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ABSTRACT: Model-based shape from shading (SFS) is a promising

paradigm introduced by Atick et al. [Neural Comput 8 (1996), 1321–
1340 ] in 1996 for solving inverse problems when we happen to have

a lot of prior information on the depth profiles to be recovered. In the

present work we adopt this approach to address the problem of

recovering wafer profiles from images taken using a scanning electron
microscope (SEM). This problem arises naturally in the microelec-

tronics inspection industry. A low-dimensional model, based on our

prior knowledge on the types of depth profiles of wafer surfaces, has

been developed, and based on it the SFS problem becomes an opti-
mal parameter estimation. Wavelet techniques were then employed

to calculate a good initial guess to be used in a minimization process

that yields the desired profile parametrization. A Levenberg–Marguardt
(LM) optimization procedure has been adopted to address ill-posed-

ness of the SFS problem and to ensure stable numerical conver-

gence. The proposed algorithm has been tested on synthetic images,

using both Lambertian and SEM imaging models. VVC 2006 Wiley Peri-

odicals, Inc. Int J Imaging Syst Technol, 16, 65–76, 2006; Published online in

Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20065
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I. INTRODUCTION

The problem of recovering a 3D object’s shape from its shaded

image, namely the shape from shading (SFS) problem, has intrigued

the computer vision researchers for almost 30 years. The research

in this area was mostly inspired by the fact that our brain has an out-

standing ability to perceive the depth of the observed scene from

2D images on the retina. Shading is only one of the clues used by

our brain to do the job. However, in words of Marr (1982), ‘‘. . . one
of the most interesting problems in the theory of human early

vision, along with color, is exactly what and how much information

we are able to recover from shading.’’ It is interesting that despite

the lack of our understanding of this cognitive feature and major

difficulties of our mathematical modeling attempts, nowadays there

is a need for SFS-based applications in some branches of the com-

puter industry. Manufacturing of integrated circuit wafers is an ex-

pensive and delicate process and a great deal of effort is invested in

the control of quality and acceptability of such crucial device fea-

tures as contact holes, tracks, etc. Typically, the manufacturers are

interested in measuring the geometrical parameters of the features

and due to the ‘‘nanosizes’’ of the structures studied, the nondes-

tructive low-voltage scanning electron microscope (SEM) is used.

Thus, the necessity of 3D surface measurements from 2D SEM

images naturally arises. SEM inspection machines have different

configurations. If an image has been taken by a SEM machine with

single electron detector, then one faces the issues of monocular

SFS. In case of 2 or 4 detectors the shape from photometric stereo-

algorithms are the natural choice. The very nature of the SFS idea is

to exploit the fact that the variations of surface’s orientation cause

the variations of the brightness (which we call ‘‘shading’’) at corre-

sponding areas in the image. However, the brightness only carries

information about the projection of surface normal on the light

source direction and hence the surface normal at each point cannot

be uniquely discovered. In fact, infinitely many normal vector fields

could, in principle, be associated with any given image. Thus, math-

ematically speaking, the SFS problem appears to be ill-posed, and

since the mathematical formulation of the problem turns out to be a

nonlinear first-order PDE, neither existence nor uniqueness of the

solution is ensured. One way to overcome these fundamental diffi-

culties is to reformulate the SFS as a variational problem while

introducing additional smoothness and integrability, or regulariza-

tion terms into the minimized functional. Unfortunately, this

approach has some serious drawbacks. In this work, following a

paradigm introduced by Atick et al. (1996), we try to directly use a

priori information about the geometry of the studied surfaces. Giv-

ing up generality, we assume a model of the surface controlled by a

finite set of parameters. The resulting parameter estimation SFS

problem appears to be simpler than that of the original one. SimpleCorrespondence to: A. Nissenboim; E-mail: alexn@il.ibm.com
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analytical observations reveal that good initial estimates are vital

for our method. The initial estimates are obtained by means of anal-

ysis of the wavelet decomposition of the given image. Moreover,

our method benefits from another important simplification, due to

the wavelet decomposition of the image data. It enables us to local-

ize image singularities, which correspond to surface features. The

parameter fitting process can be carried out independently and in

parallel for every feature. Finally, to address the ill-posedness issue,

an iterative Levenberg–Marquardt (LM) minimization procedure

has been adopted in our work. This paper is organized as follows.

In Section II, we mathematically formulate the SFS problem. In

Section III, we briefly overview the previous relevant work. Section

IV contains the description of the new method. Section V presents

results and discussion.

II. THE SFS PROBLEM

A. General Problem Setup. The monocular SFS problem is

defined as follows. Suppose we are given a smooth height field z ¼
z(x,y) over some region D ¼ {(x,y) | (x,y) [ R2}. Naturally, its

shaded image displays variations of brightness and is represented as

the intensity map I (x,y). The value of I (x,y) at each point (x,y)
depends on reflectance properties of the surface, its gradient, and

imaging geometry parameters like light direction, and so on. This

dependence is often called reflectance function, and we denote it as

R ¼ R (p,q), where p ¼ zx and q ¼ zy. The relationship

Iðx; yÞ ¼ R pðx; yÞ; qðx; yÞð Þ ð1Þ

is called the irradiance equation, and we state the SFS problem as

an attempt to recover the surface height field z(x,y) from a single

shaded image I (x,y) given the reflectance function R, i.e., to deter-

mine z(x,y) that satisfies the irradiance equation (1).

Some assumptions are to be made about imaging geometry.

First, we assume that the size of the studied object is small, com-

pared to the viewing distance, which enables us to presume ortho-

graphic projection to the image plane. We also assume that the cam-

era direction coincides with the Z-axis. In this case one can choose

the coordinate system of both image and object planes to be identi-

cal and denoted by (X,Y). We denote by � the composite albedo,

which consists of intensity of the light source and the ratio of the

total reflected light flux to the total incident light flux on the

object’s surface. We assume that � is constant along the surface.

We also denote ~L to be the unit vector of the illumination direction.

We assume that there is only one source of light located at infinity.

B. Imaging Models. In this work we used two models of image

formation—a Lambertian model and a simple model of SEM reflec-

tance. We say that a surface exhibits Lambertian diffuse reflection

property if under uniform illumination the value of I (x,y) is propor-
tional to the cosine of the angle between the normal to the surface

at the point (x,y) and the light direction. Thus,

Rðp; qÞ ¼ �h~nðx; yÞ; ~Li

where <, > is a standard inner product and

~nðx; yÞ ¼ ð�pðx; yÞ;�qðx; yÞ; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðx; yÞ þ q2ðx; yÞ þ 1

p

is a unit normal vector to the surface z ¼ z(x,y). In case of SEM, the

simplest image formation model is given by

Rðp; qÞ ¼ �

h~nðx; yÞ; ~Li
This model holds well when specimen is coated with gold and in

absence of charging artifacts. For rigorous theoretical foundations

of SEM image formation see Reimer (1993). It turns out that the

problem of computing � and ~L can be solved separately and, there-

fore, we assume them to be known (see Zheng and Chellappa,

1991). This allows us to concentrate our efforts on solving the SFS

problem itself. We should note here that the algorithm presented

below in no way depends on the particular imaging model.

III. PREVIOUS WORK

A. Horn’s Variational Approach. In this section we would like

briefly to survey most relevant previous solutions of SFS problem.

Since the problem has very long history, the full overview is out of

the scope of this work, but nice and comprehensive SFS techniques

analysis can be found in Kimmel et al. (1995) and Zhang et al.

(1994). The SFS problem was first analyzed in computer vision by

Horn in the early 1970s (Horn, 1975). His first solution involved

characteristic strips expansion of the irradiance equation (1) and

was not stable in practice due the noise sensitivity and error accu-

mulation problems. During 1980–1990 in his work with Ikeuchi

and Brooks another approach emerged (see Ikeuchi and Horn,

1981; Horn and Brooks, 1986). Using the calculus of variations,

Horn and his coworkers reformulated the problem and solved it by

minimizing an integral functional of the form

E ¼
Z

D

Z
Eðp; q; zÞdx dy ¼

Z

D

Z
ðEB þ ES þ EIÞdx dy

where
EB ¼ ðIðx; yÞ � Rðp; qÞÞ2

ES ¼ �ðp2x þ p2y þ q2x þ q2yÞ
EI ¼ �ððzx � pÞ2 þ ðzy � qÞ2Þ

We say that ES and EI are respectively smoothness and integrability

regularization terms and � and l are scalar multipliers. Obviously,

ES is small whenever the surface does not vary too fast. The mini-

mization was done by iterative approximation of the associated sys-

tem of three Euler equations where p, q, and z are treated as inde-

pendent variables. At each step the solution must be feasible, i.e.,

p ¼ zx and q ¼ zy, so the third, so-called integrability constraint, is

imposed. The scalar parameters � and l are representing the weight

of the penalty terms and they have to be carefully tuned. Too large

l, for example, might cause oversmoothing of the solution surface

and important details would be lost. Researches have also tried to

work with different penalty terms, like e.g.

ES ¼ ðRx � IxÞ2 þ ðRy � IyÞ2

in the work of Zheng and Chellappa (1991) or totally different

approaches like in Hsieh et al. (1994), Jones and Taylor (1994),

Kimmel and Bruckstein (1995), Pong et al. (1989), Ron and Peleg

(1990), Szelisky (1991), and Wei and Hirzinger (1997). However,

Horn’s variational method had been the ‘‘main stream’’ approach to

the SFS problem until mid of 1990s.
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B. Model-Based SFS. Another important idea was suggested by

Atick et al. in 1996 (see Atick et al., 1996). In this work the authors

dealt with the problem of recovering of the shape of human faces

from their shaded images. To employ the a priori information about

the class of objects studied, Atick gives up generality and solves the

SFS problem for a particular class of surfaces. Given the exact map-

pings in a cylindrical coordinate system, he regarded each mapping

as an independent realization of some stochastic process. Thus a

‘‘head-surface’’ can be represented as

rð�; lÞ ¼ r0ð�; lÞ þ
XM
i¼1

aiuið�; lÞ

where r0 (�, l) is a ‘‘mean-head,’’

r0ð�; lÞ ¼ N�1
XN
i¼1

rið�; lÞ; rið�; lÞf gNi¼1ðdatabaseÞ

and ui (�, l) are the first M components of Karhunen–Loeve decom-

position derived from the scanned surfaces, so-called ‘‘eigenheads.’’

So, denoting

~� ¼ ð�1; �2; . . . ; �MÞ

the SFS problem can be reformulated as

min
~�

X
l;�

I xðl; �Þ; yðl; �Þð Þ � Rðp; q;~�Þð Þ2

which has been solved using gradient descent method. Here, the

SFS problem becomes one of optimal parameter estimation. The

most important advantages of this approach are the following:

1. Since ui (�, l) are smooth and feasible functions, the whole r
(�, l) is smooth and feasible, i.e., there is no need in ES and EI

penalty terms, and hence, no need in tuning of l and �
parameters.

2. While solving Euler–Lagrange system one needs some

boundary conditions. If the choice of these conditions is

‘‘bad,’’ the solution may wander far from the optimal one. Here

the ‘‘mean-head’’ is a natural choice to start the minimization

process.

Note that this model-based surface representation is low-dimen-

sional, which makes the numerically complex SFS problem much

more tractable.

IV. THE NEWMETHOD

A. A Priori Knowledge. Unlike the work of Atick mentioned

above, with surfaces of wafers we cannot obtain any kind of statisti-

cal information, except, perhaps, the CAD design itself which may

be seen as a ‘‘mean-wafer,’’ but no meaningful representation of a

perturbation about this ‘‘mean-wafer’’ is available. Therefore, we

concentrate our efforts to employ a priori knowledge about VLSI

wafer geometry in an attempt to obtain low-dimensional and mean-

ingful representations of wafer surfaces. Wafer surfaces could be

characterized as a plane with a set of mutually disjoint wells and

slots (see Fig. 1). These slots might be either straight or bent (so-

called ‘‘L-shaped’’ slots). We assume that all the slots are parallel

to the X and/or Y axes of the image plane. This assumption does not

always hold in practice, but its violation is rather rare and hence dis-

regarded in our model. The shape of wells may vary in their size.

Wells of relatively large size look like a rectangle with somewhat

rounded corners and edges that are normally parallel to the axes.

However, smaller wells assumed to have rather rounded shape like

ellipses or circles. One cannot assume that slopes of wells are sym-

metrical. Also no assumptions can be made about the small wells

except for their rounded shape. In the next section we define mathe-

matical objects that fit well the geometry described above.

B. The Mesa Functions. We start with the following formal

construction of a so-called mesa (or table) function well known

from the theory of distributions (Zemanian, 1965). Let us define

f ðx; x0; "Þ ¼ c exp 1

1�
x� x0

"

� �2

8>>>>>>>>:

9>>>>>>>>;; jx� x0j < "

0; elsewhere

8>>><
>>>:

The constant c in this definition is such that

Z x0þ"

x0�"

f ðx; x0; "Þdx ¼ 1

Then we introduce an auxiliary function ~f as following:

~f ðx; xr; "r; xl; "lÞ ¼ f ðx; xl; "lÞ � f ðx; xr; "rÞ

and a mesa function is then defined as (see Fig. 2)

Fðx; xr; "r; xl; "lÞ ¼
Z x

�1
~f ðt; xr; "r; xl; "lÞdt

The parameters of mesa function have simple geometrical inter-

pretation:

1. |xr � xl| is responsible for the size of the ‘‘pulse.’’
2. "r, "l control how fast the function climbs up and falls down.

Figure 1. Surface model.
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Now, let us define 2D mesa function of height h to be h times

the tensor product of two 1D mesa functions. For simplicity, we denote

~�x ¼ ðxr; "xr ; xl; "xlÞ; ~�y ¼ ðyr; "yr ; yl; "ylÞ

~� ¼ ðxr; "xr ; xl; "xl; yr; "yr ; yl; "yl; hÞ ¼ ð~�x; ~�y; hÞ

and then (see Fig. 3)

Tðx; y;~�Þ ¼ h � Fðx;~�xÞ � Fðy;~�yÞ

C. Surface Representation. By means of 2D mesa functions

we can build successful representations of surfaces of the type

described in the previous section. Indeed, a straight slot feature can

be represented as a negative mesa function with

jxr � xlj � jyr � ylj

or jxr � xlj � jyr � ylj

To describe a well, we shall let |xr � xl| % |yr � yl| and

jðxr � "xrÞ � ðxl þ "xlÞj << minð"xr; "xlÞ

jðyr � "yrÞ � ðyl þ "ylÞ j >> minð"yr; "ylÞ

8<
: ð2Þ

then the size of the ‘‘pulse’’ is negligible and the shape becomes

rather elliptical. If condition (2) does not hold, we can characterize

the shape as a ‘‘rectangle with rounded corners.’’ An ‘‘L-shaped’’

feature can be constructed as difference between two 2D mesa func-

tions when one of them is shifted from another. So we can write

now a surface as a superposition of several 2D mesa functions,

when each of them is fully defined by its vector of parameters.

zðx; yÞ ¼
XN
i¼1

Tiðx; yÞ; ð3Þ

with

Tiðx; yÞ ¼ Tðx; y;~�iÞ

which means that in terms of this model, SFS problem becomes one

of optimal parameter estimation. In the following chapters, we shall

develop a technique to separate between the features and find N sets

of parameters for each feature instead attempting to estimate them

all together.

We would like to stress here two major difficulties that we have

to cope with. A first and obvious one is that in formula (3) the num-

ber of terms in the sum N is, actually, unknown. Another weakness

is the necessity for a good initial surface estimate to start the mini-

mization process.

D. Strategy. In light of the problems presented above, let us

briefly describe our main strategy. It is common practice to take

into account prior knowledge about image structure (like edge-

geometry or statistics of the noise) to simplify the very complex

tasks of image processing and analysis. In our case, the surface

model described above can be used to derive a set of simple proper-

ties of the resulting images, that are almost independently from the

image formation rule. One can readily observe that the mesa function

model induces a certain geometrical structure of the image. If the

surface studied is a superposition of several mesa functions, then its

image will have the following properties. First, all edges will be

straight and parallel to the axes. Second, the edges are expected to

be organized in well-defined constellations. For example, in case of

an image of a large well, its edges will form a rectangular shape (see

Fig. 4). Therefore, by decomposing the image in the Haar wavelets ba-

sis, and picking the largest amplitude coefficients by means of sim-

ple thresholding, we shall compact and effective representation of

image singularities. Moreover, thanks to the similarity property of

wavelet multilevel representation, large Haar coefficients will

carry the geometrical information of image singularities at each

level of the decomposition. Since image singularities form well-

organized clusters, so do the large amplitude wavelet coefficients.

An algorithm to discover these clusters can be developed. Then we

shall exploit wavelets representation properties to localize every

surface feature from its coefficients cluster and roughly calculate its

Figure 3. 2D Mesa function.

Figure 2. Mesa function.
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parameter vector. This vector will subsequently serve as the starting

point for the least square error (LSE) optimization process and itera-

tively refined toward the final result. Two points are worth mention-

ing. First, applying this strategy, we will separate surface features

and treat them independently, which solves the problem of unknown

number of terms in model (3). Second, the initial parameter esti-

mates are geometrically meaningful, which significantly reduces

our chances to fall into some local minima during the LSE proce-

dure. Let us elaborate on this strategy in the following sections.

E. Haar Wavelets. The theory of wavelets has had a major

impact on the field of signal and image processing and computer

vision. Wavelets and their possible applications have been exten-

sively studied by many researches during the last decade (Mallat,

1999). Presenting the essentials of wavelet analysis is out of the

scope of this paper; however, the definition of Haar Wavelet Trans-

form, along with justification of its choice, has to be provided. In

this section we follow the formalism introduced by Mallat (1999).

Let us denote 1D Haar scaling and mother-wavelet functions

respectively by F(x) and C(x), where F(x) is an indicator function

of [0,1] and C(x) ¼ F(2x) � F(2x�1). In 2D case, if we denote the

three Haar mother-wavelets as

�1ðx; yÞ ¼ �ðxÞ�ðyÞ;
�2ðx; yÞ ¼ �ðxÞ�ðyÞ;
�3ðx; yÞ ¼ �ðxÞ�ðyÞ

If we define the dilations and translations of 2D Haar mother-wave-

lets as

�1
j;n1;n2

¼ 2�j�1ð2�jx� n1; 2
�jy� n2Þ;

�2
j:n1;n2

¼ 2�j�2ð2�jx� n1; 2
�jy� n2Þ;

�3
j:n1;n2

¼ 2�j�3ð2�jx� n1; 2
�jy� n2Þ

and denote n ¼ (n1, n2) then one can prove that the system

of functions (C1
j,n,C

2
j,n,C

3
j,n)(j,n)[Z3 constitutes an orthonormal

basis of L2 (R2), see Mallat (1999). The expansion of f (x,y) [
L2 (R2),

f ðx; yÞ ¼
X3
k¼1

X1
j¼�1

X1
n¼�1

hf ;�k
j;ni�k

j;n

has an interpretation in terms of image details aggregation at all re-

solution levels that range from 0 to þ?. This plays a crucial role in

our application. The inner products hf, C1
j,ni represent details in the

horizontal direction, hf, C2
j,ni give the details in vertical direction

and hf, C3
j,ni are the details in both directions (corners). Since we

never relied on the orthonormality of the basis, other types of hier-

archical subband decompositions can be effectively used. It is the

suitable geometrical properties of Haar functions that make them

appealing to our model. This is well illustrated by the decomposi-

tion exhibited in Figure 5.

F. Feature Tracking Graph. Our goal in this section is to define

a structure, which will enable us to take advantage of the geometri-

cal information carried by the large amplitude coefficients of the

wavelet decomposition. We recall that at each resolution scale s
three binary images Hs, Vs, and Ds, are produced. The images are

built from the large amplitude coefficients corresponding to hori-

zontal, vertical, and diagonal directions. For any binary image I, we
denote N (I) to be a number of connected components of I. Given
the connected components of all three images

CCðHsÞ ¼ CCjðHsÞ
� �NðHsÞ

j¼1

CCðVsÞ ¼ CCjðVsÞ
� �NðVsÞ

j¼1

CCðDsÞ ¼ CCjðDsÞ
� �NðDsÞ

j¼1

let us define a feature tracking graph (FTG) Gs using the following

definitions:

1. The set of vertices of Gs is equal to the set CC(Ds).

2. The set of the edges of Gs will be divided to the two disjoint

subsets named H-type and V-type edges as following:

The unordered pair (vp, vq) of vertices is said to be H-type

edge iff

9k : CCpðDsÞ \ CCkðHsÞ 6¼ �f g

and

CCqðDsÞ \ CCkðHsÞ 6¼ �f g

and it is said to be V-type edge iff

9k : CCpðDsÞ \ CCkðVsÞ 6¼ �f g

and

CCqðDsÞ \ CCkðVsÞ 6¼ f�g

Examples of binarization and corresponding FTG are presented on

Figures 6 and 7.

Figure 4. Lambertian image of the surface shown in Figure 1.
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Figure 5. Haar wavelet decomposition of the image shown in Figure 4. White and Black dots respectively represent large positive and negative

coefficients. Gray areas represent nearly zero coefficients.
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Figure 5. (Continued)

Vol. 16, 65–76 (2006) 71



An unconnected FTG Gs can be decomposed to the set of N con-

nected subgraphs

Gs ¼ fCSGiðGsÞgNi¼1

by means of any standard method. The set of all pixels that constitute

the connected subgraph CSGi (Gs) will be denoted by Pi (Gs). We

mentioned in Section IV.D that according to the model, if surface

singularities are expected to be organized into certain geometrical

structures, so are the constellations of the largest wavelet decompo-

sition coefficients. Decomposition of FTG in connected subgraphs

naturally reflects there geometrical structures at each level of reso-

lution. For each CSGi (Gs), using some properties of wavelet trans-

form, it is possible to locate the spatial position of the surface singu-

larities that originated the coefficients that CSGi (Gs) is built from.

G. Spatial Orientation Trees, Regions of Interest (ROIs),
and Initial Estimates. To trace the location of surface features,

we need a notion of the spatial orientation trees (SOTs), borrowed

from the works of Said and Pearlman (1996) and Shapiro (1993). In

the works mentioned, SOTs have been used as a tool to optimize

the transformation coefficients coding. Here we slightly modify

their construction in order to adapt them to our goals. The Haar

wavelet decomposition can be viewed as a hierarchical pyramid

constructed with recursive four-subband splitting. On this pyramid,

we define a quad-tree structure, which naturally reflects the spatial

relationship between the coefficients on different scale levels in the

following way. For each spatial orientation k ¼ 1, 2, 3, we create

quad-trees by relating recursively each coefficient at the scale s and
position (p,q), say wk

s (p,q), to its four children at the next, finer,

scale s þ 1:

wk
sþ1ð2p; 2qÞ; wk

sþ1ð2pþ 1; 2qÞ;

wk
sþ1ð2p; 2qþ 1Þ; wk

sþ1ð2pþ 1; 2qþ 1Þ

Usually, the branching rule of the coefficients at the most coarse

scale, say s ¼ 0, is different. Each coefficient w0
0 (p,q) is associated

Figure 7. FTG built from the images in Figure 6.
Figure 6. Binarization of the H, V, and D components of the Haar

decomposition presented on Figures 5g, 5h, and 5j.
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with the three wavelet coefficients at the same scale and location:

w1
0 (p,q), w2

0 (p,q), w3
0 (p,q), and considered to be the roots of the

trees. Unlike the classical SOT, we do not consider the coefficients

w0
0 (p,q) and build the trees from the coefficients of the scale level

s ¼ 1. In addition, we artificially attach the image planes to each

spatial orientation. The reason behind it is that we are going to use

not the values of the pixels, but only their absolute coordinates. The

‘‘pseudocoefficients’’ at this artificial level on the image plane will

be considered as the leaves of the trees. The construction of SOT is

illustrated in Figure 8. Note that if at some scale level s and position
(p,q) there is a wavelet coefficient wk

s (p,q) of high amplitude, then

all image singularities that possibly contributed to the coefficient

are included into the spatial area of the leaves of the SOT rooted at

(s,p,q). Let us denote it as the region of influence of wk
s (s,p,q) by

ROI (s,p,q) (see Fig. 8). Clearly, the wavelet coefficients w1
s (p,q),

w2
s (p,q), and w3

s (p,q) have the same ROI. Now, the ROI of each

connected subgraph can be defined as

ROIðCSGiðGsÞÞ ¼
[

ðp;qÞ2PiðGSÞ
ROIðs; p; qÞ

One can also see that by construction of the SOT, the ROIs of two

different points (s,p1,q1) and (s,p2,q2) are disjoint.

ROIðs; p1; q1Þ
\

ROIðs; p2; q2Þ ¼ f�g

and hence so are the ROIs of two different connected subgraphs:

ROIðCSGiðGSÞÞ
\

ROIðCSGjðGsÞÞ ¼ f�g; i 6¼ j

Thus, the decomposition of the graph GS to the mutually disjoint

connected subgraphs enables us to define a set of mutually disjoint

domains on the image plane where the potential surface features are

located. Then, it is possible to calculate the set of the initial guesses

for the feature location in order to initialize the optimization

process.

We use a rather simple strategy to establish the initial estimates

for the surface parameters. Given the sets of mutually disjoint con-

nected subgraphs {CSGi (Gs)}i and their ROIs {ROI (CSGi (Gs))}i,

we apply the following two-step heuristic decision:

Step 1: Decide on the ‘‘type’’ of the feature.
Step 2: Given the ROI, try to compute the parameters of a sym-

metrical feature of an appropriate type such that it would fully

occupy the ROI (see an example in Fig. 9 and Table I).

The only parameter which does not play any role in this heu-

ristic decision is the parameter ‘‘h’’ of the height of the mesa-

function. We suggest to overcome this problem by choosing the

initial value of the parameter according to the available data

from the CAD of the wafer. By applying this scheme, two

essential advantages can be achieved. First, since the ROIs are

mutually disjoint so are the initial estimates and then the optimi-

zation processes will not interfere. This enables us to carry out

the optimization computation in parallel, if appropriate hardware

is available. Second, the optimization process per feature will

run only on its own ROI and not on the whole image. This may

provide considerable speed-up in such a heavy computational

task as SFS.

H. The SFS Algorithm. We list below a summary of the steps of

our new SFS algorithm.

Input

1. I (x,y)—the M � M gray level image of the studied wafer

surface.

2. S—the coarsest scale level of the discrete wavelet transform.

3. LET—the local error tolerance value.

Figure 8. SOTconstruction and ROI.

Figure 9. Initial guess image.

Table I. Initial guess vector.

xr xl "xr "xl yr yl "yr "yl h

9.10 �9.10 0.89 0.89 9.10 �9.10 0.89 0.89 �1.00

9.10 �7.14 0.89 0.89 9.10 �7.14 0.89 0.89 1.00

6.60 �2.69 0.89 0.89 6.60 �2.69 0.89 0.89 �1.00

6.60 0.89 0.89 0.89 6.60 �0.89 0.89 0.89 1.00

5.97 4.17 0.89 0.89 7.22 5.42 0.89 0.89 �1.00
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Output

1. Number of features found

2. A vector of parameters of each feature

3. A vector of local errors induced by the calculated vector of

the parameters

Step 1

1.1. Compute the Haar Wavelet Transform of the input image I
(x,y) up to the predefined scale level S.

1.2. Set the current scale level S

Step 2

2.1. Produce three binary images H, V, and D by picking the

large amplitude coefficients of the corresponding parts of

the pyramid at the current scale level s.
2.2. If the images H, B, and D are identically equal to zero—

STOP.

Step 3

3.1. Compute the connected components of H, V, and D.

3.2. Build the graph Gs.

3.3. Compute the set of connected subgraphs {CSGi (GS)}
N
i¼1

Step 4: For each connected subgraph do

4.1. Decide on its type.

4.2. Calculate ROI (CSGi (Gs)).

4.3. Calculate the initial estimate vector ~�0.

4.4. Launch a Levenberg Marquardt (LM) Optimization process

on the ROI starting with the calculated initial estimate ~�0,

to determine

min
~�

X
ðx;yÞ2ROI

Iðx; yÞ � Rðx; y;~�Þð Þ2

4.5. Save the resulting vector of parameters and the error intro-

duced by it.

4.6. If the error is less then the LET

4.6.1. For each pixel (p,q) [ Pi (Gs) set all the wavelet

coefficients in the SOT rooted at (s,p,q) to zero.
4.6.2. Output the resulting vector and the error.

Step 5
5.1. Set s ¼ s þ 1.

5.2. If s > S—STOP, otherwise GOTO Step 2.

It is worth mentioning that LM method was chosen here to

address the ill-posedness of SFS problem and to insure stable con-

vergence. The LM scheme is one of the most widely used nonlinear

data fitting methods, and it is often described in the literature, see

e.g., Press et al. (1988) and Gill et al. (1982). Since a regularization

property is among its virtues, the method seems to perfectly fit our

goal.

Table II. Set of parameters of the test surface.

xr xl "xr "xl yr yl "yr "yl h

9.0 �9.00 0.5 0.5 9.0 �9.00 0.5 0.5 �1.00

9.0 �7.00 0.5 0.5 9.0 �7.00 0.5 0.5 1.00

7.0 �3.00 0.5 0.5 7.0 �3.00 0.5 0.5 �1.00

7.0 �1.00 0.5 0.5 7.0 �1.00 0.5 0.5 1.00

7.0 5.00 0.5 0.5 7.0 5.00 0.5 0.5 �1.00

Table III. Set of reconstructed parameters.

xr xl "xr "xl yr yl "yr "yl h

9.0 �9.00 0.51 0.51 9.02 �9.02 0.51 0.51 �1.01

9.0 �7.00 0.51 0.51 9.02 �7.02 0.51 0.51 1.01

7.0 �3.00 0.50 0.50 6.99 �3.00 0.50 0.49 �1.00

7.0 �1.00 0.50 0.50 6.99 �1.00 0.50 0.50 1.00

7.0 5.00 0.50 0.50 6.99 5.00 0.50 0.50 �0.99

Figure 10. Surface reconstructed by our method.

Figure 11. Image of the surface shown in Figure 10.
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V. SUMMARY

A. Discussion. There are several important characteristics of the

algorithm that we shall subsequently point out. First, a rather

obvious observation is that the algorithm proceeds from the coarse

to the fine scale levels. This does not mean that our algorithm

‘‘prefers’’ smoother solutions, like it was in the classical works of

Ikeuchi and Horn (1981) and Zheng and Chellappa (1991), because

we have not introduced any smoothness departure penalty term.

However, the ‘‘coarse-to-fine’’ nature of the algorithm has some

implications on its behavior. As we build the pyramid from the fine

to the coarse scale levels, the ‘‘blobs’’ of high amplitude coefficients

tend to mix together, meaning that the geometrical information car-

ried by the ‘‘blobs’’ (the potential connected components and the

elements of the FTG) is much more precise on the fine levels of the

pyramid than on the coarse ones. Actually, if the image is abso-

lutely free of noise, it is sufficient to choose S ¼ 1 to recover the

surface. However, in the presence of additive white noise, no com-

prehensible information will be contained at the finest level of the

pyramid. Another conclusion is that by processing the pyramid

from a coarse to a fine scale the algorithm will first recover the large

and well-isolated surface features because the geometrical informa-

tion about them is likely to ‘‘survive’’ at these levels. The dense

constellations of smaller features can be recovered only from fine

levels because their geometrical information will be lost at coarse

levels of the pyramid. Note that if some ‘‘bold’’ feature has been

recovered from some coarse level s of the pyramid and some con-

nected subgraph CSGi (Gs), then there is no point in taking into

account the wavelet coefficient from finer levels belonging to the

SOTs rooted at (p,q) [ Pi (Gs). That is why the auxiliary Step 4.6.1.

has been introduced.

B. Experiments and Results. To demonstrate the efficiency

and accuracy of the proposed algorithm several synthetic images,

both with and without additive Gaussian noise, have been selected

for testing and comparisons. The algorithm has been applied under

both Lambertian and SEM image formation models. The SFS algo-

rithm proposed by Zheng and Chellappa (1991) has been imple-

mented to provide data for the performance comparisons. One

tested surface is shown in the Figure 1. It was constructed with the

set of parameters shown in Table II. Its shaded Lambertian image is

presented in Figure 4. Table III shows the resulting vectors com-

puted by our algorithm, followed by the plot of reconstructed sur-

face and its Lambertian image in Figures 10 and 11. Figures 12 and

13 show the surface and its Lambertian image reconstructed by the

method of Zheng and Chellappa.

C. Conclusions. We have presented a new approach to the SFS

problem. We employed a priori knowledge to develop a simple geo-

metrical model for the class of possible surfaces and the SFS prob-

lem was reformulated in terms of a nonlinear data fitting problem.

Wavelet decomposition has been used to determine an ‘‘intelligent

initial guess’’ to start the minimization procedure with. The stand-

ard LM minimization algorithm, known to be stable and having a

regularization property, was then adopted in order to produce an

optimal solution.
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