
J Math Imaging Vis (2010) 37: 183–203
DOI 10.1007/s10851-010-0201-y

On Variational Curve Smoothing and Reconstruction

Yu Wang · Desheng Wang · A.M. Bruckstein

Published online: 15 April 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper we discuss and experimentally com-
pare variational methods for curve denoising, curve smooth-
ing and curve reconstruction problems. The methods are
based on defining suitable cost functionals to be minimized,
the cost being the combination of a fidelity term measuring
the “distance” of a curve from the data and a smoothness
term measuring the curve’s L1-norm or length.

Keywords Curve smoothing · Curve reconstruction ·
Variational methods · Level sets · Graph-cuts · Corner
detection

1 Introduction

Curve smoothing is an interesting problem from both prac-
tical and theoretical views. It is a popular pre-processing

Professor A.M. Bruckstein’s work was supported in part by an NTU
joint visiting professorship at the School of Physical and
Mathematical Sciences and the Institute for Media Innovations.
The work is supported in part by the NTU start-up grant M58110011,
Singapore MOE ARC 29/07 T207B2202 and NRF 2007IDM-IDM
002-010.

Y. Wang · D. Wang
Division of Mathematical Sciences, School of Physical and
Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

Y. Wang
e-mail: wang0312@ntu.edu.sg

D. Wang
e-mail: desheng@ntu.edu.sg

A.M. Bruckstein (�)
Department of Computer Science, Technion IIT, Haifa, Israel
e-mail: freddy@cs.technion.ac.il

and post-processing step in addressing various computer vi-
sion problems. As an example, following segmentation ob-
ject boundaries have many zigzags and to do further analysis
the curve must be smoothed. Another important and related
problem is curve reconstruction from an unorganized set of
data points. Figure 1 is an illustration of these two prob-
lems.

Surface reconstruction problems from 3D points or noisy
3D triangulated surfaces received a lot of attention from the
computer graphics and CAD communities due to the im-
portance of this problem in an era when 3D scanners are
commonly used by various industries. Therefore many of
the issues discussed in this paper have been the subject of
intense investigation in the important context of surface fit-
ting, reconstruction and smoothing. For example, Hornung
and Kobbelt [15] proposed to perform surface reconstruc-
tion based on a variational functional that measures the sur-
face fit to the data by integrating a distance function to
the given 3D point set. This is, of course, a Geodesic Ac-
tive Surface functional [8, 9, 35]. By minimizing a func-
tional with TV regularization and L1 data fidelity, Zach et
al. [33] presented an approach to reconstruct 3D models

Fig. 1 Curve smoothing and reconstruction

mailto:wang0312@ntu.edu.sg
mailto:desheng@ntu.edu.sg
mailto:freddy@cs.technion.ac.il

184 J Math Imaging Vis (2010) 37: 183–203

from range images. Lempitsky and Boykov in [22] proposed
a so-called “touch-expand” graph-cuts algorithm to surface
fitting. Combining flux with a regularization term, an idea
developed in [19, 20] enabled their method to reconstruct
fine details by graph-cuts. The above-mentioned, and many
more papers that deal with surface smoothing and recon-
struction proposed a wealth of ideas aimed to solve diffi-
cult topological and geometric issues that arise in 3D. These
works might be regarded as 3D generalizations of the issues
we deal with in this paper and hence one might argue that
the simpler 2D problems have already been dealt with, as
particular cases of 3D problems. While this might be true in
some instances, the 3D studies necessarily address a wealth
of issues that cannot arise in 2D, and hence we should be
able to do more in the planar case by carefully considering
the simpler geometry and fully exploiting it. Furthermore
we can readily test new ideas in the 2D case and sometimes
export them to the higher dimensional cases. In our view,
this paper servers a dual purpose: it is a survey of ideas on
variational methods in the context of curve smoothing and
reconstruction and a showcase of experimental tests explor-
ing some new ideas that involve combination of function-
als and data adaptive selection of weighting parameters in
a context where the results can be readily obtained and as-
sessed.

To address curve smoothing and curve reconstruction
problems in a variational framework we define “distance”
functionals that measure the similarity of curves from raw
data of curves or from sets of points. Several options are
available, the most natural one, in our opinion, being based
on the definition of a “distance field” based on the data and
integrating the field intensity along the curve. Other options
could involve the Hausdorff distance between the geomet-
ric objects of interest or Frechet distances, but these are
much harder to deal with. The “distance field” approach is
also better suited at incorporating various types of weighting
functions with adaptive distances that may take into consid-
eration knowledge of spatially varying and data dependent
noise (see e.g. heteroscedastic problems [18]).

Using distance functions to measure similarity to data is
not a new idea. The idea appears in various papers that deal
with image segmentation of edge integration [5, 8, 9, 16,
17, 23, 32] or in using shape priors for object detection and
tracking [10, 25]. The distance functions defined in image
analysis measured distances to edge regions or high gra-
dient points and were often used to define metrics implic-
itly based on the 2D image analyzed. We shall here also
consider an alternative approach which represents closed
curves via inside-outside indicator functions and measures
distance between curves by integrating functionals mea-
suring the area of “symmetric differences” based on such
indicator functions, see e.g. [7]. These different similarity
measures yield different functionals whose details will be

discussed in Sect. 2. As an addition to the basic “similarity
to data” term we must add to our functional a smoothing
term, which, following [27], will be the total variation of the
curve. Geometrically, this quantity turns out to simply be the
curve’s length.

We shall analyze methods for planar curve smoothing
and reconstruction, both in order to assess the properties
of such variational methods in the basic and relatively
simple 2D case, which has many practical applications
(post-processing segmentation results, and various geomet-
ric problems like determining the minimal length curves
contained in a band) and test new ideas that might be ben-
eficial for all the other applications in 3D and even video
processing. Our work tests two important functionals and
the combination of these functionals and thoroughly com-
pares the basic numerical implementations in these funda-
mental 2D problems—something that to the best of our
knowledge was not done before.

To carry out the minimization, level set methods are com-
monly considered. However, level set methods have some
well documented problems, such as converging to local min-
ima and long iteration times. To address such problems
one may use narrow-band algorithms and design an adap-
tive method to save the computational cost [30]. Another
popular choice is the use of “graph-cuts based” methods.
This approach, based on min-cut/max-flow algorithms, has
the merit that global minima are efficiently attained. In this
paper we apply graph cuts on both symmetric-difference
based and on distance-field based measures and compare the
results with the level-set implementation. For symmetric-
differences-based functionals the graph cuts approach is
generally faster than the standard level set implementa-
tion. When the graph-cuts method is used in conjunction
with the active contour model, narrow-band implementa-
tions are commonly used to effectively eliminate the trivial
global minima and reduce computational cost. As a mat-
ter of fact, the narrow-band implementation is equivalent
to solving a modified active contour model, which prof-
itably combines the merits of symmetric-difference-based
and distance-function-based measures. Moreover, instead of
using uniform relative weight parameters, data dependent
parameters are proposed, which thereby enable the method
to preserve corners.

This paper is organized as follows. In Sect. 2 we in-
troduce functionals for curve smoothing and reconstruction
problems. In Sect. 3 we briefly review the level set imple-
mentation and related numerical schemes. In Sect. 4, we
discuss the implementation of graph-cuts method and a de-
scription of the graph construction is briefly revised. The
implementation details are presented in Sect. 5. In Sect. 6,
we discuss the curve reconstruction application and its main
challenges. In Sect. 7 several variations and many examples
are presented. Then some concluding remarks are made in
Sect. 8.

J Math Imaging Vis (2010) 37: 183–203 185

2 The Curve Smoothing and Reconstruction
Functionals

The Rudin-Osher-Fatemi approach for signal and image de-
noising has had great success in recent years [27]. This de-
noising framework can be readily adapted to different situa-
tions. A particularly interesting scenario is curve, as opposed
to function, smoothing: the noise is assumed to be a pertur-
bation of some smooth underlying curve and the user might
be interested in smoothing out the rough curve. Another in-
teresting problem is curve reconstruction which addresses
the issue of reconstructing a curve from a set of unordered
sample points without any prior knowledge except the fact
that the points are noisy samples of a curve. These two prob-
lems are closely related and in this paper we treat them as
different instances of the same variational formalism.

The standard ROF approach to denoising is: given a noisy
function f we seek a smooth version u by minimizing the
cost functional

EROF(u,λ) =
∫

R2
|∇u|dxdy + λ

∫
R2

(u − f)2dxdy

where λ > 0 is a relative weight parameter to be selected.
In this functional, the first term measures the smoothness of
the solution, while the second term represents the similar-
ity between given data and the solution. Following this idea,
all curve denoising functionals will comprise the same ba-
sic components. As mentioned in [7], the area of symmetric
difference of the indicator functions defined by the simple
closed curves can also be used to measure the distance be-
tween two curves. This functional is

E1(C,λ) =
∫

Ω

|∇1C |dΩ + λ

∫
Ω

|1C − 1C0 |dΩ (1)

where Ω is the region of interest, and 1C and 1C0 are the
indicator functions of two curves, C0 the given one and
C the smoothed curve we seek. In this case, the second
term is exactly the difference of the area enclosed “be-
tween” two curves while the first term is the perimeter of
the smoothed curve we seek. The merit of this functional
is that the optimal curves are global minimizers of the E1.
As mentioned in the Introduction, this functional has been
adopted in various applications, such as reconstructing 3D
model from range images [33]. In fact, the indicator func-
tions of the solution curve and the given curve in (1) can be
replaced by signed distance functions as well [30], which
is convenient for level-set implementation. However, this
functional is not readily adapted to the problem of curve
or surface reconstruction from point clouds, in which case
indicating all interior and exterior points based on a non-
existent curve or surface (an object that is being sought
by us) is essentially impossible. Therefore, an ideal func-
tional that can handle these problems should rely only on

the data points and/or on the induced topological informa-
tion.

Provided that we represent a curve as a level-set of a
bivariate function, and in particular via the distance func-
tion induced by itself in the plane, the distance between two
curves can be written in the form,

dist(C0,C) =
∮

ϕ0(C(τ))|Cτ |dτ +
∮

ϕ(C0(τ))|C0
τ |dτ

where ϕ0 is the distance function to a given “data” curve
C0(τ) and ϕ is the distance function to the expected smooth
“output” curve C(τ). Considering only the first part of this
distance measuring the closeness of C(τ) to C0(τ) via its
induced distance field ϕ0, we get the following functional

distC0(C) =
∫ 1

0
ϕ0(C(τ))|Cτ |dτ.

Adding to the distance to C0 a functional measuring the L1

norm of the curve, i.e.
∫ |Cτ |dτ (which is the curve length)

yields

E2(C,α,β) =
∫ 1

0
(α + βϕ0(C(τ)))|Cτ |dτ (2)

where α,β are parameters (constants or functions) to be se-
lected. This functional is formally identical to the geodesic
active contours model, the main problem of which is that
global minimizers are isolated points trivial in most applica-
tions, the meaningful solutions corresponding to local min-
imizers. This is not a big problem for PDE-based methods
which always converge to a local minimizer near properly
selected initial solution, but would be a disaster for straight-
forward graph-cuts implementations which always yield the
global minimizers.

It is interesting to note that, like in the image segmenta-
tion problem, for simply closed curve smoothing we have
here two types of methods: some using a “region based”
functional as given by (1); and others “edge based” func-
tionals, as exemplified by (2). The fact that each of them
has advantages and drawback leads to the natural idea of
combining them together so as to combine the advantages
of both functionals and jointly avoid their drawbacks. This
leads to the consideration of

E3(C,α,β,λ) =
∮

C

αds +
∫

Ω

λ|1C − 1data|dΩ

+
∮

C

βϕ0(C)ds,

where 1data is the indicator function of the data set. It is
worth pointing out that for curve smoothing problem 1data is
just the indicator function of the given curve C0, and for the
curve reconstruction problem the way of defining it depends
on the determination of a narrow band containing the data

186 J Math Imaging Vis (2010) 37: 183–203

points whose details will be given in Sect. 6. Changing the
line integral to area integral, we get

E3(C,α,β,λ) =
∫

Ω

(
α + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λ|1C − 1data|dΩ. (3)

If λ = 0, above functional becomes the one used in [15, 32].
When λ = const and β = 0, it turns out to be the functional
used in [33]. If λ has the form

λ(x) =
{

0 if ϕ0(x) ≤ c,

∞ if ϕ0(x) > c,

where c is a constant, (3) becomes the functional involved
in the narrow-band implementation of the graph-cuts-based-
method [15, 32]. It can be seen that various modifications
can be incorporated in the functional (3), each of them just
corresponding to a certain confidence function λ(x), which
“encodes” that to what extent we rely on the data-induced
topological information. On the other hand, the different
choices of the λ(x) may result in different global minima
for the same problem, e.g. the width of the “narrowband”
will affect the final reconstruction result. Moreover, α,β,λ

could be functions depending on the data curve. For exam-
ple, the curves obtained by minimizing functional E3 may
lose meaningful corners. It hence would be natural to use
a large similarity parameter in a corner region and small
one elsewhere to remedy this problem. Therefore, a simple
choice is to let the similarity parameter or regularity para-
meter depend on certain “cornerness” measures of the data
curve, e.g. a function of the local averaged curvature. Here,
the functional would be

E4(C) =
∫

Ω

(
αdata(x) + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λdata(x)|1C − 1data|dΩ.

By proper choice of the weight functions αdata(x) and
λdata(x), it will then be possible to preserve important fea-
tures of curves. In Sect. 5, some such choices are discussed
and implementation details are given and the corresponding
experiments are shown in Sect. 7.

Standard level set methods can be applied to all function-
als. In the next section we shall briefly discuss the possibil-
ity of various level-set implementations and for simplicity
we shall assume a constant relative weight parameter.

3 Level-Set-Methods for Functional Minimization

We shall here briefly review the level set method imple-
mentation of the functional (1) and (2), and refer to [7] and

[5] for more details. Let φ be the indicator function of the
curve we seek and ϕ be the indicator function of the given
curve. Then, the minimization flow corresponding to func-
tional (1):

∂φ

∂t
= div

(∇φ

|∇φ|
)

− λ
φ − ϕ

|φ − ϕ| .

The evolution equation can be discretized with the straight-
forward explicit finite difference scheme:

φn+1 − φn

δt
= D−

x F+,n
x + D−

y F+,n
y − λ

φn − ϕn√
(φn − ϕn)2 + ε

(4)

where

D−
x = φi,j − φi,j−1

dx
, D+

x = φi,j+1 − φi,j

dx
,

D−
y = φi,j − φi−1j

dy
, D+

y = φi+1,j − φi,j

dy
,

F±,n
x = D±

x φn√
(D±

x φn)2 + (D±
y φn)2 + ε

,

F±,n
y = D±

y φn

√
(D±

x φn)2 + (D±
y φn)2 + ε

,

and ε is a very small constant usually set to be 1e − 10.
It is worth mentioning that due to the CFL condition, ex-
plicit finite difference schemes always suffer from restric-
tively short time steps. step in (4) is at least of order
min((dx)2, (dy)2). That means this algorithm’s complex-
ity is of order almost O(N3), where N is the number of
grids points. More efficient numerical schemes such as AOS,
primal-dual model of the TV-norm can, of course, can be
used. A comprehensive discussion is beyond the scope of
this paper. For details see [6, 16, 17, 21].

For the functional (2), the corresponding Euler-Lagrange
equation is:

(λ〈∇ϕ0,Nc〉 − (λϕ0 + 1)κc) = 0

where the Nc is the unit normal of the curve and κc

is the curvature (mean curvature for surface). Let v =
−λ〈∇ϕ0,Nc〉 + (λϕ0 + 1)κc , therefore the curve should
evolve according to

∂C(τ, t)

∂t
= vNc.

By means of level-sets function [24] language, Nc = − ∇φ
|∇φ| ,

κc = div(
∇φ
|∇φ|) where φ is the level set function of the curve

C, and above equation can be rewritten as

J Math Imaging Vis (2010) 37: 183–203 187

φt = v|∇φ|
= (λϕ0 + 1)|∇φ|div

(∇φ

|∇φ|
)

+ λ∇ϕ0 · ∇φ.

To discretize the convection term ∇ϕ0 · ∇φ the upwind
scheme is needed,

Kn = max(D+
x ϕ0,0)D−

x φn + min(D+
x ϕ0,0)D+

x φn

+ max(D+
y ϕ0,0)D−

y φn + min(D+
y ϕ0,0)D+

y φn

and the nonlinear diffusion term |∇φ|div(
∇φ
|∇φ|) can be ap-

proximated by central finite difference scheme,

√
(D0

x)
2 + (D0

y)
2(D−

x F+,n
x + D−

y F+,n
y),

where D0
x = φi,j+1−φi,j−1

2dx
,D0

y = φi+1,j −φi−1j

2dy
. Again combin-

ing with forward time divided difference the finite difference
scheme for the functional (2) reads:

φn+1 − φn

δt
= (λϕ0 + 1)

√
(D0

x)
2 + (D0

y)
2

× (D−
x F+,n

x + D−
y F+,n

y) + λKn. (5)

The CFL time step restriction of above scheme is also of or-
der min((dx)2, (dy)2). We need point out that both schemes
(4) and (5) are the first order in time. Although higher or-
der schemes such as TVD RK [28, 29] methods exist, the
improved temporal accuracy does not seem to make a sig-
nificant difference in our application.

Due to the non-convexity of the energy functional, GAC
models may get stuck at local minima and hence GAC is
highly sensitive to the initial condition. Evidently the global
minima for the GAC model corresponds to single points
which make no sense for our applications. However, there
are many good fixes to this problem. The graph cuts method
overcomes this problem with minor modifications. Func-
tional (3) will overcome the drawback of GAC functional
and its level set implementation is the combination of the
scheme (4) and (5) [30]. We shall next discuss the graph-
cuts implementation for functional (1), (2) and their combi-
nation (3).

4 Graph-Cuts for Global Minimization

In this section, a description of how to construct a graph
where each cut represents a state of energy functional will
be given.

Suppose G = (V ,E) is a directed graph with nonnegative
edge weights that has two special vertices (called terminals),
namely, a source s and a sink t . An s-t-cut C = {S,T } is a
partition of the vertices in V into two disjoint sets S and T

such that s ∈ S and t ∈ T . The cost of the cut is the sum of
costs of all edges that go from S to T :

c(S,T) =
∑

u∈S,v∈T ,(u,v)∈E

c(u, v).

The minimum s-t-cut problem is to find a cut C with the
smallest cost. Due to the theorem of Ford and Fulkerson
this is equivalent to computing the maximum flow from the
source to sink. Note that a cut is a binary partition of the
graph and may be viewed as a labeling. Actually our prob-
lem can be thought of as a binary partition problem as well.
This can be easily seen from the functional (1) in which the
curve is identified by the inside-outside indicator. Thus, to
find a solution is equivalent to seek a partition of the graph
nodes which represents the inside-outside indicator of the
optimal curve. Using Cauchy-Crofton formula, it is also pos-
sible to translate GAC model to a binary problem, as shown
in [3]. It is to be noted that this approach necessarily intro-
duces some metrication errors of the magnitude of the or-
der of grid size that will, however, not bother us too much.
Therefore our aim is to construct the graph whose mini-
mum cut or partition is the minimizer of the energy func-
tional.

Let us consider a graph G = (V ,E) with V =
{v1, v2, . . . , vN , s, t}. Each cut on G has some cost; there-
fore, G represents the energy function mapping from all cuts
on G to the set of nonnegative real numbers. Any cut can
be described by n binary variables x1, . . . , xn correspond-
ing to vertices in G (excluding the source and the sink):
xi = 0 when vi ∈ S and xi = 1 when vi ∈ T . Therefore,
the energy functional which G represents can be viewed
as a function of n binary variables: E(x1, . . . , xn) which
is equal to the cost of the cut defined by the configuration
x1, . . . , xn(xi ∈ {0,1}).

4.1 Graph Construction of Energy Functional

Normally, there are two types of edges in the graph: N-links
and T-links. N-links connect neighboring nodes; T-links
connect nodes with terminals. In this subsection we shall
state how to use these two kinds of links to represent energy
functional. Assume our energy functional has the following
form as in [19, 20],

E(x1, x2, . . . , xn) =
∑

i

Ei(xi) +
∑
i,j

Ei,j (xi, xj).

The term Ei corresponds to similarity term or T-link. For
instance, in the functional (1) after discretizing similarity in-
tegration by summation Ei has the form

Ei(xi(vi)) = |1(vi)C − 1(vi)C0 |
where vi is the grid point. Therefore, Ei(xi) either is 1 or 0.

188 J Math Imaging Vis (2010) 37: 183–203

Fig. 2 An example of graph
construction

While, the term Ei,j corresponds to N-link and has the
flavour of the smoothness term such as

∫
�

ds. There are sev-
eral ways to view this term. Arc length can be expressed
by total variation of inside-outside indicator function of the
curve

|∇1| =
√

(1x)2 + (1y)2

since this term is not easy to be discretized by graph, the
following anisotropic expression is used to measure the
smoothness

|∇1|ani := (|1x | + |1y |).
Note that for |∇1|ani and |∇1| the following inequalities
hold
√

2

2
|∇1|ani ≤ |∇1| ≤ |∇1|ani,

which imply |∇1|ani is a proper smoothness measure. If we
use finite difference scheme to discretize |∇φ| on uniform
grids we get an isotropic discretization

|∇1| ≈ 1

h

√
(1m,n − 1m,n−1)2 + (1m,n − 1m−1,n)2

and the corresponding anisotropic discretization is given by

|∇1|ani := 1

h
(|1m,n − 1m,n−1| + |1m,n − 1m−1,n|).

In this case the term Ei,j has form |1i − 1j | where i and
j are indices of the nodes and it can be represented by a
bi-directed edge between the node i and j . Above observa-
tion is only valid for 4-neighbourhood. Of course, we can
use higher order finite difference scheme or unstructured
grids to approximate |∇1| and get corresponding anisotropic
smoothness term |∇1|ani , but this will involve three or more
terms. Actually, by means of the Cauchy-Crofton formula
dicretization can be also carried out by dividing angles. The
reader is refereed to [3, 4] for more discussions on discretiz-
ing the arc-length on other neighbourhood systems. Figure 2
is an example of a complete 3 by 4 graph of the functional
(1). In this graph the given curve has characteristic func-
tion

⎡
⎣0 1 1 0

0 1 1 0
0 0 0 0

⎤
⎦ .

J Math Imaging Vis (2010) 37: 183–203 189

As shown in Fig. 2, the nodes which have function value
1 connect to s with an edge of capacity λ while the nodes
whose function value are 0 have an edge with t . The bi-
directed edges between grids points having capacity 1 rep-
resent the Ei,j .

Turning to geodesic active contour functional (2), it is
just the shortest path under the Riemann metric and has the
form

ψ(C(τ)) =
∮ √

[x ′
, y

′]G[x ′
, y

′]t dτ

where

G =
[
(λϕ0(C(τ)) + 1)2 0

0 (λϕ0(C(τ)) + 1)2

]
.

Thus by Cauchy-Crofton formula [3, 4] the weight of
N-links in GAC functionals is just multiplied by
(λϕ0(C(τ)) + 1). Therefore, for functionals (2) and (3) the
N-link edges control both similarity and smoothness terms,
and T-links just play a role like area constraints or boundary
condition.

4.2 Min-Cut Algorithm

The efficiency of the min-cut algorithm is crucial for our ap-
plications. In combinatorial optimization there are several
polynomial algorithms for min-cut/max-flow. Most of the
algorithms fall in one of the following groups: algorithms
based on Ford-Fulkerson style “augmenting paths” [13] and
Goldberg-Tarjan style “push-relabel” methods [14]. Stan-
dard augmenting paths based algorithms, such as Dinic algo-
rithm [12], work by pushing flow along non-saturated paths
from the source to the sink until the maximum flow in the
graph is achieved. An important fact in Dinic’s algorithm
is the use of breadth-first search to find the shortest paths
from s to t on the residual graph, which significantly im-
proves the theoretical running time. The worst case running
time complexity for Dinic’s algorithm is O(mN2) where N

is the number of nodes and m is the number of edges in the
graph. By clever implementation, “push-relabel” algorithm
can be improved to O(N3). Although the worst complex-
ity of min-cut algorithm is the same with explicit level-set
implementation, this worst case is seldom attained in our
application. Actually, in all our examples the min-cut algo-
rithm attains the order O(Nα) where 1 ≤ α ≤ 2. Due to their
efficiency and reliability we shall use standard push-relabel
algorithms in this paper.

5 Implementation Details

There are several implementation issues which need to be
pointed out. The first one is the way to tag interior and ex-
terior regions. For the functional (1), we need characteristic

Fig. 3 Dashed is the band boundary; solid line is the given curve. The
distance of the point in the shadow region to given curve is less than δ.
Candidate curve should be bounded by the shadow region

functions to represent curves. This is not an issue if curves
come from segmentation results since partition is already
there. However, most often curve is defined by an ordered
set of points. In this case the curve is linearly approximated
by a polygon. Then our problem becomes a classic compu-
tational geometry problem: determining whether a point is
in a polygon. Two rather different methods for solving this
problem are available: counting ray crossings and comput-
ing “winding” numbers. Because of its simplicity and effi-
ciency we use the ray crossing method. Basic idea of ray
crossings is that if a point p is in the polygon a ray from p

will intersects polygon boundary odd times otherwise even
times. If data set is unordered points it is hard to locate the
boundary of the curve by any means and such ray crossing
computation is impossible in this scenario. Therefore, we
conclude that the curve based functional (1) is not appropri-
ate for curve reconstruction.

The second issue is about computing distance function.
Since for the functional (2) and (3) we need compute the
distance function corresponding to the given curve or data
points. Again, if data is defined by an ordered point set then
the simplest way to do this is for each grid point computing
the distance to all segments and setting the smallest as the
final distance. This method does not work for unorganized
points and is very slow if points set is large. Generally, we
can use a sweeping method [26, 34] to compute distance
function. This method has complexity O(N) for uniform
grids and O(N logN) for unstructured grids, where N is the
grids number.

Since the global minimum for the GAC model (2) cor-
responds to a point, direct application of the graph-cuts
method will always yield a point which makes no sense
in our application. To eliminate this trivial solution, certain
Dirichlet boundary conditions [2] need to be imposed. Since
desired curve is always near the given curve or data points, it
should fall in a narrow band around the given curve or data
points as illustrated in Fig. 3. The choice of the bandwidth
δ depends on the noise level and the resolution. Based on
these observations, [15, 32] used a narrow-band implemen-

190 J Math Imaging Vis (2010) 37: 183–203

tation: (a) If the point is in the narrow band, the weight of
the N-link is set as usual; set the weight of the T-link to be
zero. (b) If point is not in the narrow band and it is in the
interior region enclosed by curve for sure, the point is con-
nected with s and the T-link is set to be a large number. On
the other hand, connect points which are certainly outside
the curve with t and set T-link to be a large number as well.

Actually, seeking minimum s-t-cut on the graph de-
scribed above means minimizing the functional (3)

E3(C,α,β,λ) =
∫

Ω

(
α + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λ|1C − 1data|dΩ.

For curve smoothing problem, 1data in the functional (3) can
be computed by ray crossing method, and relative weight
function λ(x) can be just a constant. For curve recon-
struction problems, 1data and λ(x) need special treatments,
which will be discussed in Sect. 6.

5.1 Corner Preserving Strategy

Next, we present our corner-preserving strategy. To preserve
corners the first concern will be designing a good corner de-
tector. Estimating the discrete curvature could yield a good
corner detector, but note that the raw data is contaminated
by noise, and hence point-wise evaluation or approximation
of the curvature is not reliable. Inspired by the neighborhood
idea proposed in [31], an averaging technique is utilized in
this paper to design a robust corner detector.

For an arbitrary polygon P = {P1P2 · · ·Pn}, denote IP

by its indicator function and Axi
by the angle at point Pi .

Then the following observation is true,

Axi
= lim

t→0

∫
R2

2πIP • Gt(xi, y)dy

where Gt(xi, y) = 1
2t

exp(−π‖y−xi‖2

2t
). When t is small

enough, it is reasonable to use the following approximation

Axi
≈

∫
R2

2πIP • Gt(xi, y)dy.

Moreover, for a curve/surface approximated by linear poly-
gon/polyhedra, the following equality holds

∑
i

(π − Axi
) = 2π,

therefore, defect angle π − Axi
is used to approximate cur-

vature in many cases. notice that

2π

∫
R2

(1 − IP) • Gt(xi, y)dy = 2π − Axi
,

thus∫
R2

(1 − IP) • Gt(xi, y)dy −
∫

R2
IP • Gt(xi, y)dy

= 1 − Axi

2π
− Axi

2π
.

Therefore the measure of cornerness can be obtained as

τ(xi) = 1

2

∫
R2

(1 − 2IP) • Gt(xi, y)dy.

This approximation can overcome the influence of the
noises, if variance of the Gaussian is large enough to cover
the noise level. In other words, by tuning parameter t , mea-
sure τ(xi) is able to characterize corners in different scales.
The similar ideas can be found in [1, 11]. For a given t , the
larger |τ(xi)| means the shaper corner in the scale t . How-
ever, this formula is computational expensive since when the
variance of Gaussian function is large the computation has
to be carried on whole domain so as to evaluate the integral
accurately. Note that the above quantity actually only mea-
sures how different a point is from being on a straight line
which has an angle π . Therefore the quantity can also be,

τ̂ (xi) = | ∫
R2 Gt(xi, y)dy|
min(g1, g2)

,

where

g1 =
∣∣∣∣
∫

R2
(1 − IP) • Gt(xi, y)dy

∣∣∣∣,
and

g2 =
∣∣∣∣
∫

R2
IP • Gt(xi, y)dy

∣∣∣∣.
τ̂ (xi) has value 2 for straight line and becomes larger when
the corner becomes shaper. The integration is replaced by
summation and R2 is replaced by the domain of interests Ω ,

τ̂h(xi) = |∑y∈Ω Gt(xi, y)δy|
min(g1, g2)

,

where

g1 =
∣∣∣∣
∑
y∈Ω

(1 − IP) • Gt(xi, y)δy

∣∣∣∣,

and

g2 =
∣∣∣∣
∑
y∈Ω

IP • Gt(xi, y)δy

∣∣∣∣.

Furthermore, in practical experiments Gt(x) can be simply
replaced by 1 and the summation can be only computed in
a small neighborhood N which is determined by the vari-
ance or the noise level while numeric errors in numerator

J Math Imaging Vis (2010) 37: 183–203 191

and denominator are somewhat canceled. Thus, in practice
the formula may be,

τ̂h(xi) ≈ |∑y∈N IP (y)|
min(|∑y∈N (1 − IP (y))|, |∑y∈N (IP (y))|) .

By this formula τ̂h is equal to infinity for the points inside
or outside the curve, and therefore to remedy this problem
all points not close to the curve take the value 2 the same as
the points on straight line. We use the following Algorithm
to compute corner measure τ̂h.

Algorithm (Determination of τ̂h(x)) For every node xi in
the computational domain Ω :

1. Choose a reference circle N (xi, r) centered at xi with a
radius r ;

2. Count the number of nodes, N = N+ + N−, con-
tained inside the reference circle N (xi, r) where N+
denotes the number of nodes with indicator value 1
in N (vi, r) and N− that with indicator value 0. Set
Nmin = min{N+,N−};

3. If Nmin = N+ and I (xi) = 1 or Nmin = N− and I (xi) =
0, then set τ̂h(xi) = N/Nmin, otherwise, τ̂h(xi) = 2;

Once the “cornerness” measure is available the λ in the
functional

E4(C) =
∫

Ω

(
α + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λdata(x)|1C − 1data|2dΩ,

can be set to be large in regions near corners and small in flat
regions. Thus, we specify a non-homogeneous “attraction
potential” making corners more attractive. In our study, λ(x)

was taken to be,

λ(xi) =
{

λ1 if f (τ̂h) ≤ 0.4 max(f (τ̂h))

λ2 if f (τ̂h) > 0.4 max(f (τ̂h))
(6)

f (s) = ew(2−s)2
, (7)

where λ1, λ2, and w are some parameters. The reason that
f (s) is selected as above is because it changes rapidly in
corner regions and is able to make the corner more distin-
guishable. Once these parameters are selected, the λ(x) is
determined.

However, the above-mentioned computation relies on
the indicator function which is not available for unordered
points. In the curve reconstruction application the cor-
ner detector should only be based on geometric informa-
tion residing in the data points. Thus, the approach de-
scribed below outlines an alternative corner detector. Let
P = {P1,P2, . . . ,Pn} denote the set of unordered points,

where order does not imply connectivity. Provided the point
set is sampled from a closed curve and dense enough, for
each point Pi the neighbourhood N (Pi, r) should contains
some points Pj different from Pi , where N f (Pi, r) is the
circle centered at Pi with radius r . Define the average direc-
tion vector as,

v(Pi) = 1

N

∑
Pj ∈B(Pi,r) andPj =Pi

Pj − Pi

|Pj − Pi | , (8)

where N is the number of points in the circle B(Pi, r). When
Pi ’s are on a straight line v(Pi) will be close to zero vector,
and as Pi is a corner point v(Pi) points to the direction of
the angle bisector. Therefore, the cornerness measure for Pi

can be defined as the length of the average direction vector,

τ2(Pi) = |v(Pi)|. (9)

Moreover, if r is large enough this measure can suppress
the influences of noises as well. Utilizing this cornerness
measure, the corner preserving strategy for reconstruction
is either to decease regularity parameter α around detected
corners or modify the distance filed induced by points set.
There are several ways to implement these ideas, the precise
choice of which is immaterial so long as corners are made
more attractive (an illustrative example is shown in Sect. 7).

6 Application to Curve Reconstruction from Scattered
Points

As mentioned above, reconstruction curve from an un-
ordered set of points is an interesting and challenging prob-
lem, and there is no well defined, unique solution for this
problem. To construct a curve that is a good approximation
of the data set, a reconstruction procedure should be able
to deal with complicated topologies and geometries, as well
as with noise and nonuniformity of sampling. This problem
is closely related to curve smoothing, since both problems
rely on the definition of meaningful distance measures. The
functional (1) measures distance between two curves by area
difference. As we pointed out before this is a proper distance
measurement for the case of curve smoothing but in the re-
construction scenario an indicator function becomes mean-
ingless since we can not completely mark the interior and
exterior regions. In this case, some “induced” topological in-
formation can be made available for the regions far from the
points, and near the point sets only the geometrical or dis-
tance information is readily usable. Hence the functional (2)
which only relies on distance information can readily handle
the curve reconstruction problem. However, as discussed in
Sect. 2, the modified functional (3) is more stable than (2),
and can be minimized by graph-cuts techniques. To address
reconstruction problem by functional (3), our first task will

192 J Math Imaging Vis (2010) 37: 183–203

be to properly define the 1data indicator function. This will
be done by defining a “narrow band” containing the data
points

Sband = {x|ϕ0(x) ≤ c} (10)

where ϕ0(x) is the unsigned distance function induced by
the point set. By the definition of the narrow band, the
weight function λ is set to

λ(x) =
{

0 if x ∈ Sband,

∞ if x /∈ Sband .
(11)

In practice, the bandwidth c depends on sampling density
and noise level. For example, provided the sample points are
quite sparse, c should be relatively large so that the narrow-
band will be a connected watertight region. Generally, the
set Sband separates R2 into one outside domain and possible
several inside domains. 1data will be set to 0 outside and to
1 for the points in the inside domains. For the points belong-
ing to Sband , the indicator function can be set to an arbitrary
value since λ(x) is zero for them, and the term λ|1C −1data|
will add nothing to the energy cost. Essentially, this is the
narrow band implementation used in various applications.

As described in Sect. 5.1, based on proposed corner de-
tectors (9) it is also possible to develop corner preserving
strategy for curve reconstruction. A simple way is to de-
crease regularity parameter α around the detected corners.
Because τ2 in (9) is defined on the data points not on grids
points, one needs impose corner information on grid points
by locating the nearest grid points xi . Thus, α(x) may have
the form,

α(xi) =
{

α1 if xi is in the corner regions

α2 otherwise
(12)

where α1 and α2 (α1 < α2) are some constants to be se-
lected. Another way is to modify the distance field around
detected corners. For example, the distance field can be gen-
erated by a function (dist

c
)n in a neighbourhood of the de-

tected corners, where c is the constant used to define λ(x)

in (11). In both cases, the solution curve will prefer to pass
through detected corners in order to decrease energy.

7 Numerical Experiments and Results

All the experiments reported herein were performed on a PC
with Intel Xeon CPU of 3.33 GHz and 4 GB memory. To do
graph cuts we use the push relabel algorithm, see [14].

The first example is a noisy circle as shown in Fig. 4(a).
The curve is smoothed using the functional (1)

E1(φ,λ) =
∫

Ω

|∇1C |dΩ + λ

∫
Ω

|1C − 1C0 |dΩ,

Fig. 4 The resulting curves smoothed for the same data and three dif-
ferent functionals. (b) The smoothed curve with parameters λ = 0.05
and α = 1 in functional (1). (c) The smoothed curve with parameters
β = 5 and α = 1 in the functional (2). (d) The smoothed curve with
parameters λ = 0.05, β = 3 and α = 1 in functional (3)

J Math Imaging Vis (2010) 37: 183–203 193

Fig. 5 The first column contains the smoothed curve and the second
column includes the mixture of the smoothed curves and noisy curves;
parameters in functional (3) are α = 1, β = 3 and λ = 0.05 and 32
neighbor system is used

functional (2)

E2(C,α,β) =
∫ 1

0
(α + βϕ0(C(τ)))|Cτ |dτ,

and functional (3)

E3(C,α,β,λ) =
∫

Ω

(
α + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λ|1C − 1data|dΩ.

First, three functionals are minimizing by the level set
method on a 400 × 400 uniform mesh. Here, forward differ-
ence is used for time discretization, time step being 1×10−6

and reinitialization is performed every 50 steps. Figure 4(b)
shows the smoothed circle obtained by minimizing func-
tional (1) and the comparison with the noisy circle. Fig-
ure 4(c) shows the results minimizing functional (2) and
Fig. 4(d) presents the results minimizing the functional (3).
It can be observed that the result in Fig. 4(b) is slightly
smoother than the result in Fig. 4(c), and the result in
Fig. 4(d) is more like the result in Fig. 4(b) because of the
choices of the parameter λ and β . For comparison the re-
sults of the graph cut method and the level set method are
presented together in Fig. 5, in which both smoothed curves
are obtained by minimizing the functional (3) with the same
parameters as the one in Fig. 4(d) and 32-neighbourhood

Table 1 CPU time (in seconds) of the level set method and the graph
cut method for the noisy circle example

200 Resolution 400 Resolution

Level set method 117.12 s 1326.23 s

Graph cuts 1.9 s 7.9 s

Fig. 6 In (b) and (c), the first column contains the smoothed curve
and the second column includes the mixture of the smoothed curves
and noisy curves. Parameters in functional (3) are λ = 0.05 and β = 8
and 64 neighbor system is used

system is used for the graph cut method. It can be observed
that under the same resolution, the level set method presents
better result than the graph cuts method because of the met-
rication errors of graph-discretization. However, the compu-
tation time of the level set method is much longer than the
graph cut method, as can be clearly seen from the statistics
of CPU time listed in Table 1.

Figure 6 gives an example of a noisy square which is
also processed by graph-cuts and level set methods. In this
example the 64-neighbourhood system is used for graph

194 J Math Imaging Vis (2010) 37: 183–203

Fig. 7 A noisy triangle example. From the second row to the last row,
the first column contains the smoothed curves and the second column
includes the mixture of the smoothed curves and noisy curves; para-
meters in the functional (1) are λ = 0.03 and α = 1; parameters in the
functional (2) are β = 4 and α = 1 while narrow band has width 0.06.
In model (3) λ = 0.02, β = 4, and α = 1. 64 neighbor system and
800 × 800 resolution are used in all methods

Table 2 CPU time of graph-cuts results of two functionals with differ-
ent neighborhoods. Resolution is 800 × 800 and similarity parameters
in two model (1) and (2) are 0.02 and 4 respectively while regularity
parameter is α = 1 for both functionals

Neighborhoods Time

Functional 1 Functional 2

4 11.32 s 9.96 s

16 28.73 s 23.11 s

64 86.31 s 85.16 s

cuts method and the metrication errors reduce considerably.
Since the result obtained by graph cut method is actually
only the labellings and the curve is obtained by connect-
ing discrete girds, the resulting curve in Fig. 6(b) is still not
as smooth as the one in Fig. 6(c) obtained by the level set
method, which is the interpolation of zero level-set of the
signed distance function.

The third example considers a noisy triangle as shown in
Fig. 7, where the results obtained by minimizing three differ-
ent functionals are illustrated. In this example the graph cuts
method is applied on 800×800 grids with a 64 neighbor sys-
tem. Figure 7(b) presents the result of the functional (1) and
Fig. 7(c) gives the result of the functional (2). It can be ob-
served that two smoothed curves have almost the same qual-
ity. As discussed before, to solve the functional (2) by graph
cut, the narrow band implementation is needed. The width
of the band is selected to be 0.2 in this example. Table 2 lists
the CPU times consumed by minimizing functionals (1) and
(2) with different neighbor systems, from which we can see
that to minimize the functional (2) is slightly faster than the
functional (1). Figure 7(d) shows the smoothed curve pro-
duced by the functional (3), which quite resembles the re-
sult in Fig. 7(c) because here the parameter β is dominated.
However, to solve the functional (3) there is no need for nar-
row band implementation and the CPU time is almost as
same as the functional (1).

In order to quantitatively compare above results, we use
the following way to measure the difference of the smoothed
curve and the original curve. We compute

DC0(C) =
∑ |1C − 1C0 |∑

1C0

(13)

where C0 is the original curve and C is a noisy curve or
smoothed curve. This normalized symmetric area difference
measures the relative difference of C and C0, and obviously
the smaller it is, the closer two curves are. Statistics listed
in Table 3 are normalized symmetric area differences com-
puted for the examples in Figs. 5 and 7, in which the noisy
curves and the smoothed curves are compared with the orig-
inal curves. To save space, the original curves are omitted. In
Table 3, the differences between three functionals are quan-
titatively compared, where the Circle example is processed

J Math Imaging Vis (2010) 37: 183–203 195

Table 3 The normalized symmetric area difference. Two examples are
used to study the difference between three functionals. In each exam-
ple, the statistics are computed for the noisy curve, the smoothed curve
minimizing Functional 1, Functional 2 and Functional 3, respectively.
The parameters are chosen as before

Noisy Fun. 1 Fun. 2 Fun. 3

Circle 0.0723 0.0259 0.0261 0.0258

Triangle 0.0412 0.0358 0.0395 0.0343

Table 4 The normalized symmetric area difference. Two examples are
used to study the difference between Level-set and Graph-cuts imple-
mentation. In each example, the statistics are computed for the results
of Level-set method and Graph-cuts method respectively. The parame-
ters are chosen as same as before

Noisy Level-set Graph-cuts

Circle 0.0723 0.0259 0.0407

Rectangle 0.0886 0.0434 0.0512

via the level-set implementation while the results of the Tri-
angle example are obtained with the graph-cuts implementa-
tion. From Table 3, several conclusions can be drawn. First,
according to the proposed similarity measure the smoothed
curves are closer to the original curves than the noisy curves.
Second, the results of Functional 3 are slightly better than
those of Functional 1 and Functional 2. Also, from the quan-
titative comparison one can observe that the smoothing ef-
fects of the Triangle example are not as good as the Cir-
cle example. This is because the corners of the Triangle are
necessarily rounded by the smoothing process. Therefore, in
order to obtain good smoothing effects while also preserv-
ing the sharp corners, data-dependent parameters will have
to be used. We will further investigate the corner preserv-
ing strategies with some examples and quantitatively study
them later. In the same fashion, we compare the results of
the level-set method and the graph-cuts method. The exam-
ples in Figs. 5 and 6 are used and the corresponding statistics
are listed in Table 4. It can be seen that, under the same res-
olution, the results of the graph-cuts method is worse than
those of the level-set method due to the metric errors and
discretization artifacts.

In the above examples, by choosing appropriate parame-
ters the three functionals provided the similar results. How-
ever, when the geometry of curves become complicated, the
differences between the optimal results with respect to func-
tional (1) and functional (2) can be quite significant. There-
fore, we next consider an example of a curve which is the
digitized outline of a cat with lots of zig-zags, as shown in
Fig. 8(a). The second row in Fig. 8 shows the results of level-
set implementations while the third row presents the results
of graph-cuts implementations of the optimizations of the
functionals we consider. Figure 8(b) and (c) presents the re-

Fig. 8 A cat with a lot of zig-zags. (a) The noisy curve; (b) the
level-set solution of functional (2) with a small circle as the initial so-
lution; (c) the level-set solution of functional (2) with a large circle
as the initial solution; (d) the level-set solution of functional (1); (e)
the graph-cuts solution of functional (2) with a large narrowband; (f)
the graph-cuts solution of functional (2) with a relatively small narrow-
band; (g) the graph-cuts solution of functional (1). 400×400 resolution
is used for level-set implementations and 800 × 800 resolution is used
for graph-cuts implementations

sults of functional (2) with different curve initialization. In
Fig. 8(b), the initial curve was a small circle inside the cat,
and after 200,000 iterations the evolution is stuck at a lo-
cal minimum, as shown. In Fig. 8(c), the initial solution is
chosen as a large circle around the cat and after 500,000 it-
erations the evolution stops. It is obvious that with a large
circle as the initial guess the final solution is much better
than taking the small circle as the initial solution. However,
both of them missed the concave part of the curve. Fig-
ure 8(d) presents the result of functional (1). Because of the
existence of the extra fidelity term, functional (1) is not so
sensitive to the initial solutions. Moreover, the fidelity term
plays the role of an external driving force which did push the
solution into the concave part. There is no initialization is-
sue for graph-cuts implementation, however using graph-cut
to minimize functional (2), one has to resort to narrowband
implementations. Figure 8(e) and (f) presents the results of
functional (2), both of which are solved by graph-cuts, for
different widths of the narrowband. With a very large band-
width, the result (Fig. 8(e)) misses all elongated parts. Com-

196 J Math Imaging Vis (2010) 37: 183–203

Fig. 9 A noisy annulus example. The first figure presents the noisy
curve and the second figure shows the result minimizing model (3); 64
neighborhoods are used and similarity parameter λ = 0.06, β = 4 and
α = 1

pared to Fig. 8(e), the result in Fig. 8(f) is much better due
to a smaller bandwidth. Figure 8(g) gives the curve mini-
mizing functional (1), and no narrowband needed for this
functional. For functional (1) both the level-set implemen-
tation and the graph-cut implementation can yield good re-
sults for complex geometries. For functional (2), the results
of the level-set implementation depend on initialization, and
a good initial guess not only accelerates the algorithm but
also enables it to yield the desired results; the graph-cuts
implementation relies on a proper choice of the narrowband,
and too thick a narrowband may cause the loses of the elon-
gated parts while too thin a narrowband may not provide
smooth curves. As discussed before, although functional (1)
performs better than functional (2) in the curve smoothing
examples, it is not applicable to the curve reconstruction
tasks. The combination of these two functionals, functional
(3) and functional 4 avoid their individual limitations and
have wider applicability.

The next example is a noisy annulus. The result is shown
in Fig. 9. To do this example with the functional 2 one
can let points between two circles be connected with source
and both boundary of the domain and the center of the in-
ner circle be connected with sink. In our implementation
the T-links are automatically determined by region growing
method.

The next examples consider noisy curves with more com-
plicated geometry. Hereafter all examples will be imple-
mented based on the functional 3 and α = 1 unless specified
otherwise. It can be observed from Fig. 10 that the smaller
the similarity parameter is chosen, the smoother curve is ob-
tained but also the more details are lost. We remark that
with different parameters the computation costs of the al-
gorithm are somewhat different. Table 5 gives the CPU time
consumed during smoothing Fig. 10 with different parame-
ters and narrow bands. Here we only use 64 neighborhoods
within narrow band and 4 neighborhoods outside the nar-
row band. It can be observed from Table 5 that this adap-
tive implementation considerably reduced the computation
cost. However, narrow band should be wide enough so that
at least solution curve is included.

Fig. 10 An example with complicated geometry; 64 neighborhoods
are used and β = 0.0 in all results but with different parameter λ.
(a) The noisy curve; (b) the curve smoothed with λ = 0.2; (c) the curve
smoothed with λ = 0.1; (d) the curve smoothed with λ = 0.05

The example in Fig. 10 is formed by a circle intersecting
a noisy rectangle. This is a more challenging example. From
Fig. 10 we can see that circle and rectangle separate when
the similarity parameter is decreased and since the intersec-
tion regions for the two shapes are very small, it is hard to
determine the correct local topology.

J Math Imaging Vis (2010) 37: 183–203 197

Table 5 CPU time with different parameters under 800 × 800 resolu-
tion. 64 neighborhood is chosen within narrow band

λ Time

Bandwidth <1 Bandwidth <0.5

0.2 73.11 s 35.45 s

0.1 76.12 s 41.86 s

0.05 111.43 s 58.24 s

The “Squirrel surrounded by grass” example in Fig. 12
tests the smoothing of curves resulting from image segmen-
tation. The direct image segmentation results have a lot of
small features and the boundary of the object often has zig-
zags. It can be observed that in the last picture of Fig. 12, all
the insignificant features are removed by our method.

The main disadvantage of the functional (1) and (2) is
that resulting curves may lose meaningful corners. There-
fore, the functional (4) is used to handle the examples with
sharp corners,

E4(C) =
∫

Ω

(
α + βϕ0(C)

)|∇1C |dΩ

+
∫

Ω

λdata(x)|1C − 1data|dΩ,

where λ(x) is computed as described in Sect. 5.1. The exam-
ple in Fig. 13 is a noisy eight-sided star, which has obvious
sharp corners. Figure 13(c) shows the smoothed curve with
constant similarity parameters λ = 0.5 and β = 5. Although
all corners are preserved, the curve is not smooth enough.
By decreasing λ to 0.03 the curve becomes much smoother
but also loses all corners as shown in Fig. 13(d). However,
using λ(x) computed by the method described in Sect. 5.1
the result presented in Fig. 13(e) is smooth enough as well
as preserves all sharp corners. The contour of the function
λ(x) is also illustrated in Fig. 13(f), which clearly demon-
strates that all corners are correctly identified. Here we use
the normalized symmetric area difference to study the pro-
posed corner preserving strategy. Let C0 denote the original
curve shown in Fig. 13(a) and C1, C2, C3, and C4 denote
the curves shown in Fig. 13(b)–(e) respectively. The nor-
malized area differences for them are DC0(C1) = 0.0641,
DC0(C2) = 0.0542, DC0(C3) = 0.1640, DC0(C4) = 0.0231
respectively. C1 is the noisy curve, DC0(C1) actually mea-
sures the noise level and it is 0.0641 for this example. C2 is
the smoothed curve as shown in Fig. 13(c), from which it can
be seen that C2 is a reasonable approximation of the origi-
nal curve, and this is also justified by the fact DC0(C2) =
0.0542 < 0.0641. Although C3 in Fig. 13(d) is very smooth,
it is not a good approximation since visually it loses some
important features of the original curve and quantitatively
it not close to the original curve DC0(C3) = 0.1640. C4 is

Fig. 11 An example formed by a noisy circle intersected a noisy rec-
tangle; 64 neighborhoods are used and β = 0.0 in all results but with
different similarity parameters λ. (a) The noisy curve; (b) the result
with λ = 0.2; (c) the result with similarity λ = 0.1; (d) the result with
λ = 0.05

an excellent approximation of the original curve, which can
be seen from the figure clearly and is proven by the normal-
ized area difference as well, DC0(C4) = 0.0231, the smallest
value among these curves. All statistics are listed in Table 6.
This example shows that our corner preserving strategy in-
deed works well and a relatively complex example will be
presented next.

198 J Math Imaging Vis (2010) 37: 183–203

Fig. 12 Image segmentation result. (a) Original image; (b) segmenta-
tion result; (c) boundary curve of the segmentation; (d) smooth curve
processed by our method

Table 6 Comparison of the normalized area difference

Curves C1 C2 C3 C4

Area Difference 0.0641 0.0542 0.1640 0.0231

The example in Fig. 14 is a result from image segmen-
tation, a logo of “NTU”. Figure 14(a) and (b) presents
segmentation result and the corresponding boundary curve.
Figure 14(c) shows the smoothed curve with constant sim-
ilarity parameters λ = 0.03 and β = 5. It can be observed
that not only the corners are missed but also the elongated
parts in letter “N” and “U”. Figure 14(d) presents the result
with the varying similarity function, which is smooth and
preserves most important features. Again, one can see the
correctly identified important features from the contour of
the function λ(x) shown in Fig. 13(e).

The next three examples are the results of curve recon-
struction, where bandwidth is chosen as c = 0.1 and the
similarity parameter β = 20. Figure 15 is the curve recov-
ered from points which have strong noise at certain parts.
We can observe that the noisy clouds are gracefully ignored

Fig. 13 Noisy eight-sided star example. (a) The original curve; (b) the
noisy curve; (c) the smoothed curve produced with parameters λ = 0.5
and β = 5; (d) the smoothed curve produced with parameters λ = 0.03
and β = 5; (e) the smoothed curve produced with varying λ(x) and
β = 5, where λ(x) is computed with λ1 = 0.5, λ2 = 0.5 in (12), w = 4
in (7) and r = 0.1 for reference circle; (f) the contour of the function
λ(x) in (d)

by our method. Figure 16 depicts a cloud of points outlin-
ing an elephant shape. The point cloud is very noisy but our
method recovers a meaningful result.

Figure 17 shows a cloud of points sampled from a
Chinese character which has obvious corners. In this ex-
ample, the proposed corner preserving strategy is clearly
demonstrated. Figure 17(a) gives the set of noisy points.
Figure 17(b) illustrates the reconstructed curve with con-
stant regularity parameter α = 1 while Fig. 17(c) presents
the reconstructed curve with regularity parameter α = 0.01
around corner regions and α = 1 otherwise. Figure 17(d)
gives the comparison of two reconstructed curves, clearly
manifesting that the curve reconstructed by the proposed
corner preserving strategy has sharper corners and better vi-
sual effects. Figure 17(e) shows the contour of the proposed

J Math Imaging Vis (2010) 37: 183–203 199

Fig. 14 Segmentation result of an image containing words “NTU”.
(a) The segmentation result; (b) the noisy boundaries; (c) the smoothed
curve produced with parameters λ = 0.03 and β = 5; (d) the smoothed
curve produced with varying λ(x) and β = 5, where λ(x) is computed
with λ1 = 0.03, λ2 = 0.5 in (12), w = 4 in (7) and r = 0.1 for the
reference circle; (e) the contour of the function λ(x) in (d)

Fig. 15 Curve reconstruction from noisy points data. The points in the
first figure are the noisy data and the curve shown in the second figure
is the reconstruction result

corner detector (9), in which the locations of all corners are
correctly identified.

Furthermore, by choosing different distance fields, the
variational model proposed in this paper can actually deal
with a large range of applications. The example shown in
Fig. 18 demonstrates that our method can readily produce
the shortest path within a bounded region between two
curves. In this example, the distance field is generated by

Fig. 16 Curve reconstruction from noisy points data. The points in the
first figure are the noisy data and the curve shown in the second figure
is the reconstruction result

Fig. 17 Curve reconstruction from points sampled from a Chinese
character. (b) The reconstructed curve with constant regularity para-
meter; (c) the reconstructed curve with varying regularity parameter;
(d) mixture of the curves in (c) and (d); (e) the contour of the corner
detector function

the formula

D =
(

dist

B

)n

200 J Math Imaging Vis (2010) 37: 183–203

Fig. 18 Shortest path within a bounded region. Distance function
is (dist

B)n. (a) A bounded region generated by a curve with width
0.05; (b) the solution curve with λ = 0, β = 20, n = 3; (c) the so-
lution curve with λ = 0, β = 4, n = 3; (d) the solution curve with
λ = 0, β = 4, n = 6

where B is the width of the band which is here set to
0.05, dist is the unsigned distance function and n is an in-
teger constant. We see that bigger n yields smoother curves.
Figures 19 and 20 are two examples which show that our

Fig. 19 Shortest polygonal path in a bounded region, obtained by
“variational smoothing”

Fig. 20 Shortest path in a more complicated region between two poly-
gons

method can determine the shortest polygonal path in a
bounded region defined between two nested polygons.

As an interesting generalization, the distance field natu-
rally solves heteroscedastic probabilistic curve reconstruc-
tion problems [18], as described below. Consider the sam-
ples of a planar curve corrupted by independent additive
Gaussian noises whose covariance matrices vary according
to the location of the sample points in space as follows:

v = v0 + n,

where n ∼ N (0,Σv0) is an independent Gaussian noise
vector with zero mean and point-specific covariance (v =
(x, y), v0 = (x0, y0)). Therefore, for a given sample point
v0, the position of point v is a random vector with Gaussian
distribution N (v0,Σv0). Provided the covariance matrix is
given for each point, the question is to find the original point
(x0, y0) given that (x, y) is observed. Thus, the following
conditional density function is of interest,

p(v0|v) = p(v|v0)p(v0)∫
R2 p(v|v0)p(v0)dx0dy0

(14)

J Math Imaging Vis (2010) 37: 183–203 201

describing the distribution of the curve sample given the ob-
servation point v. Noticed that, for each possible (x0, y0)

and a fixed sample point (x, y), the density function p(v|v0)

is a function of (x0, y0) proportional to

1√
(2π)|Σv0 |1/2

exp

(
−1

2
(v − v0)

′Σ−1
v0

(v − v0)

)
.

Without prior knowledge about the original curve, it is rea-
sonable to assume that p(v0) in the formula (14) is a uniform
distribution in a bounded region, which means each point in
the region is equally likely to be a point on the curve that
is sampled. Under this assumption, the conditional density
function generated by an observed point can be computed
by formula (14), in which p(v|v0) is a function of (x0, y0),
p(v0) a constant, and

∫
R2 p(v|v0)p(v0)dx0dy0 a scaling.

After the conditional density function is determined for
each sample point, the influence potential of the points {vi}
can be defined as

A(x,y) := 1

T

∑
i

p((x, y)|vi), (15)

where vi ’s are the T sample points. This density function
describes how likely points in the plane are the original sam-
ples of a curve given points we observe. Therefore, the prob-
lem of finding the original curve becomes a process of seek-
ing curves having the largest cumulative probability, which
is equivalent to the following optimization problem

max
C(x,y)

∮
C

A(x, y)ds. (16)

By adding a constant and changing the sign of the function,
the maximization problem (16) is changed to the minimiza-
tion problem (17)

min
C(x,y)

∮
C

ψds, (17)

where

ψ = max(A(x, y)) − A(x,y).

Since ψ is non-negative, functional
∮
C

ψds looks exactly
like the GAC functional discussed before, in spite of the fact
that the “distance” field is now defined by the probability
density function instead of geometric distance. In contrast to
the simple geometric approach, the probability density func-
tion is able to incorporate prior knowledge on the noise dis-
tribution. For example, assuming that v0 uniformly distrib-
utes in a band around the sample points, the resulting density
function will be consistent with narrowband graph-cuts im-
plementation. Furthermore if the location of the point v0 is
roughly known, one can assume v0 is subject to a Normal

Fig. 21 An example of L-shape polygon. (a) The original curve;
(b) the noisy sample; (c) the smoothed curve maximizing sum prob-
ability; (d) the comparison of the curve in (c) and the original curve

distribution with v0 as mean. We next present several ex-
amples to demonstrate the capability of the above proposed
framework to nicely handle heteroscedastic cases.

The examples considered assume that each sample point
generates a probability or influence field, and the whole in-
fluence field is of form (15). In the sequel, a influence func-
tion defined in (15) will be called “sum probability”. In the
examples considered the 2-D Gaussian distributions around
each point are given by

1√
2π |Σv0 |

exp

(
−1

2
(v − v0)

T Σ−1
v0

(v − v0)

)

where v is the observed point and v0 is the grid point. The
covariance matrix Σ is given by

Σv0 =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]
.

Our first example shown in Fig. 21 is an L-shape poly-
gon. In this example the following spatially varying co-
variance is used to generate the noisy sample points σx =
0.05 + | sin(5πx)|/30, σy = 0.05 + | cos(5πy)|/30, ρ =
(x2 + y2)/4. The first row of Fig. 21 includes the original
curve and the noisy samples. It can be seen that the noise

202 J Math Imaging Vis (2010) 37: 183–203

Fig. 22 A polygon example. (a) The original curve; (b) the noisy sam-
ples; (c) the influence field generated by the noisy samples; (d) the
smoothed curve; (e) the comparison of the smoothed curve and origi-
nal curve

varies at different locations. The second row shows the curve
obtained by maximizing the sum probability.

The example in Fig. 22 is of a curve with very noisy sam-
ples. The first row of the Fig. 22 contains the original curve
and the noisy samples. The influence field generated can be
observed in Fig. 22(c). The result shown in Fig. 22(d) and (e)
show that the noise effect is removed. It is clear that the vari-
ance of Gaussian distribution drastically changes from point
to point. This means that we trust more the data-points in
certain regions. For example in Fig. 22(d) we can observe
that at point P the curve is far from the corner because of
large variance and at point Q the curve is close to the cor-
ner because of small variance. We note that instead of using
homogeneous and isotropic distance fields, inhomogeneous
and anisotropic distance fields allow us much more flexi-
bility in modelling the effects of noise and in incorporating
prior knowledge.

The last example shown in Fig. 23 is a six-sided polygon.
Figure 23(a) gives the original curve, and Fig. 23(b) shows
the noisy samples, which has relative large noise level on
both upper left and bottom sides. Figure 23(c) presents the
influence field generated by noisy samples, which has two
evident dents on upper left and bottom sides on account of
the large variance of the sample points. Therefore, the re-
gions with large noise level are less trusted, which is the
effect desired. Figure 23(d) and (e) presents the smoothed
curve and the comparison with the original curve.

Fig. 23 An example of six-sided polygon. (a) The original curve;
(b) the noisy samples, which have relative large noise level on both up-
per left and bottom sides; (c) the influence field generated by the noisy
samples; (d) the smoothed curve; (e) the comparison of the smoothed
curve and original curve

8 Concluding Remarks

In this paper we survey general variational frameworks for
curve smoothing and reconstruction problems. Compared
with the functional (2), the functional (1) is insensitive to
the initial guess and can be minimized by graph-cuts tech-
niques yielding global minima. The distance measure used
in the functional (1) is not suitable to curve reconstruction
problem, to which the distance-field based functional (2) is
readily applicable. By combing the merits of functionals (1)
and (2), the functional (3) is able to gracefully handle curve
reconstruction and smoothing within the same process. To
preserve corners the similarity parameters or regularity pa-
rameters can be made dependent on “cornerness measures”,
two of which are proposed and were successfully tested in
this paper. By introducing a probability distance field, func-
tional (3) is also able to deal with applications involving
heteroscedastic noises. Various examples were presented to
demonstrate the flexibility, effectiveness and robustness of
the proposed joint functional. Exporting some of the ideas
developed in this paper to surface smoothing and reconstruc-
tion problems will be one of our future projects. A thorough
study of corner preserving regularizations is also an interest-
ing subject for future investigations.

J Math Imaging Vis (2010) 37: 183–203 203

References

1. Alvarez, L., Morales, F.: Affine morphological multiscale analysis
of corners and multiple junctions. Int. J. Comput. Vis. 25, 95–107
(1997)

2. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal bound-
ary and region segmentation of objects in N-D images. In: IEEE
International Conference on Computer Vision, vol. 1, pp. 105–112
(2001)

3. Boykov, Y., Kolmogorov, V.: Computing geodesic and minimal
surfaces via graph cuts. In: International Conference on Computer
Vision, vol. 1, pp. 26–33 (2003)

4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE
Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004)

5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours.
Int. J. Comput. Vis. 22, 61–79 (1997)

6. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual
method for total variation-based image restoration. SIAM J. Sci.
Comput. 20, 1964–1977 (1999)

7. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding
global minimizers of image segmentation and denoising models.
SIAM J. Appl. Math. 66, 1632–1648 (2006)

8. Cohen, L.D., Cohen, I.: Finite element methods for active contour
models and balloons for 2D and 3D images. IEEE Trans. Pattern
Anal. Mach. Intell. 15, 1131–1147 (1993)

9. Cohen, L.D., Kimmel, R.: Global minimum for active contour
models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78
(1997)

10. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level
set segmentation. In: 2nd IEEE Workshop on Variational, Geo-
metric and Level Set Methods in Computer Vision, pp. 169–176
(2003)

11. Deriche, R., Giraudon, G.: A computational approach for corner
and vertex detection. Int. J. Comput. Vis. 10, 101–124 (1993)

12. Dinic, E.A.: Algorithm for solution of a problem of maximum
flow in networks with power estimation. Sov. Math. Dokl. 11,
1277–1280 (1970)

13. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University
Press, Princeton (1962)

14. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-
flow problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)

15. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D
models from non-uniformly sampled point clouds without normal
information. In: Eurographics Symposium on Geometry Process-
ing, pp. 41–50 (2006)

16. Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms,
and Applications. Springer, Berlin (2004)

17. Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero cross-
ings as optimal edge integrators. Int. J. Comput. Vis. 5, 225–243
(2003)

18. Kiryati, N., Bruckstein, A.M.: Heteroscedastic hough transform
(HtHT): an efficient method for robust line fitting in the ‘errors in

the variables’ problem. Comput. Vis. Image Underst. 78, 69–83
(2000)

19. Kolmogorov, V., Boykov, Y.: What metrics can be approximated
by geo-cuts, or global optimization of length/area and flux. In:
IEEE International Conference on Computer Vision, pp. 564–571
(2005)

20. Kolmogorov, V., Zabih, R.: What energy can be minimized via
graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159
(2004)

21. Krishnan, D., Lin, P., Tai, X.-C.: An efficient operator splitting
method for noise removal in images. Commun. Comput. Phys. 1,
847–858 (2006)

22. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting.
In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 17–22 (2007)

23. Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded
graph cuts method for fast image segmentation. In: IEEE Inter-
national Conference on Computer Vision, vol. 1, pp. 259–265
(2005)

24. Osher, S., Sethian, J.A.: Fronts propagating with curvature depen-
dent speed: algorithms based on Hamilton-Jacobi formulations.
J. Comput. Phys. 79, 12–49 (1988)

25. Paragios, N., Rousson, M., Ramesh, V.: Matching distance func-
tions: a shape-to-area variational approach for global-to-local reg-
istration. In: Lecture Notes in Computer Science, 7th European
Conference on Computer Vision, pp. 775–789 (2002)

26. Qian, J., Zhang, Y.-T., Zhao, H.-K.: Fast sweeping methods for
eikonal equations on triangular meshes. SIAM J. Numer. Anal.
45, 83–107 (2007)

27. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based
noise removal algorithms. Physica D 60, 259–268 (1992)

28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-
oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–
471 (1988)

29. Shu, C.W., Osher, S.: Efficient implementation of essentially non-
oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–
78 (1989)

30. Wang, Y., Song, S., Tan, Z., Wang, D.: Adaptive variational curve
smoothing based on level set method. J. Comput. Phys. 228, 6333–
6348 (2009)

31. Wang, J., Ju, L., Wang, X.: An edge-weighted centroidal Voronoi
tessellation model for image segmentation. IEEE Trans. Image
Process. 18, 1844–1858 (2009)

32. Xu, N., Bansal, R., Ahuja, N.: Object Segmentation Using Graph
Cuts Based Active Contours, vol. 2, pp. 46–53 (2003)

33. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm
for robust TV-L1 range image integration. In: IEEE International
Conference on Computer Vision, pp. 14–21 (2007)

34. Zhao, H.: A fast sweeping method for eikonal equations. Math.
Comput. 74, 603–627 (2005)

35. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-
parametric shape reconstruction from unorganized points using
variational level set method. Comput. Vis. Image Underst. 80,
295–319 (2000)

	On Variational Curve Smoothing and Reconstruction
	Abstract
	Introduction
	The Curve Smoothing and Reconstruction Functionals
	Level-Set-Methods for Functional Minimization
	Graph-Cuts for Global Minimization
	Graph Construction of Energy Functional
	Min-Cut Algorithm

	Implementation Details
	Corner Preserving Strategy

	Application to Curve Reconstruction from Scattered Points
	Numerical Experiments and Results
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

