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Optimized Overlay Metrology Marks:
Theory and Experiment

Mike Adel, Mark Ghinovker, Boris Golovanevsky, Pavel Izikson, Elyakim Kassel, Dan Yaffe, Alfred M. Bruckstein,
Roman Goldenberg, Yossi Rubner, and Michael Rudzsky

Abstract—In this paper, we provide a detailed analysis of overlay
metrology mark and find the mapping between various properties
of mark patterns and the expected dynamic precision and fidelity
of measurements. We formulate the optimality criteria and sug-
gest an optimal overlay mark design in the sense of minimizing the
Cramer-Rao lower bound on the estimation error. Based on the
developed theoretical results, a new overlay mark family is pro-
posed—the grating marks. A thorough testing performed on the
new grating marks shows a strong correlation with the underlying
theory and demonstrate the superior quality of the new design over
the overlay patterns used today.

Index Terms—Box-in-box marks, Cramer—Rao lower bound,
dynamic precision, Fisher information matrix, grating marks,
overlay mark, overlay mark fidelity, overlay metrology.

1. INTRODUCTION

CCURATE and precise overlay metrology is a critical re-

quirement in order to achieve high product yield in micro-
electronic manufacturing. New challenges become evident as
microlithography processes are developed for each new design
rule node. A critical link in the overlay metrology chain is the
metrology mark which is chosen to be included on the reticle,
printed on the wafer, subsequently processed and which is ulti-
mately imaged in the metrology tool in the metrology process.
In this publication a theoretical and experimental study is de-
scribed that shines new light on the limitations of existing mark
designs while proposing and validating new designs of superior
performance.

In Fig. 1 a standard overlay (BiB)! mark is shown schemat-
ically. It consists of two “boxes” printed on two subsequent
layers—top (grey) and bottom (black)—between which the
overlay is measured. By design the centers of symmetry of
the inner (grey) and outer (black) boxes coincide. The actual
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conventional overlay mark
etc.—under the generic

IIn the present paper we unify all
types—box-in-box, bar-in-bar, frame-in-frame,
abbreviation “BiB.”

Exclusion
Zone

2

Fig. 1. Standard BiB mark (schematically).

overlay appears as misregistration between the centers of
symmetry of the “black” and “grey” layers.

There are two major use cases in overlay metrology for
microlithography. The first and the most obvious is termed lot
dispositioning. If measured overlay exceeds some allowable
threshold, the lot cannot proceed to the next process step. This
generally results in rework, that is the lot is returned to the
previous lithography step after the resist is stripped. This is
provided the overlay measurements were done immediately
after development. Under some circumstances the overlay
measurements after development are not viable, and are done
after etch. In this case, there is no option for rework, and lots
outside of allowable thresholds are scrapped.

The second use case of overlay metrology is for correction of
the exposure tool. Usually, the overlay is measured at four cor-
ners of the field and over several fields on the wafer, which pro-
vides the necessary statistical sampling to enable stepper cor-
rections model to be calculated. This model includes intra-field
and inter-field correctibles, such as offset, rotation and scale.
These correctibles are fed back to the exposure tool to improve
performance on subsequent lots.

Conventional BiB based metrology has been the standard
overlay metrology for almost two decades. However, as the
overlay budget shrinks together with the lithographic design
rules, a number of performance limitations are becoming evi-
dent. These shortcomings are addressed in the section below.
Application of grating structures to lithography and metrology
fields is being extensively studied. One of such applications
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is for scatterometry based critical dimension (CD) metrology
([91, [16], [15], [11]). Gratings are also used for phase shift
monitoring ([7]). ASML is using grating patterns as alignment
marks ([14]). In the current paper, we introduce grating marks
for overlay metrology.

A. Device Correlation

As design rules shrink to 100 nm and below, difference in BiB
feature size and device feature size have become significant.
Both lithographic pattern placement errors (PPE) [4], [10] and
influences of other processes (like chemical-mechanical pla-
narization—CMP) are known to be feature size and density de-
pendent [12]. Therefore, overlay metrology results based on BiB
marks may suffer from discrepancies compared with device fea-
ture overlay.

B. In-Chip to Scribe-Line Discrepancy

Another source of BiB-to-device overlay discrepancy orig-
inates from their different spatial location in the exposure tool
field. Typically, BiB marks are printed in the scribe lines near the
field corners. Optical conditions (aberrations, focus deviations,
etc.) near the field edges may differ from those in the field in-
terior, where the device features are printed. Since both overlay
budget and process window (as defined by allowed exposure
tool focus and exposure) shrink together with the design rules,
in-chip to scribe-line discrepancies are becoming critical.

C. Process Robust Marks

Conventional BiB marks are frequently considered design
rule violations in modern IC manufacturing processes. BiB
marks are generically built of wide lines and require empty
surrounding spaces (exclusion zones; see Fig. 1) for successful
measurement. Both these facts usually contradict pattern
density and feature size design rule requirements commonly in
practice today. Such violations make handling of BiB marks by
the layout engineer problematic and more importantly have a
negative impact on process robustness of the metrology mark
since the process is optimized for features and patterns of
significantly different dimensions [6].

D. Tool Induced Shifts

Currently overlay measurements are performed on optical
imaging based tools. Optical aberrations and illumination
imperfections are an unavoidable reality of optical metrology
system design and manufacture. A simple and quantitative
metric of the quality of the optical metrology tool is Tool
Induced Shift (TIS). TIS is defined as the average of the overlay
measurements performed on a given overlay mark before and
after rotation by 180°:

TIS = (OVL(0°) + OVL(180°))/2. 1)

Nonzero TIS is an indication that the metrology tool has in-
duced a systematic discrepancy in the overlay result due to the
above system imperfections. TIS is however, by definition, a
calibratable error, if measurements are performed at both orien-
tations on a subset of representative marks. A more important
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Fig. 2. Schematic arrays of densely printed overlay marks used for OMF
calculation.

metrology uncertainty contributor is 7IS variability, defined as
three times the standard deviation of the TIS measured over N
sites across the wafer.

E. Information Content

In spite of the large space occupied by the conventional BiB
mark, it contains a relatively sparse amount of information for
overlay measurement. Generically, each BiB mark consists of
four inner and four outer bars only, usually utilizing less than
20% of the occupied real estate. By increasing the informa-
tional content of the overlay mark one can minimize the effect
of random (both spatial and temporal) noise on overlay mea-
surement. There are two measurable parameters representing
overlay measurement uncertainty due to temporal and spatial
noise: dynamic precision and overlay mark fidelity (OMF) re-
spectively.

F. Dynamic Precision

Dynamic Precision is defined as three times the standard de-
viation of the results of a series of measurements of the same
overlay mark, when these measurements are done in a dynamic
loop (including wafer alignment, mark acquisition and measure-
ment itself). This parameter quantifies temporal noise in the
measurement of a given overlay mark.

G. Overlay Mark Fidelity (OMF)

Suppose, one can eliminate the temporal noise in the overlay
measurement (by means of averaging over many dynamic loops
of measurements on the same mark). This still does not ensure
that by measuring two nominally identical marks one will ob-
tain identical results. OMF is defined as three times the standard
deviation of the measurement results of the N densely printed
identical overlay marks after compensating for dynamic preci-
sion [1] (see Fig. 2).

In the present paper, we dwell on the last three shortcomings,
that is information content, precision and mark fidelity. We first
compare different mark design options from a theoretical per-
spective, focusing on the sampling, temporal noise, and spatial
noise aspects. We then introduce an optimized grating overlay
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Fig. 3. BiB overlay mark with right-outer and top-inner regions of interest.
mark, which demonstrates superior performance over the con-
ventional BiB marks. We present experimental data on dynamic
precision (as a measure of temporal noise) and OMF (as a mea-
sure of spatial noise) for the new grating overlay marks as com-
pared with conventional BiB marks.

II. THEORY: DESIGNING PATTERNS FOR OPTIMAL OVERLAY
REGISTRATION AND POSITION ESTIMATION

In this section, we analyze the dependence of the dynamic
precision and fidelity of the overlay measurement on various
pattern parameters. The overlay measurement is based on mea-
surements of horizontal and vertical positions of known pat-
terns.

Fig. 3 shows an example of the BiB overlay mark with right-
outer and top-inner regions of interest.

The frame’s edges are corrupted by noise whose character de-
pends on various factors. We shall deal with two types of noise:
additive Gaussian noise at the wafer level and additive Gaussian
noise at the camera level. The first type of noise is spatial noise
whose source is the manufacturing process, and the second type
is a dominant source of the temporal noise in the measurement
process.

In this paper, we explore how the position estimation error is
affected by various pattern characteristics and by the parameters
of the measurement process, by deriving the Cramer—Rao lower
bound on the estimation error for arbitrary patterns and, then
address the question of designing patterns that are optimal in
the sense of minimizing the location error.

A. Problem Definition

We shall first deal with the measurement of horizontal po-
sition of a known one-dimensional (1-D) pattern go(z) in a
two-dimensional (1-D) image. Vertical position estimation can
be done in a similar way. We assume in this case that the mea-
surement is performed for every image row independently, and
then an average pattern location estimate is returned as a result.

A periodic pattern of lines may be represented by

9(w,y) = go(z) + ns(z,y) (2)

where go(x) is a 1-D pattern repeated on every line and ns(z, y)
is the “spatial noise” on the wafer.

Then the pattern at each row of the image acquired by the
camera can be described by

f(x)=g*h+mn 3)

where h is an overall point spread function, composed of the op-
tical and camera point spread functions, * is the convolution op-
erator, and n is the temporal noise at the camera output. All sig-
nals are assumed band limited and the noise terms are assumed
to be filtered and hence, band-limited, white, and Gaussian.
The task is to find best match locations of the designed pattern
go(z) given the signals f(z) measured over all image rows. In
the analysis below, we derive the distribution of the pattern loca-
tion estimates over all measurements. The statistical analysis is
based on the Cramer—Rao bound, a well-known statistical tool
(8], [5].
We can now define the following three problems
1) Find the dependence of the dynamic precision and overlay
mark fidelity (OMF) metrics on the general parameters
characterizing an one dimensional pattern and the mea-
surement method without going into the detailed structure
of the pattern go(z).
2) Given the pattern go(x), what is a lower bound on the
unbiased estimation of the pattern location?
3) What is the optimal pattern go() in the sense of mini-
mizing the Cramer—Rao lower bound on the estimation
error?

B. Dynamic Precision and Fidelity Estimations

In this section, we evaluate the precision and fidelity of the
measurement process based on some general physical parame-
ters of the measured signal and the measurement process, such
as optical system aperture, wave length, pattern size, signal-to-
noise ratio (SNR), and others, without considering the detailed
structure of the pattern go(z).

1) Single Line Measurement: On every image row we esti-
mate the pattern location by using the optimal Matched Filter or
correlation method. Let 6 be the estimator of the pattern loca-
tion # of 1-D signal f(z) immersed in white Gaussian noise. It
is known on the basis of very general statistical principles that
the variance of 4 is bounded below by the Cramer—Rao bound,
which is given by (see, e.g., [8], [5]).

A 1
var(f) = WP
where d> = 2E /N, E is the signal’s energy, N is the unilateral
spectral density of the noise, and

= [ et [P

“

is the square of the effective bandwidth of the signal, where
F(w) is a Fourier transform of f(z). Using the definitions £ =
PT,N = Py/B and SNR = P/Py where P is the average
signal power, T' is the signal length, Py is the noise power and
B is the noise bandwidth, we get
S 1
var(l) = 5o 7 SNR . B

This formula shows that the precision is a function of the signal
and noise bandwidths, signal to noise ratio, and the overall
length of the signal.
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We shall deal with two kinds of noise.

* Spatial noise originating from the mark itself. This noise
undergoes convolution with the point spread function h
and therefore its band width is dictated by the optical
system. In this case we assume n.(z,y) = 0.

» Temporal noise originating mainly from the camera. This
noise is of higher bandwidth since we work in condi-
tions of over sampling and the pixel size is assumed to be
roughly 5 times smaller than the optical resolution length.
In this case we assume ns(z,y) = 0.

In both cases, the effective bandwidth of the signal is dic-
tated by the optical system. The upper bound for [ is dictated
by diffraction and can be approximated as the reciprocal of the
Rayleigh resolution distance which is given by

0.61- )
- NA

where ) is the optical wavelength and NV A is the numerical aper-
ture of the optical system.

Using Bmax = (27/6) = (2 - NA/0.61 - \) we get the fol-
lowing expression for the standard deviation of the pattern lo-

cation:
A 0.61- )\ 1
> .
td(0) 2 5 " NaV 2 T SNk B

With all other factors equal, the standard deviation of tem-
poral noise case is smaller because the noise bandwidth is larger.
By increasing 1" while keeping all other factors constant we de-
crease the variance.

2) Multiple Line Measurement: When we repeat the mea-
surement for multiple image rows we should get the same re-
sults with different random jitter or estimation noise. When we
take the average of the measurements the precision is increased
by the square root of the number of independent measurements.
Let us measure L rows with the same method. We shall deal
with two cases: Temporal Noise and Spatial Noise.

3) Temporal (Measurement) Noise: The number of indepen-
dent measurements is L, and therefore, the standard deviation
will obey

o

td(é)>0.61-)\\/ 1
T = s NAV2. T SNR B L

This gives us the dynamic precision of the measurement. If
we put the following numbers as a concrete (real life) example
A = 06 pum, NA = 08,7 = 5 pum, SNR = 256, B =
6 um~!, L = 100 we get

A~

std(#) > 0.06 nm.

4) Spatial (Pattern) Noise: In this case the number of inde-
pendent measurements is not L since the optical point spread
function blurs the noise. Let us call A the vertical sampling in-
terval on the wafer. The number of independent measurements
is approximated by

A
Leﬂ‘ == Lg

In addition the noise bandwidth B is roughly the inverse of

the optical spatial resolution §. The standard deviation of the

measurement, interpreted as the Statistical Accuracy (OMF)
will hence obey

R 0.61-A\? 1 1
> — .
Std(e)—( NA > 27r\/2~T~SNR~L~A

If we use the following numbers for a concrete (real life) ex-
ample A = 0.6 um, NA = 0.8, 7 = 5 yum, SNR = 256, L =
100, A = 0.08 pm, we obtain

std(6) > 0.23 nm.

The expressions for the statistical precision and fidelity
(OMF) are very similar, except the dependence on N A and
A. In order to increase both precision and fidelity we need
to decrease the wavelength, and to increase the information
content of the signal (the effective bandwidth), the signal’s
spatial region (1" and L) and the signal to noise ratio. In order
to reach the bound we have to use a signal whose effective
bandwidth achieves [,,x. This means that the signal fully
exploits the frequency band up to the limit of diffraction.

C. Lower Bound Estimation—Exploring the Detailed Structure
of the Pattern

In this section, we derive a lower bound on the estimation
error for locating a known one dimensional pattern gg. Unlike
the previous section, this time we wish to get an expression for
the Cramer—Rao bound for a known pattern, in order to gain
some intuition on how optimal patterns should look like.

From (2) and (3), the observed signal f(x) is given by

f(x) = ((g0 + ns) xh) + ne
=goxh+ (nsxh+n)=goxh+n 5)

where n = ng * h+ n is an overall noise added to the designed
pattern go. We assume that A is a gaussian point spread function
(PSF), with standard deviation of o; and n(x) ~ N(0,0,) is a
zero-mean white Gaussian noise.

Our measurement vector, M = { M, & } is constructed by sam-
pling the f(z) on a uniform pixel grid. We assume that the first
sample, Mg, has an offset of 6 from the origin.

Since M consists of statistically independent, due to the
whiteness of the noise, measurements M, 1, and since the addi-
tive noise is Gaussian, we can write the probability function as

p{—ﬁ > () - Mk<e>>2}
. ©

where N is the number of measurements (pixels), and M, is the
set of samples of gg * h, taken at the same positions as M;,.

For convenience we use another form of the (scalar)
Cramer—Rao bound [8], [5]:

o 1
M6 = ——n X
pU0) = s

var(f) > 171(8) (7

where I(f) is the (scalar) Fisher information matrix

062

16) = —B [821np(M|9)] |
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For our Gaussian case, using (0) it is easy to derive that

1 & (o)
10)=252 | o
" k=1

1 & > T z?
- a—;(—/m Varo? GXP{‘R}
2
<ok + 0 — ) dx) (®)

where 0 < # < 1. Notice that the Fisher information term, and
therefore the Cramer—Rao bound depend on 6.

Sometimes, more intuition regarding the properties of the pat-
tern go(x) can be gained from the following way to rewrite of
the Fisher information expression in (8)

.Z‘lfl,‘z ex $1 +$2
202 06 20

Z go(k + 0 —2x1)go(k + 0 — 22) dxy das.
k=1

By limiting our discussion to binary input patterns, we can
obtain even simpler expression for the Cramer—Rao bound. As-
suming the pattern go(z) is composed of B rectangular blocks,
whose left end right edges coordinates are {({;,r;)[i = 1... B},
the smoothed signal go(z, ) * h,, (2) can be easily computed
using the erf function as

=33 (s (22)

li+60—=x
A

go(z,0) * hy, (z

)

where

erf(z

=l

Then the Fisher information vector will be given by

sl

" k=1

N B

(g +o L)Q _(it0—k)?
D D) Bl () AT
27r05 T g=1i=1

D. Design of an Optimal Pattern Go(X)

In [2](see also [3]) Bruckstein ef al. showed how to design
a overlay mark pattern of N pixels that achieves an estimation
of the position with exponential lower bound €2(2~) accuracy.
Optimality of this pattern was shown in the sense of information
theory. Unfortunately, in our model that uses the Cramer—Rao

bound as optimality criteria, and includes PSF smoothing of the
pattern and additive Gaussian noise, the BO&O overlay mark
designed in [2] is not optimal.

The information theory approach in [2] uses the actual values
of the pattern, i.e., zeros and ones. For every additional pixel, the
uncertainty of the estimation that was achieved with the previous
pixels is improved by a factor of two as the pattern is designed
so that the last pixel has a value of “0” for half of the uncer-
tainty area and a value of “1” for the other half. The Cramer—Rao
bound on the other hand uses the changes in the pattern, i.e., its
derivative. This means that the optimal pattern should have high
derivative for all values of #(0 < # < 1). The BO&O pattern
of [2] is not optimal in the Cramer—Rao bound sense because of
two main reasons: first, for the lower frequency part of the pat-
tern, the derivative of the pattern is zero over a large “wasted”
areas. Second, for the high frequency part, the changes in the
pattern are too dense and will be completely smoothed out by
the imaging PSF.

1) Designing an Offset Invariant Bound Pattern: As we
have already mentioned, the Cramer—Rao bound is not a scalar
(number), but rather a function of the offset . Hence the same
pattern that undergoes different transformations (translations)
yields different Cramer—Rao lower bounds for the different
values of the transformation parameters. Therefore we would
be interested in an integral measure that guarantees that for any
transformation, i.e., for all the possible range of translations,
we would be able to recover the transformation parameters
with high accuracy.

This implies that the pattern is to be designed in such a way
that its derivatives are as large as possible over all the x-support
of the pattern (other than a small number of points where the
derivative must change sign). Shih and Yu [13] deal with similar
problem for the case of continuous value signal by solving the
Cramer—Rao minimization problem using quadratic program-
ming. In our case of binary signal the optimality is achieved by
using a rectangular pulse signal where the distance between the
pulses is 6 = 40,. This distance brings adjacent pulses in the
smoothed pattern to touch each other at points where they reach
ZEero.

In order to maximize the minimum of the Fisher information
over all the possible # values, we shall need to distribute the
binary blocks edges as evenly as possible.

2) Uniform Fractional Parts Distribution: The problem of
even distribution of binary blocks over a given interval can be
formulated in the following way: Given a constant 6, place a
maximal possible number of points within an interval of length
T,{X;;0 < X; < T,Vi}, in such a way that the minimal dis-
tance between adjacent points is greater than ¢, and the frac-
tional parts of the points coordinates { X; — | X; | } are uniformly
distributed in the interval [0, 1].

By uniform distribution, we mean that if the number of points
is M, their fractional parts should be 1/M apart from each other.

Without loss of generality we can place the first point at po-
sition zero. Indeed, if there exists a better mapping that starts
from another position A, we can always shift all the points to the
left by A thus retaining the same number of points and not dis-
turbing the uniform distribution of the fractional parts of points
coordinates.
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Fig. 4. Fractional parts distribution on unit circle.

If the minimal distance between the adjacent points is ¢, then
the maximal number of points that can be placed within the
interval of length T is M = |T'/6§] + 1. Following our definition
of uniformity, the fractional parts of points positions should be
7 = 1/M apart from each other.

We suggest the following greedy algorithm for choosing M
points in the interval [0, T'] such that their fractional parts cover
the set {0,7,27,...,(M — 1)n} and the points are at least &
apart from each other.

The algorithm:

1) Set Points = {0}
Set UsedFractions = )
2) Repeat M — 1 times (steps 3—6)
3) Advance 6
4) Advance to the nearest position P.,;, whose fractional
part feur = Peur — | Peur| is @ multiple of 1 and feu, ¢
UsedFractions.
5) Points = Points | J P..;
6) UsedFractions = UsedFractions | J feur
Let us analyze the performance of the algorithm above and
check whether it can really place M points as required.
We denote the fractional part of the § by €,i.e.,e = § — | §].
Advancing by 6 from the first point placed at 0 position brings
us, in general, to a position, whose factional part is not a multiple
of 7. To get to the nearest multiple of  we have to skip an
interval of length v = [e/n]n — € (see Fig. 4). This situation
emerges every time we advance by a step of size ¢ from a point
aligned to an n-multiple fraction. Hence, the overhead of this
n-alignment integrated for M points is bounded by

(M -1y <Mn<l.

Now let us estimate the overhead of the search for the position
with fractional part that has not been visited yet. As we limit
ourselves to fixed positions on the unit circle—the multiples
of n»—we can now switch to the discrete domain and express

everything in terms of steps of size 7 on the unit circle. Let K
be the number of 7) steps traversed on unit circle when advancing
by & + v on the interval. The K is given by
K=1le/n], 0SK<M.

For the example depicted in Fig. 4, the K = 3. Let G =
gcd(K, M). Then by advancing every time by (6 + /) we visit
M /G n-aligned locations on unit circle before returning to 0.
Ideally, when the K and M are co-prime numbers all M — 1
fractions will be visited before returning to O position on unit
circle, thus yielding a valid placement of M points with zero
overhead (besides the (M — 1) mentioned above). In general
case, for G # 1, every time we return to a position that has al-
ready been visited, one n-step is to be skipped in order to switch
to another fractions chain of length M /G. Clearly, there will be
G — 1 such chains, which means that the overhead is given by
(G —1)n < Mn < 1. Thus, the total overhead of the algorithm
is

(M-1)v+(G-1)n<2

Therefore, the guaranteed lower bound on the number of
points that can be placed by the algorithm within the interval of
length T is given by

M = {—T;2J+1

and the actual maximal number of points can be found as

M* = max{m|M' <m < M,(m —1)§
+(m—-1v+(G-1)n<T}.

E. The Dense Pattern

Using the binary blocks positions obtained by the algorithm
described above we can build an optimal pattern of any length
for any given value of 0.

Fig. 5 shows a comparative analysis of the newly designed
“Dense Pattern” and the BO&O patterns. The left part of the
figure shows the BO&O pattern and the right part shows the
dense pattern. The original signal, the blurred signal, the blurred
signal derivative and the Cramer—Rao bound are shown from top
to bottom. Notice that for the BO&O pattern the Cramer—Rao
lower bound is different for different values of €, while for the
dense pattern the bound is much lower and almost indepen-
dent of the offset. Fig. 6 presents the simulation results con-
firming the theoretical bounds. The simulation was performed
by shifting the patterns by various offsets from the interval [0,
1], adding Gaussian noise and looking for maximal correlation
score with the original signal. For every offset the experiment
was performed 100 times and the average estimation error is
calculated. Both BO&O and the dense patterns are of the same
length T" = 100 pixels, the noise variance is o,, = 0.01, and the
PSF variance o5 = 0.5. As predicted, the dense pattern yields
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Fig. 5. BO&O and dense (optimal) overlay mark for eight pixels. First row: Original signals. Second row: Blurred signals. Third row: Derivatives. Fourth row:

Cramer—Rao bound.
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Fig. 6. Position estimation error for BO&O—solid line, and dense (optimal) pattern—dotted line.

lower estimation error, which is more uniformly distributed over
the offset range.

III. EXPERIMENT: GRATING MARK—A NEW OPTIMIZED
OVERLAY MARK

Motivated by the theoretical results presented above we de-
signed and tested a new family of overlay marks—the grating
marks.

Based on the same general principals as the optimal dense
pattern described above, grating marks however differ in the
following aspects:

* Grating marks, unlike the dense pattern, are periodic. This
significantly simplifies the manufacturing process and it
turns out that, at the current level of technology, the im-
provement achieved by uniform edge placement of the
dense pattern is negligible compared to other sources of
erTor.
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Fig. 7.

~1 micron

Fig. 8. Zoom to one grating mark octant. It is built of periodic series of lines.

* Grating marks, very much like the BO&O overlay mark,
are designed as a multiscale structures. This facilitates ap-
plication of multiresolution algorithms for faster pattern
registration and position disambiguation (anti-aliasing).

In Fig. 7, a grating mark is shown schematically. Similarly
to conventional BiB marks, the grating mark consists of inner
(grey) and outer (black) structures printed on top and bottom
layer. Each of these structures is symmetric with respect to 90°
rotation. The grating mark consists of eight octants (four “grey”
and four “black™) and fills an area of L. x L, where L is the
“grating mark size”. Unlike conventional BiB marks, grating
marks do not require any exclusion zone around them, i.e., any
other structures can be printed in the immediate vicinity of the
grating marks. Grating marks are comprised of structures at
three scales of design:

* On the largest scale (of the order L) the grating mark
consists of two layers (“grey” or “inner” and “black” or
“outer”) and eight octants. At this scale the grating mark
is characterized by its size L, inner and outer layers, and
grating mark chirality. There are two possible chiralities
of the grating marks: clockwise (CW)—as shown in Fig.
7(a), and counterclockwise (CCW)—see Fig. 7(b).

* On the next spatial scale (termed the “metrology interac-
tion scale”) one can see that each octant comprises a pe-
riodic series of lines and spaces with a characteristic scale
about 1 pum (see Fig. 8). This enhances information con-
tent and enables new image processing techniques due to

(b)

Grating marks (schematically): (a) clockwise (CW) and (b) counterclockwise (CCW).

~0.1 mlcron

Fig. 9. Zoom to two “coarse” lines from the previous figure. Such “coarse”
lines may be finely segmented.

the periodicity of the signal. This concept of a periodic
mark is conceptually different from the conventional BiB
approach. At this scale grating mark is characterized by
pitch (i.e., period of the line series) and duty cycle (or
line-to-period ratio).

Finally, on the third spatial scale (termed “lithography in-
teraction scale”), when we zoom in to a single line from
Fig. 8, it appears that this line is finely segmented (with
the design rule line and space pattern; see Fig. 9). This
fine segmentation is typically below the optical resolu-
tion limit of the optical metrology tool, and therefore only
the “coarse” lines create contrast in the acquired image.
However, solid and finely segmented “coarse” lines are
known to behave differently both lithographically and in
process-related areas. At this scale, the grating mark is
characterized by the fine segmentation pattern chosen.

L]

A. Grating Mark Overlay Measurement

Similarly to the conventional BiB, the overlay of the grating
mark is calculated as a misregistration between the centers of
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Fig. 10. Dynamic precision of grating marks as function of the area of the ROIs.

symmetry of the inner (“grey”) and outer (“black”) patterns. An
optimized measurement algorithm may be designed to utilize
the pre-defined periodic nature of the grating mark patterns.

B. Improved Dynamic Precision of the Grating Mark

Contrary to conventional BiB marks, grating marks utilize the
majority of the mark area for the overlay measurement. Thus
information content of the grating mark is significantly higher
than that of BiB marks. This increased information content re-
sults in improved dynamic precision and overlay mark fidelity.

In the experimental verification of the theory, we present re-
sults of measurements performed on two nonsegmented (NS)
grating marks with two different grating periods (pitches). We
have measured these marks in 10 dynamic loops and calculated
dynamic precision as a function of the area of the mark utilized
for the overlay calculation. We varied the width (T°) and length
(L) in a way preserving the same proportion 7'/ L, and observed
the dynamic precision of the overlay measurements as a func-
tion of T'.

Fig. 10 shows graphs of the precision in X and Y directions,
for grating marks with pitches of 2400 and 1500 nm. Included
are best-fit power law curves of the graphs. It is observed that
the experimental data closely follow a hyperbolic relationship
between precision and mark area. This is in a good agreement
with theory.

The theory provides a lower bound for precision, assuming
the maximal effective bandwidth, but it does not give the pitch
dependence. The better precision of the 1500-nm pitch mark
relative to the 2400-nm pitch mark is in a qualitative agreement
with the theory, indicating that the precision improves with the
spatial frequency of the grating.

In addition we have performed extensive measurements of
the dynamic precision on many different (both conventional BiB
and new grating) marks on various layers and wafers, run under
different process conditions. Wafers were run in three different

semiconductor manufacturing fabs, identified as Fabl, Fab2 and
Fab3, on four different processes described as follows.

» Poly/Active: the first patterning step was an active layer,
followed by STI processing and an oxide CMP step. This
was followed by a gate oxide process and polysilicon de-
position. The second patterning step was at Poly.

* Etched Si: this process is a simplified version of the same
sequence of patterning as above. Silicon was etched with
the Active pattern. Then a layer of photoresist was spun
over etched Silicon and patterned with the Poly reticle.

* Via/Metal: the first patterning step was on a dielectric
stack and was processed as a Cu single-damascene metal
layer. This was followed by Cu-CMP and deposition of an
intermetallic dielectric stack. The second patterning step
was at Via.

* Metal/Via: On a dielectric stack intended for Cu-dual
damscene, the first patterning step was via. After via etch,
photoresist was spun on the same stack and patterned
with Metal trenches.

Fig. 11 summarizes dynamic precision performance of the
grating overlay marks comparatively to conventional BiB. Non-
segmented and design rule segmented marks are grouped sepa-
rately.

C. Improved Overlay Mark Fidelity (OMF) of the
Grating Mark

In order to verify the anticipated reduction in spatial noise,
we have measured an array of closely printed identical overlay
marks (both BiB and grating marks). All the marks were mea-
sured 10 times in a dynamic loop to separate spatial noise from
temporal noise. Fig. 12 shows the dependence of the overlay
mark fidelity (OMF; which is experimental measure of spatial
noise) on the area of the ROIs.

It can be seen that the graphs do not behave as hyperbolas. By
increasing the kernel size we improve OMF up to some limit
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Fig. 12. OMF of grating marks as function of the area of the ROIs.

(around 4 microns). Beyond this point OMF nearly saturates.
This is believed to indicate that spatial noise does not behave as
white noise. There are several possible explanations for this hy-
pothesis. Firstly, there are some systematic errors such as reticle
errors, which are different from one mark to another, which do
however repeat themselves field to field over the wafer [1]. Fur-
thermore, there are some frequency dependent sources of spatial
noise due to the nature of wafer processing. Fig. 13 presents the
summary of the OMF results of measurements made on many
different (both conventional BiB and new grating) marks on var-
ious layers and wafers.

Although OMF is an effective metric to estimate the impact
of process noise on the metrology uncertainty, there are addi-

tional factors that influence overlay metrology performance
which should be mentioned. The impact of film stack thickness
and composition on overlay metrology performance is twofold.
Firstly, they are the key factors determining image contrast. Al-
though there is no fundamental difference in the physics which
determines the contrast in images of isolated (BiB like) versus
grating structures, as discussed above, multiple edges increase
information content and reduce the contrast threshold above
which minimum metrology performance is achieved. Secondly,
significant topographical differences between process layers
may impact metrology tool performance. In this area, no
significant differences in performance were detected between
BiB and grating targets in the current study.
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pattern.

D. Grating Versus Dense Patterns—Simulation this question by running a simulation as described in Section
II-E. Fig. 14 presents the general form of the tested patterns: the

Finally, let us look once again at the optimal dense pattern 1-D BiB pattern, three grating patterns and the dense optimal
and estimate its advantage over the suboptimal grating patterns.  pattern. Three grating patterns were tested using two different
Since we do not have a real dense pattern, we may try to answer low pitches: 1500 and 2400 nm. The high pitch was 300 nm
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Fig. 15. Average position estimation error for BiB pattern, three grating patterns with low pitch 1500- and 2400-nm and the dense (optimal) pattern.

in both cases. The simulation was performed in a 100 pixels
window, where the pixel size is assumed to be 80 nm.

Simulation results are shown in Fig. 15. One can see that the
dense pattern indeed achieves the best accuracy results and the
error is approximately the same for the whole range of possible
offsets. Another observation is that the precision achieved by
the segmented grating mark is very close to that of the dense
pattern.

IV. CONCLUDING REMARKS

In this paper, we conduct a thorough analysis of patterns
used for overlay metrology and establish the dependence
between various pattern properties and the expected dynamic
precision and fidelity of the measurements. We show how the
Cramer—Rao lower bound on the estimation error can be found
for a given pattern.

We formulate a criteria for the offset invariant bound pattern
and develop a uniform fractional parts distribution algorithm,
which can be used to design an optimal pattern in a minimal
Cramer—Rao lower bound sense. We suggest such an optimal
design—the dense pattern—and provide a comparative, simu-
lation based performance analysis with the commonly accepted
BiB mark.

We then present a new family of overlay mark patterns—the
grating marks and provide a detailed analysis of their properties
based on real measurements. The measured dynamic precision
and overlay mark fidelity of the new grating marks are close
to the theoretically predicted values and demonstrate the supe-
riority of the new overlay mark family over the existing BiB

marks. The measurements performed using a computer simula-
tion also show that the grating marks have performance close to
that of the optimal dense patterns.
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