
Autonomous Robots 18, 21–42, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Head Movements for Depth Perception: Praying Mantis versus Pigeon

ALFRED BRUCKSTEIN
Department of Computer Science, Technion, IIT 32000, Haifa, Israel

ROBERT J. HOLT∗

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, USA

IGOR KATSMAN AND EHUD RIVLIN
Department of Computer Science, Technion, IIT 32000, Haifa, Israel

igork@cs.technion.ac.il

Abstract. Inspired by the abilities of both the praying mantis and the pigeon to judge distance by use of motion-
based visually mediated odometry, we create miniature models for depth estimation that are similar to the head
movements of these animals. We develop mathematical models of the praying mantis and pigeon visual behavior
and describe our implementations and experimental environment. We investigate structure from motion problems
when images are taken from a camera whose focal point is translating according to each of the biological models.
This motion in the first case is reminiscent of a praying mantis peering its head left and right, apparently to obtain
depth perception, hence the moniker “mantis head camera.” In the second case this motion is reminiscent of a
pigeon bobbing its head back and forth, also apparently to obtain depth perception, hence the moniker “pigeon
head camera.” We present the performance of the mantis head camera and pigeon head camera models and provide
experimental results and error analysis of the algorithms. We provide the comparison of the definitiveness of the
results obtained by both models. The precision of our mathematical model and its implementation is consistent with
the experimental facts obtained from various biological experiments.

Keywords: depth estimation, range estimation, depth from motion, motion based visually mediated odometry,
motion parallax

1. Introduction

The study of vision guided abilities in animals has be-
come significant not only for biologists, but also for
scientists working in robotics and computer vision who
are using unique functional principles learned from the
study of animals to develop mathematical models, and
then to build an intelligent robot utilizing these princi-
ples for better performance in certain tasks.

∗Present address: Department of Mathematics and Computer Sci-
ence, Queensborough, City University of New York, Bayside,
New York 11364, USA.

During certain types of head movement, objects
within the retinal image change their position both rela-
tive to one another and to the observer. This can be used
for the determination of object distances. For example,
when the head moves from side to side, objects within
the field of view appear to change position relative to
one another, with nearby objects exhibiting a greater
apparent displacement than more remote objects. Note
that this phenomenon, known as motion parallax, can
be observed in head movements of various animals.
Exploring animals’ motor output triggered by mo-
tion stimuli, biologists conduct behavioural-analytical
studies (Kral and Devetak, 1999; Lambrinos et al.,
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2000; Land, 1999), to obtain the evidence that animals
use such a mechanism for distance perception. Ani-
mals’ behavioural reaction, ideally suitable for such
studies, is a targeted jump. Owing to its ballistic na-
ture, correction of the required motor output and control
of the amplitude and velocity of the movement during
the jump are virtually impossible. Therefore, exact dis-
tance measurement must take place prior to the jump.
This is mainly important for long jumps, accompanied
by both large energy consumption and high risk of in-
jury. A biological behavioural-analytical investigation,
studying distances and other visual attributes during
jumps, was conducted for several animal species, while
the unproved hypotheses were formulated for all oth-
ers. This provides the opportunity to conduct robotics
and computer vision experimental studies to verify the
validity of some of the hypotheses on the one hand, and
build intelligent robots, utilizing learned principles for
better performance in certain tasks on the other hand.

This study examines, experimentally evaluates and
compares visually mediated motion based depth deter-
mination of two species of animals, namely the Praying
Mantis and the Pigeon. Praying Mantis relates to the in-
sect group of animals, while Pigeon relates to the birds.
For each group of animals, the discussion is first put
into the context of why motion factors may be impor-
tant for depth perception. A comparison of the apparent
movements of objects is also conducted to determine
the relative distances, while the absolute distance to the
object is determined via the velocity of the head motion
and the motion of the object’s image across the retina
of the eye.

In this paper we focus on robot vision for depth
estimation purposes. With the continuously growing
development of autonomous robots, many groups of
researchers (both engineers and biologists) have con-
ducted studies in different directions of biologically
inspired robotics vision. Generally, work in this do-
main can be classified as top-down (e.g. Weber et al.,
1998; Lambrinos et al., 2000; Collett and Rees, 1997)
and bottom-up (e.g. Möller and Lambrinos, 1997;
Möller et al., 1998, 2000). In the top-down approach a
certain task, such as path planning (Chameron et al.,
1999; Collett, 1996; Collett and Rees, 1997) or vi-
sually mediated odometry (Srinivasan et al., 1997,
Argyros (Srinivasan et al., 1997; Argyros et al.,
2001; Collett and Rees, 1997; Nicholson et al., 1999;
etc.) looks for inspiration in a biological model,
whereas in the bottom-up approach, a certain bi-
ological behavior, such as visually mediated navi-

gation (Srinivasan et al., 1996; Iida, 2001; Möller
and Lambrinos, 1997; Möller et al., 2000) or visu-
ally mediated flight control (Srinivasan et al., 1988,
1996, 1997; Iida, 2001; etc.) is directly modeled with
real robots. Chaumette et al. (1996) handle reconstruc-
tion of various 3D geometrical primitives from con-
trolled motion, Fah and Xiang (2001) analyse the
influence of the errors of the camera intrinsic and ex-
trinsic parameters to 3D depth distortion, and Dalmia
and Trivedi (1996) present the scheme for selectable
quality 3D structure reconstruction. Lewis and Nelson
(1998) tried to model the peering behavior for mid-
range depth perception using a standard normal-type
robot, rolling left and right. Their implementation was
too rough to obtain high precision of depth estimation
since there are several sources of noise factors in the
model that affect the final results. The authors came
to this conclusion in their discussion and analysis of
the precision of their results. Our work belongs to the
bottom-up approach.

Insects’ eyes are immobile and have fixed-focus op-
tics (Kral and Devetak, 1999), which makes them un-
able to use the degree of dynamic convergence of the
lines of sight to estimate the distance from the ob-
jects they are viewing. Refractive power required to
focus the image of an object on the retina cannot be
used by insects for this purpose either. In some ani-
mals, including humans, distance information can be
obtained from binocular cues, i.e. by making use of
the fact that two eyes, due to their slightly different
viewpoints, receive different information. However, the
eyes of insects are located significantly closer together
than human eyes, and thus have a lower spatial acu-
ity (Kirschfeld, 1976). As a result, insects are capable
of estimating the distance to an object by means of
binocular cues with a relatively low precision (Köck
et al., 1993). Such a distance is reasonably restricted
by the closest objects, located within an interval rang-
ing from a few millimetres to a few centimetres. It
follows from this that at greater distances, cues other
than binocular ones may play a role in distance mea-
surement. The hypothesis that motion cues could be
involved has been indicated by various studies such as
(Srinivasan et al., 1999).

Kral and Poteser (1997) indicate that the praying
mantis accompanies each sideways movement of the
body with a compensatory counter-rotation of the head
about the yaw axis, so that the head is always directed
straight forward and thus remains oriented toward the
edge of the object. The mechanism controlling the
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linearity of the head movement is not clear yet, al-
though there is some evidence of co-ordination be-
tween the visual system and the mechanical position
and movement receptors, particularly those located in
the neck (Poteser et al., 1998).

The praying mantis provides excellent opportuni-
ties for the study of depth estimation by means of
self-generated retinal image motion and motion par-
allax. The biological experimental facts could then
form the basis for a biologically relevant mathemat-
ical model that would take the experimental findings
into account, which could be of assistance for research
in computer and robot vision. Thus the eye of a mobile
robot could peer from side to side like a praying man-
tis, to estimate depth in order to avoid objects and for
other purposes.

The work presented here can be thought of as an
attempt to model visual information acquisition and
processing behaviors in the animal kingdom. Let’s first
concentrate on the Praying Mantis. A number of stud-
ies of formal behavioral models (such as the schema-
theoretic model) of the praying mantis have been pre-
sented (Ali and Arkin, 1998; Arkin et al., 2000). In
these studies, several visually mediated activities or
behaviors of the praying mantis such as prey acquisi-
tion, predator avoidance, mating and Chantlitaxia were
formulated in detail. Each of the above behaviors could
be implemented by a set of visually based functions,
one of which is investigated here. Several experimental
biologic studies researching the visual abilities and be-
haviors of the Praying Mantis were presented in Kamon
and Rivlin (1997), Poteser and Kral (1995), Poteser
et al. (1998), and Yamawaki (2000a, 2000b). The pre-
cision of our mathematical model and its implementa-
tion is consistent with the experimental facts obtained
from various biological experiments.

It is well known that the eyes of most non-predatory
birds are located in a fairly lateral position (Martin
and Katzir, 1995, 1999). Such a position provides an
extensive panoramic field of view, whereas the small
area of binocular overlap leads to either limited or
non-existent binocular vision. However, the precise
pecking behaviour of birds such as pigeons, which
have a binocular overlap of up to 30 degrees, sug-
gests that binocular cues may be involved in depth
judgement (Martinoya et al., 1988). Nevertheless, some
authors exclude binocular disparity as a possible cue
(McFadden, 1993, 1994). On the other hand, to com-
pensate for an extremely limited ability of movement
of the birds’ eyes, birds’ heads are able to move signifi-

cantly. More specifically, some birds develop a frequent
forward-backward head-movement at the rate of a few
cycles per second. This “head-bobbing” seems play a
significant role in vision and is unlikely to represent
any type of social or mating behaviour.

For pigeons, the visual role of head-bobbing has been
extensively investigated (e.g. Dunlap and Mowrer,
1930; Frost, 1978; Davies and Green, 1988, 1991; Troje
and Frost, 2000). During walking, the head movement
consists of two alternating phases: a thrust phase and
a hold phase. In the thrust phase, the head is quickly
thrust forward. While in the hold phase, the head re-
mains in a completely fixed position in space, in terms
of both horizontal (along the roll axis), and vertical
(along the yaw axis) translations, and rotation about
the pitch and yaw axes (Troje and Frost, 2000). It is
evident that the hold phase is under visual control. The
head-bobbing seems to be an optokinetic reaction, sta-
bilising the retinal image during the hold phase. Its
effect is comparable to eye saccades in humans. As a
result, image processing might be applicable here, es-
pecially for the detection of the moving objects (Frost,
1978; Troje and Frost, 2000).

In their study, Davies and Green (1990) ob-
served pigeons exhibiting head-bobbing during land-
ing, whereas they did not reveal this feature during
steady flight or takeoff. In particular, during landing, in
addition to ensuring image stabilisation, head-bobbing
may also provide depth information via motion cues
(Troje and Frost, 2000). On the other hand, a flying bird
has a problem of having no direct access to information
concerning its own speed over the ground. Propriocep-
tors can provide information concerning the velocity
relative to the surrounding air. The movement of the
air itself, caused by wind or convection currents, would
constitute another velocity component. It is supposed
that differential motion parallax information could be
used to find a solution to this problem (Troje and Frost,
2000).

The pigeon provides excellent opportunities for the
study of distance estimation by means of self-generated
retinal image motion. The biological model could then
form the basis for a biologically relevant mathematical
model that would take all of the experimental findings
into account and that could be of assistance for research
in computer and robotic vision. Thus the eye of a mo-
bile robot could make bobbing-like movements back
and forth, like a pigeon, to estimate distances in order
to avoid objects among other purposes. The precision
of our mathematical model and its implementation is
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Figure 1. Mantis Head versus Mantis Head camera.

Figure 2. Pigeon Head versus Pigeon Head camera.

consistent with the experimental facts obtained from
biological experiments.

Depth estimation from motion is a subject of several
works in computer vision (Dellaert et al., 2000; Sandini
and Tistarelli, 1990; Zheng et al., 2000). For example,
authors in Chaumette et al. (1996) handle reconstruc-
tion of 3D geometrical primitives from controlled mo-
tion, authors in Fah and Xiang (2001) analyze the in-
fluence of intrinsic and extrinsic camera parameters
errors on 3D depth distortion, and authors in Dalmia
and Trivedi (1996) present a scheme for getting se-
lectable quality 3D structure reconstruction. Here we
present a biologically motivated simplified new model
for motion based depth estimation and its robotics im-
plementation.

Time-ordered image sequences are popular tools that
allow the estimation of projected two-dimensional im-
age motion as either instantaneous image velocities or
discrete image displacements. These are usually called
the optic flow or image velocity fields, respectively. If
the optic flow is a sufficiently accurate approximation
to a two-dimensional image motion, it may be used
to determine the three-dimensional motion and struc-
ture of an object, up to a common scale factor. Op-
tic flow has many other applications, including object
segmentation, collision detection and avoidance, deter-
mination of the focus of expansion, motion compen-

sated encoding, and measurement of stereo disparity.
Barron et al. (1994) contains an extensive comparison
of several flow generation algorithms.

In this paper we provide computation evaluation
of head-motion-based depth estimation in several ani-
mals (Introduction-Section 1); we develop mathemati-
cal models of the biologically motivated visual-motor
systems for depth estimation, describe an implemen-
tation of the system and experimental environment,
present and discuss the performance of the systems
and provide experimental results and error analysis of
the algorithms (Praying Mantis Head Camera Model,
Pigeon Head Camera Model—Sections 2 and 3); we
also compare the performance of the presented models
and discuss the advantages and disadvantages of the
compound movements and their variations (Compari-
son of the two models and some variations—Section
4); and we discuss the results and also propose poten-
tial usage of the systems in a mobile robot environment
(Section 5).

2. The Praying Mantis Head Camera

In this section we describe the Mathematical Model,
Experimental Environment, Experimental Results and
Error Analysis of the Praying Mantis experimental
evaluation.
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There are several sets of controlled motion parame-
ters that allow the calculation of the depth from self-
generated head movements. Some of them are based
on retinal velocity measurements while others deal with
motion amplitude of the objects in the retinal image. To
determine absolute distances via motion parallax gen-
erated by head movements, the following mechanisms
are suggested: (1) the velocity of the head movement
is kept constant, so that the distance to the target ob-
ject is inversely proportional to the image velocity; (2)
the amplitude of the head movement is kept constant,
while velocity of the head movement varies, thus al-
lowing computation of the distance to the target object
relying on the relationship between the head amplitude
and the amplitude of the image motion; (3) the ampli-
tude of the head movement is adjusted in such a way
that the amplitude of the image motion is kept constant,
as close as possible to the threshold; a linear increase in
the amplitude of head movement with distance is pre-
defined, with the result that the object distance is deter-
mined on the basis of the amplitude of head movement
only; (4) the velocity of the head movement is adjusted
in such a manner that the velocity of the image mo-
tion approaches a constant, as close as possible to the
threshold; as a result, a linear increase of the velocity
of head movement with distance is predefined. It can
be concluded from the nature of the head movements
that the simplest principles among the above (1 and 2)
based on constant velocity or amplitude of the head
movement are the feasible methods to utilize (Kral and
Devetak, 1999; Lambrinos et al., 2000; Land, 1999).
For the mantids, it is very likely that the distance in-
formation is provided by image velocity, described in
the first case above (Kral, 1998, 1999; Poteser et al.,
1998; Srinivasan et al., 1999). Our current experimen-
tal configuration utilizes the velocity measurements,
which is similar to the method utilized by the Praying
Mantis.1

2.1. The Model

Figure 3 illustrates the process. The camera moves left
and right (pure translation) along the X -axis according
to the function c = c(t), where we set c = c(0). Typi-
cally this motion is with constant speed (and chang-
ing direction at the edges of the platform) such as
c(τ ) = sV0τ , where s is 1 or −1 depending on the
peering direction.

Figure 3. Mantis head camera model. The surface, whose cross
section is given by z = g(r ), is viewed by a camera with focal point
moving along the X -axis. ρ denotes the displacement along the X -
axis from the CCD center on the image plane at which a feature is
projected (ρ0 = ρt = ρ), and r0(ρ) and rt (ρ) are the displacements
where points observed at the displacement ρ on the image plane are
located on the surface of the object (r0 �= rt ).

We start from the following relationship, where f is
the focal length of the camera:

ρ

f
= r

z
.

When the camera is in its initial position (τ = 0),

ρ

f
= r0

z0
.

For τ = t , when the camera is displaced along the
X -axis according to the function c(t) we have

ρ = f
rt − c(t)

zt
= f

rt − c(t)

g(rt )
,

in the same coordinate system. Whence,

1

f
ρg(rt ) = rt − c(t),

or

rt = 1

f
ρg(rt ) + c(t). (2.1)
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In the most general case we define the inverse function
as

rt = hc(ρ). (2.2)

The image might be regarded as a function of r which
itself is a function of time and ρ, say I = F(rt ) =
F(hc(ρ)) = F(hc(t)(ρ)). Useful information can be
obtained by observing the ratio of the derivatives of I
with respect to ρ and t :

∂ I
∂ρ

∂ I
∂t

=
∂ F(rt )

∂ρ

∂ F(rt )
∂t

=
F ′(hc(ρ)) ∂hc

∂ρ

F ′(hc(ρ)) ∂hc
∂t

=
∂hc
∂ρ

∂hc
∂t

. (2.3)

To evaluate (2.3) we combine (2.1) and (2.2) to
obtain

hc(ρ) = rt = 1

f
ρg(rt ) + c(t) = 1

f
ρg(hc(ρ)) + c(t).

Differentiation with respect to ρ and t yields

∂hc(ρ)

∂ρ
= 1

f

[
ρg′(hc(ρ))

∂hc(ρ)

∂ρ
+ g(hc(ρ))

]
,

and

∂hc(ρ)

∂ρ
=

1
f g(rt )

1 − 1
f ρg′(rt )

; (2.4)

∂hc(ρ)

∂t
= 1

f
ρg′(hc(ρ))

∂hc(ρ)

∂t
+ dc

dt
,

and

∂hc(ρ)

∂t
=

dc
dt

1 − 1
f ρg′(rt )

. (2.5)

From (2.3), (2.4), and (2.5) it follows that:

∂ I
∂ρ

∂ I
∂t

=
∂hc
∂ρ

∂hc
∂t

=
1
f g(rt )

1− 1
f ρg′(rt )

dc
dt

1− 1
f ρg′(rt )

=
1
f g(rt )

dc
dt

, (2.6)

g(rt ) = zt = f
dc

dt

∂ I
∂ρ

∂ I
∂t

. (2.7)

In this expression c = c(t) and dc/dt are given, while
∂ I/∂ρ and ∂ I/∂t are determined by observation.

2.2. The Experimental Environment

A miniature video camera was mounted on a specially
designed micro-translation platform, which provides
precise periodic side-to-side peering movements of the
camera with constant speed. When an electromotor of
the platform is activated, the camera translates in the
direction that is parallel to the image plane. This be-
havior simulates the peering behavior of the praying
mantis.

The video output signal of the camera is connected
to the miniature wireless video RF transmitter, which
broadcasts a video signal remotely, thus enabling auto-
nomic usage of the device on the mobile robot. Both the
camera and transmitter are operated from a single 9 V
battery. The total size of the platform with the camera
and transmitter is [10 cm × 5 cm × 2 cm].

The video signal is then received by an RF video
receiver that is connected to the PCI frame grab-
ber located inside a Dual Pentium III workstation,
which performs the image processing of all the incom-
ing frames. In addition, based on the incoming im-
age analysis, the workstation could send action com-
mands back to the remote robot, supporting the peering
platform.

Varying the target distance and peering velocity pa-
rameters, performance of the system was measured.
Targets were placed at various distances in front
of the camera: 5, 6, 7, 8, 9, and 10 cm. Peering

Figure 4. Scheme of peering behavior of praying Mantis and the im-
plementation of the miniature Mantis Head camera platform, which
utilizes peering behavior for distance estimation.
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velocities of 1.5 cm/sec and 2 cm/sec were used.
[For Mantis religiosa individuals 50 to 70 mm in
size, peering amplitudes are approximately 2 to 10
mm and peering velocities approximately 6 to 18 mm
s−1.]

2.3. Optic Flow and Experimental Results

Optic flow is a visual displacement flow field that can be
used to explain changes in an image sequence. The un-
derlying assumption used to obtain an equation is that
the gray level is constant along the visual trajectories.
In other words, the partial derivative of the gray level
I (x, y) along the optic flow V = (v1, v2) = ( dx

dt ,
dy
dt ) is

zero:

∂ It

∂x

dx

dt
+ ∂ It

∂y

dy

dt
+ ∂ It

∂t
= 0. (2.8)

This equation alone is not sufficient to determine a
unique vector field, since at any location we have only
a single scalar constraint with which to find a two-
dimensional vector (v1, v2), which constitutes an ill-
posed problem. Since in our case the camera moves
along the X -axis (with constant speed dc/dt), the
component of the velocity dy/dt along the Y -axis
is zero, so we can reduce Eq. (2.8) to the following:
∂ It
∂x

dx
dt + ∂ It

∂t = 0, i.e.

dx

dt
= −

∂ It
∂t
∂ It
∂x

. (2.9)

Using (2.9) one can rewrite Eq. (2.7) as (denoting ρ =
x):

g(r ) = z = − f
dc
dt
dx
dt

= − f
sV0

v1
. (2.10)

Figure 5. Reference distance versus averaged estimated distance.

According to (2.10), when the observer moves with
speed V0, the retinal images of objects close to the
eye (smaller z) are displaced more quickly (bigger v1)
than those of more distant objects (bigger z). In other
words, in the case of a visual field comprised of station-
ary objects, retinal image motion and motion parallax
initiated by the observer can be used to determine the
absolute and relative distance of objects. In the case
of the praying mantis, translatory side-to-side move-
ments of the head in a horizontal plane are performed
to determine the jump distance to stationary objects.
The speed of the retinal image motion is the relevant
parameter for determining the distance to the object;
thus, by computing the above optic flow one can esti-
mate the distance to the objects.

There are two main approaches to computing optic
flow: Token matching or correlation (extracting fea-
tures from each frame and matching them from frame
to frame) and Gradient techniques (relating optic flow
to spatial and temporal image derivatives). Gradient-
based methods only work when the motion is “small”
and the derivative can be reliably computed. Note that
for “large” motion one can employ multi-resolution
methods. Tracking algorithms can compute motion
when the motion is “large” by using correlation based
methods or feature tracking. In our model we used the
token matching approach.

In our experiments the target object was placed at
various known distances in front of a constantly peer-
ing camera. The distance to the object was estimated
by computing v1 in Eq. (2.10) via the token match-
ing (fast feature tracking) technique. The experimen-
tally estimated distances were compared to their true
values and the accuracy of the estimations was calcu-
lated. For each peer of the camera the object was sam-
pled n = 50 times with constant frame rate of 30 Hz,
and the average v1 was computed as vi = 1

n

∑n
i=1 v1i ,

which greatly improves the accuracy of the estimation
algorithm.

2.4. Error Analysis

In what follows we discuss the sources of inaccu-
racy of the described algorithm. Then a scheme for
accuracy evaluation of the estimated depth will be
proposed.

The algorithm presented here requires flow calcu-
lation; therefore the approximation accuracy of v1

in expression (2.10) has a critical role for the depth
estimation accuracy. The approximate precision of
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Figure 6. Tiny lego robot utilizes miniature Mantis head camera. Sequence order: top left, top right, bottom left, bottom right.

Figure 7. Two subsets (of 4 samples each) captured during left to right peer of the Mantis head camera platform (nature scenarios). Sequence
order: top left, top right, bottom left, bottom right.

v1 is mainly determined by noise and quantization.
The influence of these two factors is investigated
below.

The deviation in the camera motion speed is an-
other factor, which also has a significant impact on the
algorithm accuracy. The algorithm assumes a precise
mechanical setup, i.e. constant camera motion speed.
However, this assumption was difficult to satisfy ab-
solutely. The influence of this factor on the algorithm
accuracy is also investigated.

Let v̂ and û be the approximated retinal images
and observer velocities, respectively. Then the abso-
lute error in the depth estimation �Z can be calculated
using the following equation, obtained from (2.10).
(For brevity, we introduce k = − f s in all equations
below):

g(r ) = Z = k
u

v
, (2.11)

where u = dc
dt , v = dx

dt .

�Z = Ẑ − Z = k

(
û

v̂
− u

v

)
. (2.12)

Let δu, δv be the relative errors in the approximation

[
δu

δv

]
=

[
û−u

u
v̂−v
v

]
. (2.13)

Then,

û = uδu + u = (1 + δu)u,

v̂ = vδv + v = (1 + δv)v.

Using the above notation and (2.12) we obtain:

�Z = Ẑ − Z = k

[
(1 + δu)u

(1 + δv)v
− u

v

]
,
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which can be simplified to

�Z = k
u

v

(
1 + δu

1 + δv

− 1

)
= k

u

v

(δu − δv)

(1 + δv)
. (2.14)

Now, letting the upper bound of |δv| be M , and denoting
B to be the following constant

B = 1

1 − M
, (2.15)

(2.14) implies that

�Z ≈ Z (δu − δv) and

|�Z | ≤ |Z |(|δu | + |δv|)B. (2.16)

To estimate the expected depth calculation error, we
insert the standard deviation σu and σv into the error
expressions δu and δv:

|δu | = σu

|u| and |δv| = σv

|v| .

The relative error σZ of the estimated depth can be
evaluated using the relations above and (2.16):

δZ = Ẑ − Z

Z
= �Z

Z
,

|δZ | ≤
(

σu

|u| + σv

|v|
)

B ≈ σu

|u| + σv

|v| . (2.17)

(2.17) gives a rough evaluation of the accuracy of the
estimated depth in (2.10). Sampling n times, during
each peer of the camera, and computing the average
v1 according to v1 = 1

n−2k

∑n−k
i=k+1

↔
v1i , where

↔
v1i is

sorted v1n , greatly improves the accuracy of the esti-
mated depth.

In this part we will investigate the expected accu-
racy of the proposed depth estimation method. This
accuracy evaluation is based on the algorithm imple-
mentation scheme described before.

At first, we will concentrate on the imaging fac-
tor v̂ of the algorithm’s expected inaccuracy. The in-
accuracy of this term is caused by several factors:
the image function I (ρ, t) is given on a discrete
grid and not on a continuous one, and in addition,
the values of the function I (ρ, t) are quantized and
noisy.

Figure 8. The simulation-based errors of the depth estimation as a
function of the noise variance σ 2 and neighborhood size used for the
approximation of v̂. The first column σ = 0 shows the error values
caused by quantization only.

We use synthetic image sequences for the estima-
tion of the quantization and noise influence. The gen-
erated images were degraded with a Gaussian addi-
tive noise with mean µ = 0 and variance σ 2, with
the noise values at two different pixels being indepen-
dent. The v̂ approximations of the degraded data were
calculated and compared to the ideal v̂ values (with-
out noise and quantization). The mean square value
of the error was calculated for the different values of
noise variance σ 2 and neighborhood size. The received
values of the approximation errors of v̂ are shown in
Fig. 8. This table demonstrates the approximation ac-
curacy as a function of noise variance σ 2 and neigh-
borhood size used for v̂ approximations. The error
values shown in the columns corresponding to σ 2 =
0 are approximation errors caused by quantization
only.

From Fig. 8-[graph series] it follows that for a camera
characterized by 1% noise (∼2.0 grey level per pixel),
which is typical for real cameras, the accuracy of the
depth estimation is about 2%.

The inaccuracy in the observer velocities û is due
to the speed of the camera not being constant. This
value is determined by counting the number of frames
between the border frames (frames with no motion de-
tected). There could be an error of 2 frames from a
total of 66 frames in this procedure. Using this calibra-
tion procedure a number of times and applying sim-
ple averaging on the noisy results, the estimated error
of the observer is about 1%. From the above calcu-
lations it follows that one can expect a depth estima-
tion error of about 3% from the actual camera setup.
This expectation is consistent with the errors in the
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Figure 9. The pigeon head camera model. The surface, whose cross
section is given by z = g(r ), is viewed by a camera whose focal point
moves along its optical axis Z . ρ is the height on the image plane at
which a feature is projected, and r and rt are the heights at which
the point observed at height ρ on the image plane are located on
the object (r0 �= rt ). The camera moves in time along the optical
axis according to the function c(t). ρ is the same pixel coordinate
on the image at times t = 0 and t > 0. r and rt are two object
points projected to the same pixel coordinate ρ at times t = 0 and
t > 0.

depth estimation values obtained from the algorithm’s
execution.

3. The Pigeon Head Camera

In this section we describe the Mathematical Model,
Experimental Environment, Experimental Results and
Error Analysis of the Pigeon Head Camera experimen-
tal evaluation.

3.1. The Model

Figure 9 illustrates what is going on. The camera moves
back and forth (pure translation) along the optic axis
according to the function c = c(t), where we set
c(0) = 0. Typically this motion is periodic and with
constant speed (and changing direction at the edges of
the cart platform) such as c(τ ) = sV0τ , where s is 1 or
−1 depending on the bobbing direction.

We start from the following relationship, where f is
the focal length of the camera:

ρ

f
= r

z
.

When the camera is in its initial position τ = 0,

ρ = f
r0

z0
.

At time τ = t , when the camera is displaced along its
optical axis according to the function c(t) we have

ρ = f
rt

zt + c(t)
,

in the same coordinate system, whence

rt = 1

f
ρ(zt + c(t)) = 1

f
ρ(g(rt ) + c(t)). (3.1)

In the most general case we define the inverse function
as:

rt = hc(ρ). (3.2)

The image may be regarded as a function of r which
itself is a function of time and of ρ, say I = F(rt ) =
F(hc(ρ)) = F(hc(t)(ρ)). We claim that we can obtain
useful information by observing the ratio of the deriva-
tives of I with respect to ρ and t . To wit,

∂ I
∂ρ

∂ I
∂t

=
∂ F(rt )

∂ρ

∂ F(rt )
∂t

=
F ′(hc(ρ)) ∂hc

∂ρ

F ′(hc(ρ)) ∂hc
∂t

=
∂hc
∂ρ

∂hc
∂t

. (3.3)

To evaluate (3.3) we combine (3.1) and (3.2) to ob-
tain

hc(ρ) − 1

f
ρg(hc(ρ)) = 1

f
ρc.

Differentiating with respect to ρ and t yields

∂hc(ρ)

∂ρ
− 1

f
ρg′(hc(ρ))

∂hc(ρ)

∂ρ
− 1

f
g(hc(ρ)) = 1

f
c,

∂hc(ρ)

∂ρ

[
1 − 1

f
ρg′(rt )

]
− 1

f
g(rt ) = 1

f
c,

and

∂hc(ρ)

∂ρ
=

1
f [c + g(rt )]

1 − 1
f ρg′(rt )

; (3.4)

∂hc(ρ)

∂t
− 1

f
ρg′(hc(ρ))

∂hc(ρ)

∂t
= 1

f
ρ

dc

dt
,

∂hc(ρ)

∂t

[
1 − 1

f
ρg′(rt )

]
= 1

f
ρ

dc

dt
,

and

∂hc(ρ)

∂t
=

1
f ρ dc

dt

1 − 1
f ρg′(rt )

. (3.5)
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From (3.3), (3.4), and (3.5) we obtain

∂ I
∂ρ

∂ I
∂t

=
∂hc
∂ρ

∂hc
∂t

=
1
f [c + g(rt )]

1 − 1
f ρg′(rt )

1
f ρ dc

dt

1 − 1
f ρg′(rt )

= c + g(rt )

ρ dc
dt

, (3.6)

g(rt )=zt = ρ
dc

dt

∂hc
∂ρ

∂hc
∂t

− c = ρ
dc

dt

∂ I
∂ρ

∂ I
∂t

− c. (3.7)

In this expression c = c(t) and dc/dt are given, while
∂ I/∂ρ and ∂ I/∂t are determined by observation.

3.2. The Experimental Environment

A miniature video camera was mounted on a spe-
cially designed micro-translation platform, which pro-
vides precise periodic back-and-forth bobbing move-
ments of the camera with constant speed. Thus as
an electromotor of the platform is activated, the
camera translates along its optic axis. This actu-
ally simulates the bobbing behavior of the walking
pigeon.

The video output signal of the camera is connected
to the miniature wireless video RF transmitter, which
remotely broadcasts a video signal enabling autonomic
usage of the device on the mobile robot. Both the cam-
era and transmitter are operated from a single 9 V bat-
tery. The total size of the platform with camera and
transmitter is [10 cm × 5 cm × 2 cm].

The video signal then received by the RF video re-
ceiver that is connected to the PCI frame grabber which
is located inside a Dual Pentium III workstation, which
performs the image processing of all the incoming

Figure 10. Scheme of Bobbing behavior of Pigeon and the imple-
mentation of the Miniature Pigeon Head camera platform, which
utilizes bobbing behavior for distance estimation.

frames. Optionally the workstation could, based on the
incoming image analysis, send back action commands
to the remote robot, which carries the bobbing platform
on board. Varying the target distance and peering ve-
locity parameters, the performance of the system was
measured. Targets were placed at various distances in
front of the camera: 5, 6, 7, 8, 9, and 10 cm. Peering
velocities of 1.5 cm/sec and 2 cm/sec were used.

3.3. Optic Flow and Experimental Results

The situation regarding optic flow is the same as that
in Mantis Head Camera section. That is, the partial
derivative of the gray level I (x, y) along the optic flow
V = (v1, v2) = ( dx

dt ,
dy
dt ) is zero:

∂ It

∂x

dx

dt
+ ∂ It

∂y

dy

dt
+ ∂ It

∂t
= 0. (3.8)

By computing the above optic flow we can estimate
the distance to the objects by using Eq. (3.7).

As noted in Section 2.3, the two prevalent ap-
proaches to computing optic flow are Token matching
or correlation, and Gradient techniques. Here we use a
fast feature-tracking scheme to calculate the optic flow.

In our experiments, the target object was placed at
various known distances in front of the constantly bob-
bing camera. The distance to the object was estimated
by computing flow through the use of token match-
ing (fast feature tracking) techniques. The experimen-
tally estimated distances were compared to their known
values and the accuracy of the estimations was cal-
culated. In each bobbing of the camera the object
was sampled n = 10 times with constant frame rate
30 Hz.

Figure 11. Reference depth versus averaged estimated depth.
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Figure 12. Tiny Lego Robot utilizes miniature Pigeon Head camera. Sequence order: top left, top right, bottom left, bottom right.

Figure 13. The subsets (of 4 samples) captured during forward bobbing of the Pigeon Head camera platform (nature scenarios). Sequence
order: top left, top right, bottom left, bottom right.

3.4. Error Analysis

In what follows we discuss the sources of inaccuracy
of the described algorithm. Then a scheme for accu-
racy evaluation of the estimated depth will be proposed.
The algorithm presented here requires flow calculation;
therefore the approximation accuracy of v in expres-
sion (3.9) has a critical role in the depth estimation
accuracy. The approximate precision of v is mainly de-
termined by noise and quantization. The influence of
these two factors is investigated below. Another im-
portant factor for the depth estimation accuracy is ρ,
which is the distance from the image center to the fea-
ture point. Practically, the image center point is not
known, and its coordinates are determined by using a
center of expansion algorithm by Lenz and Tsai (1988).

The deviation in the camera motion speed is another
factor, which also has a significant impact on the algo-
rithm accuracy. The algorithm assumes a precise me-
chanical setup, i.e. constant camera motion speed and

precise zero value of c at time t = 0. However, these
assumptions were difficult to satisfy absolutely. The in-
fluence of this factor on the algorithm accuracy is also
investigated.

Let v̂ and û be the approximated retinal images and
observer velocities, respectively (inaccuracy in v̂ is
caused by error in feature tracking due to feature move-
ments and changes in their size, while inaccuracy in û
is due to the speed of the camera not being constant),
ρ̂ be the approximated value of the feature point co-
ordinate from the image center, and ĉ be the approxi-
mated value of the camera displacement from its initial
position along its optical axis at the given time. Then
the absolute error in the depth estimation �Z can be
calculated using the following equation, obtained from
(3.7):

g(rt ) = zt = ρ
dc

dt

∂ I
∂ρ

∂ I
∂t

− c = ρ
u

v
− c, (3.9)
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where u = dc
dt , v = ∂ I

∂t
∂ I
∂ρ

. This leads to

�Z = Ẑ − Z =
(

ρ̂
û

v̂
− ĉ

)
−

(
ρ

u

v
− c

)
. (3.10)

Let δu , δv , δρ , δc be ther relative errors in the approxi-
mation (we assume all are small values):




δu

δv

δρ

δc




�=




û−u
u

v̂−v
v

ρ̂−ρ

ρ

ĉ−c
c


 . (3.11)

Then,

û = uδu = (1 + δu)u

v̂ = vδv = (1 + δv)v

ρ̂ = ρδρ = (1 + δρ)ρ

ĉ = cδc = (1 + δc)c.

Using the above notation and (3.10) we obtain

�Z = ρ(1 + δρ)
u(1 + δu)

v(1 + δv)
− c(1 + δc) − ρ

u

v
+ c,

which can be simplified to:

�Z = ρ
u

v

[
(1 + δρ)

1 + δu

1 + δv

− 1

]
− cδc, (3.12)

�Z = ρ
u

v

(δρ + δu − δv + δρδu)

1 + δv

− cδc. (3.13)

If we assume δu , δv , δρ , δc are all small compared to
1, then letting the expression A <∼ B denote “A is less
than or equal to a quantity approximately equal to B”,
we have

|�Z | <∼ ρ
|u|
|v| (|δρ | + |δu | + |δv|) + c|δc|

=
(

ρ
|u|
|v| − c

)
(|δρ | + |δu | + |δv|)

+ c(|δρ | + |δu | + |δv| + |δc|). (3.14)

To estimate the expected depth calculation error, we
insert the standard deviations σu , σv , σρ and σc into the

error expressions δu , δv , δρ and δc: δu ≈ σu
|u| , δv ≈ σu

|u| ,
δρ ≈ σρ

|ρ| and δc ≈ σc
|c| . The relative error δZ of the

estimated depth can be evaluated using the relations
above and (3.14):

|δZ | = |Ẑ − Z |
Z

= |�Z |
Z

≤
(
ρ

|u|
|v| − c

)
(|δρ | + |δu | + |δv |) + c(|δρ | + |δu | + |δv | + |δc|)

ρ
|u|
|v| − c

.

Also, using the condition that the estimated depth is
at least twice the bobbing path length of the platform
(ρ u/v ≥ 2c) we obtain

|δZ | ≤ (|δρ | + |δu | + |δv|) + (|δρ | + |δu | + |δv| + |δc|)
≤ 2(|δρ | + |δu | + |δv|) + |δc|, (3.15)

|δZ | <∼ 2

(
σu

|u| + σv

|v| + σρ

ρ

)
+ σc

c
.

(3.15) gives a rough evaluation of the accuracy of the
estimated depth.

Sampling n times during each bobbing movement
of the camera, and computing the average z ac-
cording to z = 1

n−2k

∑n−k
i=k+1

↔
zi improves the accu-

racy of the estimated depth. Here,
↔
zn is a sequence

of the sorted values of zn , and only (n − 2k)—the
less noisy median values—are used in computing the
average.

In this part we will investigate the expected accu-
racy of the proposed depth estimation method. This
accuracy evaluation is based on the algorithm imple-
mentation scheme described before.

At first, we will concentrate on the imaging factor
v̂ of the algorithm’s expected inaccuracy. The inac-
curacy of this factor is caused by several factors.
First, the image function I (ρ, t) is given on a dis-
crete grid and not on a continuous one. Further-
more, the values of function I (ρ, t) are quantized and
noisy.

We use synthetic image sequences for the estima-
tion of the quantization and noise influence. The gen-
erated images were degraded with a Gaussian additive
noise with mean µ = 0 and variance σ 2, with the noise
values at two different pixels being independent. The
v̂ approximations of the degraded data were calcu-
lated and compared to the ideal v̂ values (without
noise and quantization). The mean square value of the
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Figure 14. The simulation-based errors of the depth estimation as a
function of the noise variance σ 2 and neighborhood size used for the
approximation of v̂. The first column σ = 0 shows the error values
caused by quantization only.

error was calculated for the different values of noise
variance σ 2 and neighborhood size. The received val-
ues of the approximation errors of v̂ are shown in
Fig. 14. This table illustrates the approximation ac-
curacy as a function of noise variance σ 2 and neigh-
borhood size used for the v̂ approximations. The error
values shown in the columns corresponding to σ 2 =
0 are approximation errors caused by quantization
only.

From Fig. 14-[graph series] it follows that for a cam-
era characterized by a 1% noise (∼2.0 grey level per
pixel), which is typical for real cameras, the accuracy
of the depth estimation is about 4%.

Now, we will concentrate on the non-imaging fac-
tors û, ρ̂, ĉ of the algorithm’s expected inaccuracy.
The inaccuracy of these terms is caused by several
factors:

• The inaccuracy in the observer velocities û is due
to the speed of the camera not being constant. This
value is determined by counting the number of
frames between the border frames (frames with no
motion detected). There could be an error of 2 frames
from a total of 66 frames in this procedure, which is
about 3% error.

• The inaccuracy in the feature point coordinates from
the image center ρ̂ is bounded by about 1.25% at the
used range of values of coordinates. This is one pixel
error from a minimum range of 80 pixels.

• The inaccuracy in the camera displacement from its
initial position along its optical axis at the given time
is bounded by about 2.8%. This is about 1 millimeter

of possible initial displacement out of a total range
of 37 millimeters.

From the above calculations it follows that one cannot
expect a depth estimation error less than 11% from the
actual camera setup. This expectation is consistent with
the errors in the depth estimation values obtained from
the algorithm’s execution.

4. Comparison of the Two Models
and Some Variations

4.1. Comparison of Mantis and Pigeon Methods

The precision of the Mantis Head model seems to be
much higher than that of Pigeon Head model. The
mathematical explanation of this difference is provided
next. The precision of the Mantis Head model obtained
from raw experiments is on the order of single digit per-
cents, while that of the Pigeon Head model is around
ten percent. This difference is caused by the differences
in mechanical and algorithmic parts in the compared
methods which are discussed later on in terms of par-
ticular error factors contributing to the total error. As
obtained in Sections 2.4 and 3.4 the total error in both of
the methods can be roughly estimated by the following
expressions:

|δZ | <∼
σu

|u| + σv

|v| —for the Mantis Head model.

|δZ | <∼
σu

|u| + σv

|v| + σρ

|ρ| + σc

|c|
—for the Pigeon Head model.

It is easy to see that in the second expression (for
the Pigeon) there are two factors that are missing in
the first expression (for the Mantis). This of course

Figure 15. Cumulative error of depth.
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Figure 16. Tiny Lego Robot performs docking to base station utilizing peering method. Sequence order: top left, top right, bottom left, bottom
right.

Figure 17. Tiny Lego Robot performs docking to base station utilizing peering method—another view.

Figure 18. Tiny Lego Robots perform convoy maneuver utilizing bobbing method. Sequence order: top left, top right, bottom left, bottom
right.

means that assuming similar values of the coexisting
factors, the second expression is a bigger total error.
Actually, as discussed in Sections 2 and 3, the specific
factors in the Pigeon model are also slightly bigger that

those also appearing in the Mantis model. The follow-
ing graph compares the total (cumulative) error in both
methods and the relative contribution of various factors
that influence the total error.
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4.2. When to Use What (or Advantages and
Disadvantages of the Proposed Methods)

While the Mantis model is more precise than the
Pigeon model, its usage is possible only from a static
location while the Pigeon model can be used during
motion. Praying Mantis uses a head-peering method
during the hunting for static prey from ambush loca-
tions, while Pigeon uses its method during walking,
performing head-bobbing with hold and thrust phases.

The Mantis Head model should be used when the
precise estimation of depth from the static position
of a mobile agent is required while the Pigeon Head
model should be used when the rough estimation of
depth from a moving or non-moving mobile agent
is required. This implies that the selection of us-
age of the depth estimation method should be task
dependent.

Here we may follow the purposive vision approach
(Aloimonos, 1993, “Active perception”) that does not
consider vision in isolation, but as part of a complex
system, which interacts in a specific way with the
world. Accordingly, the visual categories a visual sys-
tem uses, and consequently the algorithms it needs to
develop or learn in order to derive them, depend totally
on two things:

(a) the characteristics of the system itself (its physiol-
ogy, its mobility—is it flying, crawling, walking,
etc.—and its computational capacity); and

(b) the tasks it needs to accomplish.

In what follows we discuss various experiments that
demonstrate the usage of the above methods for dif-
ferent tasks (such as robot convoy, robot docking, etc).
Each robot could be equipped with one of several vi-
sion configurations such as peering camera, bobbing
camera, both peering and bobbing cameras, or combi-
nations of these—e.g. a camera that could be rotated
90 degrees and used for peering or bobbing, dependent
on task).

For example, for precise docking of the robot to its
base station, the peering method should be used. This
way, the robot could slowly approach the station, then
pause, measure the distance to the station and, based
on this measurement, perform the next approaching
step. The closer the robot is to its base station, the finer
the approaching steps should be performed, taking into

account the possible inaccuracy of the depth estimation
method.

Another example, illustrated in Fig. 18, is perform-
ing simple robot convoy of a few robots. Here the bob-
bing method might be used. This way, when the leading
robot pauses, the following robots could roughly esti-
mate the distance to the leader, approach to some extent
and pause in turn, signaling to the next following robot
to start its part of the maneuver. When the last robot
in the chain has finished its part, it could signal to the
leader to continue to the next step of the chain ma-
neuver. Here the rough estimate of the distance will be
enough to successfully perform this task.

In the example illustrated in Fig. 19, some robot lo-
cates the nearest robot among the others. Here only or-
dinal depth estimation will be enough to successfully
perform this task.

Another improvement that could be made based on
the previous analysis is to use a hybrid (or mix) of
the methods. For example, if the peering were to be
done in a diagonal direction in the XY plane, the two-
dimensional information could be used to obtain higher
precision of the depth estimation. This hybrid could
perform better in a multi-directional pattern environ-
ment, which improves the robustness of the model. The
possible variations of this are discussed later on.

4.3. Using Compound Movements

Some insects, such as Empusid Mantid shown in Fig.
20, demonstrate peering movements that are not sim-
ply sideways translational (Kral and Devetak, 1999).
Field observations indicate that when climbing among
the branches of shrubs and jumping from one branch to
another, the insects use these complex head movements
to estimate the distance to the nearest and most read-
ily grasped object or landing target. The complexity
of the peering movements might be directly dependent
on the complex structure of the surroundings. Chang-
ing the peering axis, distance information concerning
the objects in a variety of directions could be obtained
without the need of turning.

This motion pattern motivated us to research the
option of diagonal peering. Diagonal peering is the
combination of horizontal and vertical peering mo-
tions. It could be used both to improve the precision
of the depth estimation since the retinal velocity in-
formation is available from the X and Y directions,
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Figure 19. Tiny Lego Robot performs relative distance estimation by utilizing peering method. Sequence order: top left, top right, bottom left,
bottom right.

Figure 20. The Mantis-Empusa.

Figure 21. Diagonal Mantis head camera model. The surface, whose cross section is given by Z , is viewed by a camera with focal point moving
along a diagonal in the XY -plane. 	ρ denotes the displacement along that diagonal on the image of the projection of the feature point located on
the surface of the object to the image plane.

and to optimize the performance of the algorithm in
surroundings consistent with those of vertically and
horizontally directed patterns. Ideally, the parameters
of such motion combinations should be configurable.

In some cases when the surrounding patterns are co-
directed, just the X or the Y motion direction should
be used. When the directions of the surrounding pat-
terns are multiple and mixed, both the X and Y motion
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Figure 22. Scheme of the implementation of the miniature Mantis
Head camera platform, which utilizes the diagonal peering behavior
for distance estimation.

directions should be used. The amount of motion in
each direction should be also derived from the analysis
of the surrounding patterns for best performance and set
dynamically.

In what follows we analyze the pure diagonal mo-
tion along the X -Y direction. The camera moves right
and up and then left and down (pure translation) along
the X -Y diagonal direction according to the function
	c = 	c(t). We use notation similar to that of Section
2. Typically this motion is with constant speed (and
changing direction at the edges of the platform) such
as 	c(τ ) = s 	V 0τ , where s is 1 or −1 depending on the
peering direction.

We apply (2.7) separately to the X and Y directions
of the compound motion.

zt X = f
dcX

dt

∂ IX
∂ρX

∂ IX
∂t

, ztY = f
dcY

dt

∂ IY
∂ρY

∂ IY
∂t

,

where indices X and Y indicate the components of the
vectors projected onto the X and Y axes. In this ex-
pression, cK = cK (t) and dcK /dt are given, while
∂ IK /∂ρK and ∂ IK /∂ρK are determined by observation
for K = X, Y .

A miniature video camera was mounted on a spe-
cially designed micro-translation platform, which pro-
vides precise periodic diagonal peering movements of
the camera in the XY plane with constant speed. When
an electromotor of the platform is activated, the cam-
era translates in the direction that is parallel to the
image plane. This behavior simulates the compound

Figure 23. Reference distance versus averaged estimated distance
in X (topmost) and Y (middle) directions separately and their com-
bination (at the bottom).

two-dimensional peering behavior of the praying
mantis.

In a similar way as was described in Section 2.3 we
obtained two sets of the depth estimation results (one
each for the X and Y directions).

The resulting depth value Z can be derived from Z X

and ZY using the expression Z = αZ X + (1 − α)ZY ,
where α is the weight coefficient of the depth compo-
nents and is determined by the overall pattern gradient
direction in the picture. If all patterns are horizontal
then α = 0, and if they are all vertical then α = 1.
In the case where the angle of the peering diagonal is
dynamically configurable, it should be set perpendic-
ular to the dominant orientation of the gradient of the
pattern in order to optimize the precision of the depth
estimation.
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Figure 24. Miniature Mantis Head Camera performing diagonal peering movements for depth estimation. Sequence order: top left, top right,
bottom left, bottom right.

Figure 25. The subsets (of 4 samples) captured during diagonal peering movements of the Mantis Head camera platform (Nature scenarios).
Sequence order: top left, top right, bottom left, bottom right.

Figure 26. The subsets (of 4 samples) captured during peering movements of the Mantis Head camera platform for ordinal depth estimation
(Nature scenarios).

4.4. Ordinal Depth Estimation

From biological studies it follows that animals often use
relative motion parallax for depth perception (Sobel,
1990; Kral and Poteser, 1997). In other words, relative
distances can be determined from motion parallax, if
the distinction is made between the apparent motions
of objects relative to one another.

In some tasks knowledge of the ordinal depth is
enough for animals to perform adequately. To calcu-

late the ordinal depth there is no need to measure the
exact absolute value of the head movement velocity.
This fact could be used to simplify the model imple-
mentation in several cases. Praying mantises use the
so-called Chantlitaxia behavior when choosing a hunt-
ing place. They just select the nearest object, move
towards it, then again select the next nearest object and
move again towards it. When an appropriate location is
found, the praying mantis starts hunting from it. In this
Chantlitaxia behavior the estimation of ordinal depth
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is enough to select the nearest object in each step. Still,
during the hunting process the absolute distance esti-
mation is required.

In order to estimate which object is more distant
and which one is closer (for example for Chantlitaxia
purposes), the Praying Mantis could use the peering be-
havior and check the sign of the expression Z1/Z2 − 1,
which is derived from (2.7). If the object with depth
Z1 is closer that the one with depth Z2, the sign of the
expression above is negative.

5. Conclusions

In this study biologically motivated mathematical mod-
els of depth estimation and their implementations were
presented. We showed how one could recover depth us-
ing either peering behavior that is commonly used by
the praying mantis, or bobbing behavior that is com-
monly used by the pigeon. These models are consistent
with recent behavioral and anatomical evidence col-
lected from various biologic experiments (Poteser and
Kral, 1995; Yamawaki, 2000a, 2000b).

The presented systems can estimate the depth of a
set of objects, similarly to the ability of certain animals,
which can be used by a mobile agent for learning the
surrounding space, collision avoidance and navigation.
The real-time performance of the models adds to their
attractiveness for usage with mobile agents.

The miniature and extremely light mechanical, opti-
cal and electronic implementations of the models were
presented. These properties make it possible to install
them on top of a small mobile robot or smaller vehicle
and use them to obtain depth information of points of
interest in the surrounding space.

The precision of the depth estimations, achieved by
the models and their implementations, are consistent
with both the results of error analysis and those demon-
strated by animals.

As items for future work, we plan to investigate other
visual routines of the mentioned animals. Particularly,
we plan to use our mantis head platform mounted on
miniature mobile robots in order to implement some
of the visual behaviors of the praying mantis, as pre-
sented by Arkin et al. We also plan to implement
some of the real-time indoor navigation algorithms
(Lumelsky et al., 1990, Kamon et al., 1998, Kral et
al., 1998), using Lego mobile robots with the mantis
head platform. Using precise distance estimation by
the platform, Lego robots will be available to perform
accurate docking and other precision-requiring tasks,

which are difficult to achieve with the standard Lego
environment. As another direction for future work, we
plan to study the principles of different types of self
motion for precise depth estimation used by other ani-
mals, measure their sensitivity, evaluate precision and
compare these principles to those used by the praying
mantis and pigeon. The use of different mechanisms
for depth perception based on various types of motion
is widespread throughout different types of animals.
Some of the mechanisms are well studied by biologi-
cal experiments but some are more difficult for biolog-
ical experimental study—they remain unanswered and
exist as hypotheses. The robotics experiments could
prove the validity of some of these hypotheses.

In this study, we have developed a mathematical
model of the biologically motivated visual-motor sys-
tem for distance estimation, then described an imple-
mentation of the system and experimental environment,
presented and discussed the performance of the system
and experimental results, provided an error analysis of
the algorithm and its high precision, which is consis-
tent with that of the praying mantis and the pigeon, and
presented directions for future work.
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Note

1. Several amplitude-based experiments with Scorebot robot in our
Lab were conducted as well. Due to mechanical restrictions of the
configuration the results were significantly less precise compared
to those obtained from the custom-built miniature camera motion
platform.

References

Ali, K.S. and Arkin, R.C. 1998. Implementing schema-theoretic
models of animal behavior in robotic systems. In 5th International
Workshop on Advanced Motion Control—AMC ’98. Coimbra,
Portugal, pp. 246–254.

Aloimonos, Y. 1993. Active vision revisited. In Active Perception,
Lawrence Erlbaum Associates: Hillsdale, New Jersey.



Head Movements for Depth Perception 41

Argyros, A.A., Bekris, K.E., and Orphanoudakis, S.C. 2001. Robot
homing based on corner tracking in a sequence of panoramic im-
ages. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2001), Vol. 2. Kauai, Hawaii, pp. 3–10.

Arkin, R.C., Ali, K.S., Weitzenfeld, A., and Cervantes-Perez, F. 2000.
Behavioral models of the praying mantis as a basis for robotic
behavior. Journal of Robotics and Autonomous Systems, 32(1):39–
60.

Barron, J.L., Fleet, D.J., and Beauchemin, S.S. 1994. Performance of
optical flow techniques. International Journal of Computer Vision,
12:43–77.

Chameron, S., Beugnon, G., Schatz, B., and Collett, T.S. 1999. The
use of path integration to guide route learning in ants. Nature,
399:769–772.

Chaumette, F., Boukir, S., Bouthemi, P., and Juvin, D. 1996. Structure
from controlled motion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(5):492–504.

Collett, T.S. 1996. Insect navigation en route to the goal: Multiple
strategies for the use of landmarks. Journal of Experimental Biol-
ogy, 199:227–235.

Collett, T.S. and Rees, J.A. 1997. View-based navigation in hy-
menoptera: Multiple strategies of landmark guidance in the ap-
proach to a feeder. J. Comp. Physiol. A, 181:47–58.

Dalmia, L.K. and Trivedi, M. 1996. High speed extraction of 3D
structure of selectable quality using a translating camera. Com-
puter Vision and Image Understanding, 64:97–110.

Davies, M.N.O. and Green, P.R. 1988. Head-bobbing during walk-
ing, running and flying: Relative motion perception in the pigeon.
Journal of Experimental Biology, 138:71–91.

Davies, M.N.O. and Green, P.R. 1990. Optic flow-field variables
trigger landing in hawk but not in pigeons. Naturwissenschaften,
77:142–144.

Davies, M.N.O. and Green, P.R. 1991. The adaptability of visuo-
motor control in the pigeon during flight. Zool. Jahrb. Physiol.,
95:331–338.

Dellaert, F., Seitz, S.M., Thorpe, C.E., and Thrun, S. 2000. Structure
from motion without correspondence. In IEEE, CVPR00, pp. 557–
564.

Dunlap, K. and Mowrer, O.H. 1930. Head movements and eye func-
tions of birds. J. Comp. Psychol., 11:99–113.

Fah, L. and Xiang, T. 2001. Characterizing depth distortion under dif-
ferent generic motions. International Journal of Computer Vision,
44(3):199–217.

Frost, B.J. 1978. The optokinetic basis of head-bobbing in the pigeon.
Journal of Experimental Biology, 74:187–195.

Iida, F. 2001. Goal-directed navigation of an autonomous flying
robot using biologically inspired cheap vision. In Proceedings
of the 32nd ISR (International Symposium on Robotics), pp. 19–
21.

Kamon, I., Rimon, E., and Rivlin, E. 1998. Tangent bug: A
range-Sensor-Based navigation algorithm. International Journal
of Robotic Research, 17(9):934–953.

Kamon, I. and Rivlin, E. 1997. Sensor based motion planning with
global proofs. IEEE Transactions on Robotics and Automation,
13(6):814–822.

Kirschfeld, K. 1976. The resolution of lens and compound eyes. In F.
Zettler and R. Weiler (eds.), Neural Principles in Vision, Springer:
Berlin, pp. 354–370.
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