-
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Fig. 7 There is a Gaussian
white noise with zero mean and
the standard deviation 10 in (a)
from Martin et al. (2001). (b) is
the result of the proposed
model. (c) is the result of the
TVS denoising model and (d) is
the result of the TV denoising
model. The size of image is
181 × 274

ting the orientation. In Fig. 3, the graph of computed results
are presented in order to see visual difference. The result (f)
is obtained by (5.1) with M4(0.4,0.1,10−3). The denoised
image from the proposed method has a clean shape. It pre-
serves sharp edges and smoothly changing pixel values near
the edges. We observe that results from other methods do not
have very sharp edges except the TV model. The result (e)
from the TV denoising model has the stair-case effect on
smooth regions. These results are expected in Sect. 2.2.

Example 2

In Fig. 4, we compare results from different methods with
larger noise in test 4 in Fig. 2. For a regularization of the

tangent vector field in (c) and (d), V (5 · 10−2,1,10−4) is
used. The result of the proposed method in (c) is obtained
by M1(10−3,2,10−3). (d), (e), and (f) are obtained by
M2(10−3,4,10−4), M3(80), and M4(0.5,1,10−3). Now,
we observe that the effect of the first step (2.3) to the sec-
ond step in (2.8), (2.6), and (5.1) is numerically shown.
The first row in Fig. 5 is a part of images in Fig. 4. In the
second row, we obtain a relatively less smooth vector field
with V (0.1,3,10−4). (b2) is obtained by M1(10−3,2,10−3)

and we use same parameters for (b1) and (b3) as (a1) and
(a3). Note that the result (b2) does not have very clean edge
even if we use smaller μ in the second step for the previ-
ous model (2.6). The other methods, (2.6) and (5.1), are re-
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Fig. 8 (Color online)
Comparison with other methods
in image inpainting: (a) is the
original image with the
inpainting domain which is the
red region. (b1), (b2), (b3), and
(b4) are the results of the
proposed method (3.14), the
TVS inpainting model (3.12),
the TV inpainting model, and a
fusion model (5.1), respectively.
The second and the fourth rows
are corresponding graphs of the
above images. The inpainting
region in the graph is the hole of
surface

Fig. 9 A graph of the energy (3.13): (a) and (b) are images in the first and the third row at the column (b1) in Fig. 8, respectively

Fig. 10 (Color online) The role
of two positive constants in the
proposed model (3.13): (a) is
the original image and the red
region in (b) is the inpainting
domain. (c) and (d) are the
results with μ̄ = 0.001 and
μ̄ = 1, respectively
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Fig. 11 (Color online) The first
and the third rows in (a) and (b)
are original images and
inpainting domains which are
red regions. (c) is the result of
the proposed inpainting
method (3.13). The second and
the fourth rows are
corresponding graphs of the
above images. The inpainting
region in the graph is the hole of
surface. The size of images in
the first and the third row are
144 × 144 and 252 × 212,
respectively

sponded by a small change of the vector field because the
field is directly used in the formulation without considering
any relation with the image data.

Example 3

For real images, we compare with denoised images from
different methods. In Fig. 6, the image (a) is obtained
by the proposed method with V (0.1,5,10−4) and M1(5 ·
10−4,5,5 · 10−4). (b) is from V (5 · 10−2,5,10−4) and
M2(10−3,1,5 · 10−3). (c) is from M3(60). In Fig. 7,
the image (a) is obtained by the proposed method with
V (0.1,2,10−4) and M1(10−4,30,10−3). (b) is from
V (0.1,2,10−4) and M2(10−3,2,10−3). (c) is from M3(60).
For these images, two models (2.5) and (2.7) give similar re-
sults which are better than the TV denoising model.

Example 4

In Fig. 8, we compare with results of image inpainting from
different methods. The red regions in (a) are inpainting do-
mains. The first image in the first row has sharp edges and
smoothly changing pixel values. The first image in the third
row has discontinuities of gradient of the image surface. The
regularized vector field in the first and the third row are ob-
tained by V (10−2,10−3). The images (b1), (b2), (b3), and
(b4) in first row are obtained by M1(10−3,1,10−3,5 ·10−2),
M2(10−5,10−6), M3(10−5,10−6), and M4(10−5,1,5 ·
10−4), respectively. In the same order at the third row, we
use M1(10−4,10−3,10−4,10−2), M2(10−5,10−6),
M3(10−4,10−5), and M4(10−5,1,10−4), respectively. The
orientation difference γ (5.2) between the normal vectors of
the original image and the reconstructed image is measured
in Table 3. In order to verify that the proposed energy (3.13)
is numerically minimized, we show the graph of the energy
in Fig. 9.



322 Int J Comput Vis (2011) 92: 308–324

Fig. 12 (Color online) (a1) is
the original image and
inpainting domains which are
red regions are shown in (a2).
(a3) is the result of the proposed
inpainting method (3.13). In the
second column, a small blue box
region in (a2) is magnified and
the corresponding graphs are in
the last column. The size of
image is 484 × 404

Two synthetic examples in Fig. 8 show clear differences
between the proposed model and the TV inpainting model.
In the first row, the connectivity principle (Chan and Shen
2001) in image inpainting is shown. The height of the in-
painting domain in the middle is deliberately chosen to be
longer than the width of the black vertical bar in the orig-
inal image. From the same regularized vector field in the
first step, the inpainting results in the first row, (b1) from the
proposed model and (b2) from the TVS model, are quite dif-
ferent because the proposed orientation-matching functional
has the additional transportation property; see Sect. 3.2. The
result from the TV inpainting model is already observed and
mathematically analyzed in Chan and Shen (2002). The cur-
vature of the level curve is used in the CCD model and the
Euler’s elastica model to achieve the long connectivity. The
sharp edges and smoothly changing pixels near the edges
are well reconstructed in the result image from the proposed
model. In the third row, the TV inpainting model has the
stair-case effect which the proposed model and the TVS
model do not have. Considering the similarity to the fourth-
order method (3.8) in the first step, the regularized normal
vector field has discontinuities of the normal vector to the
level curves of the image. Such discontinuities generate the
good reconstruction of the image along the ridges and val-
leys in the proposed model.

Example 5

In Fig. 10, we discuss the role of parameter μ̄ in (3.13).
(a) is the original image and (b) shows the inpainting domain
which is the red region. The regularized normal vector is ob-
tained by V (10−2,10−3). In (c) and (d), we only change the
parameter μ̄, that is, M1(10−3,10−3,10−3,5 · 10−3) and
M1(10−3,1,10−3,5 · 10−3), respectively. As we observed
in numerical examples of image denoising, the proposed
orientation-matching term captures the sharp edges which
are the discontinuities of the image data. So, if we choose
a small μ̄, it is difficult to recover sharp edges in (c). If μ̄

is large in (d), those edges are easily recovered. However, it
gives a weak force to restore the discontinuities of the gra-
dient of the image data.

Example 6

In Figs. 11 and 12, we show that the proposed inpaint-
ing model recovers smooth regions without the stair-case
effect for real images. Since we assume that given im-
ages are clean, the images in Fig. 11-(a) are preprocessed
by the PM denoising method to reduce some noise in the
original image. The parameters V (10−2,10−3) are used
for the first row in Fig. 11 and Fig. 12. The third row in
Fig. 11, we use V (10−4,10−5). In the reconstruction step,
M1(10−4,10−3,10−4,5 · 10−2) and M1(10−4,10−2,10−4,
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Table 4 The test image is shown in the test 1 in Fig. 2. The denoised
results are obtained by the proposed method (2.7) via the AOS method.
The CPU time is measured in second

Size First step Second step

Total iteration CPU time Total iteration CPU time

322 75 3.55 17 0.74

642 53 10.56 13 1.18

1282 60 50.11 12 4.45

2562 58 221.17 14 21.88

5122 60 1085.07 19 131.99

5 · 10−2) are used for the first row in Fig. 11 and Fig. 12,
respectively. M1(10−5,10−3,10−4,5 · 10−2) is used for the
third row in Fig. 11. The proposed inpainting model shows
good visual quality in surfaces of images.

Example 7

In Table 4, we show the computational speed of the AOS
method in image denoising. The simple image, the test 1 in
Fig. 2, is used in the different size from 32 × 32 to 512 ×
512. In the first step, we use V (0.1,1,10−4). In the second
step, M1(10−3,1,10−3) is fixed for all images. It seems to
follow the second order method. The code is programmed
on MATLAB and the Intel Core Duo CPU P8600 2.40 GHz
is used. In case of image inpainting, it usually takes more
time because the time step is smaller than image denoising
case.

6 Conclusions

We proposed an orientation-matching minimization func-
tional for denoising and inpainting digital images. Our al-
gorithm consists of two steps. In the first step, we use the
regularized tangent vector field with the incompressibility
condition which was suggested in Tai et al. (2006). The con-
dition is crucial for reconstructing an image from the vector
field. In the second step, the present work proposed a mini-
mization of an orientation alignment functional between the
image gradient and the regularized normal direction. This
functional yields a nonlinear PDE for reconstructing images,
which exhibits an adaptive diffusivity depending on the ori-
entation of the regularized normal vector field. This allows
to obtain images which have sharp edges and smooth re-
gions. We show improved image recovery results in various
numerical experiments.
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