
Graph Isomorphisms and Automorphisms
via Spectral Signatures

Dan Raviv, Ron Kimmel, Fellow, IEEE, and Alfred M. Bruckstein

Abstract—An isomorphism between two graphs is a connectivity preserving bijective mapping between their sets of vertices. Finding

isomorphisms between graphs, or between a graph and itself (automorphisms), is of great importance in applied sciences. The

inherent computational complexity of this problem is as yet unknown. Here, we introduce an efficient method to compute such

mappings using heat kernels associated with the graph Laplacian. While the problem is combinatorial in nature, in practice we

experience polynomial runtime in the number of vertices. As we demonstrate, the proposed method can handle a variety of graphs and

is competitive with state-of-the-art packages on various important examples.

Index Terms—Graph isomorphism, graph symmetries, graph automorphisms, graph Laplacian, heat kernel maps, heat kernel

signatures

Ç

1 INTRODUCTION

A one-to-one mapping between the vertex sets of two
given graphs such that connectivity is preserved is

called an isomorphism or graph isometry. Mapping a graph
to itself in a similar structure-preserving manner is an
automorphism or graph symmetry. There is no known
polynomial-time algorithm for finding such mappings, and
the problem was never classified as NP-complete. The
graphs can be directed or undirected, weighted or
unweighted, and possibly even disconnected. Here, we
limit our discussion to the problem of graph symmetry/
isometry extraction for undirected, weighted and un-
weighted, connected graphs.

Symmetries and isometries of graphs play an important
role in modern science. In chemistry, for example, symme-
tries can predict the chemical properties of a given material
[1], as molecules can be classified according to symmetries of
the graph representing the connectivity between their atoms.

Babai and Lukas’ paper [2] on permutation groups
provided an upper bound of expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

Þ for finding
graph symmetry/isometry, where n is the number of
vertices in the graph. By restricting the structure of the
graph, better bounds were found. Such restrictions involve
limiting the degree of vertices [3] or consideration of
hypergraphs of fixed rank [4]. For some special type of
graphs, even linear complexity was proven. Such graphs
include interval graphs [5], planar graphs [6], and graphs
with bounded eigenvalue multiplicity [7].

Treating either very simple types of graphs or dealing
with exponential complexity poses a challenge for applied

sciences. Heuristic approaches for general graphs have
been proposed and were found to be quite efficient in many
practical applications. Some, e.g., You and Wong [8], Jiang
et al. [9], suggested using the branch-and-bound approach,
which is an exhaustive search algorithm with pruning that
can be applied to graphs with a small number of vertices.
Gori et al. [10] experimented with random walks, while
Umeyana [11] investigated the eigen-decomposition of the
adjacency matrix. Several fast canonical labeling algorithms
were proposed to address the graph-isometry problem,
such as Ullmann’s algorithm [12], VF [13], and VF2 [14]. In
addition, software packages implementing fast labeling
such as Bliss [15], Nauty [16], and Saucy [17] are well known.
These tools can detect isometries and symmetries for
graphs with tens of thousands of vertices quite efficiently
for many different graphs.

Isometries of shapes can sometimes be translated to
isomorphisms of graphs. Bérard et al. [18] considered
embedding of Riemannian manifolds into an infinite
dimensional euclidean space defined by the eigenfunctions
of the Laplace Beltrami operator to compute the Gromov-
Hausdorff distance between such geometric structures.
Rustamov [19] applied this idea to surface matching.
Horaud et al. [20] proposed a matching process based on
the eigenvectors of the Laplace Beltrami operator, Sun et al.
[21] noted that the diagonal of the heat kernel is a stable
shape descriptor when evaluated in several scales, while
Ovsjanikov et al. [22] used heat kernels to find correspon-
dences between shapes, and Xiao et al. [23] discussed the
structure of graphs as reflected in the heat kernel trace. This
research led to a variety of algorithms that define and
search approximate symmetries and isometries [9], [24]
between two- and high-dimensional shapes.

This paper was motivated by the Ovsjanikov et al. paper
[22] on isometries between surfaces. They discussed
structures with one possible symmetry which lead toward
a simple (one point) matching algorithm based on heat
distribution. In this note, we consider shapes (graphs) with
many automorphisms and the ambiguity of their heat
kernel maps.
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We provide theoretical support for the uniqueness of the
signatures and justify the fact that a subset of matching
vertices is sufficient for solving the problem as a whole. We
then propose a greedy algorithm for handling signatures in
a process of finding isometries and symmetries which is
exponential in the worst case, yet appears to be linear (in
the number of symmetries) in practice.

The rest of the paper is organized as follows: Section 2
reviews three definitions of graph Laplacians, followed by
Section 3 where the heat kernel signatures (HKS) are
defined and discussed. Section 4 is devoted to a method for
evaluating spectral signatures, and Section 6 describes the
proposed isomorphism computation algorithm. We provide
numerical validation in Section 7 and conclude in Section 8.

2 GRAPH LAPLACIAN

A graphG ¼ ðV ;EÞ is defined as a set of vertices V and edges
E � V � V describing the vertex connectivity. In this note,
we consider G to be undirected, connected, without trivial
loops. We define the symmetric adjacency matrix A by

Aðu; vÞ ¼ 1 if ðu; vÞ 2 E
0 otherwise;

�
ð1Þ

and the diagonal matrix Dðu; uÞ ¼ degðuÞu 2 V displaying
the vertices’ degrees.

In the literature, there are two alternative definitions for
graph Laplacians, a standard and a normalized Laplacian [25].
The standard Laplacian is defined as

L ¼ D�A; ð2Þ

while the normalized Laplacian is given by

L̂ ¼ D�1
2LD�

1
2: ð3Þ

Both Laplacians are positive semidefinite and, hence, have
nonnegative eigenvalues. The normalized version’s eigen-
values are bounded by 2 from above, but both are adequate
for our framework.

A weighted Laplacian can also be defined which we shall
use in evaluating approximate symmetries, also known as
�-symmetries [24]. In this case, the adjacency matrix is
defined as

~Aðu; vÞ ¼ wðu; vÞ if ðu; vÞ 2 E
0 otherwise;

�
ð4Þ

and the diagonal matrix becomes ~Dðu; uÞ ¼
P
ðu;vÞ2E wðu; vÞ.

The weighted Laplacian is defined as before:

~L ¼ ~D� ~A: ð5Þ

The weights wðu; vÞ for graphs with vertices embedded in a
metric space can be computed using l2 or l1 distances
between the spatial location of the vertices.

3 HEAT KERNEL SIGNATURES

One way to analyze graphs is based on heat flows. In
nature, heat diffusion is governed by the heat equation:

�þ @

@t

� �
fðx; tÞ ¼ 0; ð6Þ

where � represents the continuous Laplace-Beltrami
operator and f : X � IRþ ! IR a time-varying scalar func-
tion on the manifold X. Substantial research in geometry
was done to analyze the heat equation in general, and
specifically the Laplace Beltrami operator. One branch of
modern shape analysis focuses on spectral properties of the
Laplacian operator to address problems from shape match-
ing to shape retrieval. Here, we follow this line of research
in the discrete domain of graphs.

The heat kernel, which is the impulse response solution

of (6), describes the heat flow between vertices, and can

be evaluated from the spectral decomposition of the

Laplacian [25]:

Ktðx; yÞ ¼
XjV j
l¼0

e��lt�lðxÞ�lðyÞ; ð7Þ

where �l and �l are the eigenvalues and eigenfunctions of

the Laplacian, and x; y 2 V . As we consider a symmetric

Laplacian, such decomposition always exists.
In shape analysis, special attention was given to the

diagonal of the heat kernel Ktðx; xÞ. Sun et al. [21]
introduced a robust local shape descriptor, referred to as
HKS, that is evaluated from the heat propagation at
different scales. In addition to the diagonal, additional
information can be extracted from the rows of the kernel. A
vertex q at time t defines a map from the vertices of a graph
to IR by considering the mapping Ktðq; �Þ : X ! IR, known
as a heat kernel map [22]. These maps play a major role in the
forthcoming construction.

4 SPECTRAL SIGNATURES

In what follows, we build a unique descriptor for each

vertex in the graph ðV ;EÞ based on the eigendecomposition

of the Laplacian, and a subset of k graph vertices.
We define a k-signature SkðuÞ for a vertex u based on

k chosen vertices fpigki¼1 and jT j times ft1; t2; . . . ; tjT jg to be

the vector of length jT j � k:

SkðuÞ ¼ ðKtðpi; uÞÞki¼1; t 2 T; ð8Þ

where we concatenate all kernel values to one column

signature.
We shall show that for every undirected, connected

graph, there exists a subset of vertices fpigi which defines a

unique signature SkðuÞ for every vertex given jV j times are

used, meaning that

SkðuÞ ¼ SkðvÞ ! u ¼ v; ð9Þ

and, as shown in the next section, this signature is also
unique for isomorphic graphs. In some cases, k ¼ jV j
chosen vertices are needed, for example, in cliques, but
surprisingly, in many instances much fewer vertices are
required, and this value depends on the number of repeated
eigenvalues and the values of the corresponding eigenvec-
tors themselves.

If all eigenvalues are distinct, then inferring that the
signatures are bijective can be done given one vertex,
assuming its value is not zero in all eigenvectors, as can be
seen in Theorem 1. A more general result is given in
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Theorem 2 where more vertices are needed for constructing
distinct signatures.

Lemma 1. Assuming �i 2 IR are distinct, a; b 2 IRk, then
�k
i¼1expð��itÞai ¼ �k

i¼1expð��itÞbi for every t if and only
if ai ¼ bi for all i.

Proof. If ai ¼ bi, we clearly have equality. Choosing
k different times allows us to write k different equations,
one for each t, using an invertible matrix M such that
Ma ¼Mb, where M 2 IRk�k and Mij ¼ expð��jtiÞ. We
conclude that ai ¼ bi for all i. tu

Lemma 2. Given f�igni¼1 eigenfunctions of the Laplacian.
�iðuÞ ¼ �iðvÞ for all i if and only if u ¼ v.

Proof. In one direction, the proof is trivial. Consider a
matrix where column i is the vector �i, then �iðuÞ for all i
is a row vector in that matrix. The matrix is invertible as
its columns are linear independent; hence, its rows must
be linear independent as well. Because two rows cannot
be the same, �iðuÞ for all i is a distinct row vector for
every u. tu

Theorem 1. If the Laplacian does not have repeated eigenvalues
and vanishing values in its eigenvectors, then there exists one
vertex p for which S1ðuÞ is distinct for every u. In other words,
S is bijective.

Proof. From Lemmas 1 and 2, given ai ¼ �iðpÞ�iðuÞ, it
follows that �iðpÞ�iðuÞ ¼ �iðpÞ�iðvÞ for all i. Since
�iðpÞ 6¼ 0, we conclude from Lemma 1 that u ¼ v. tu

Theorem 2. For a general graph G, there exist k < n vertices for
which SkðuÞ is bijective.

Proof. For k vertices fpigki¼1 and n different times ftjgnj¼1, we
assume Ktðpi; uÞ ¼ Ktðpi; vÞ, which can be written as

M11�1ðpkÞ M12�2ðpkÞ � � � M1n�nðpkÞ
M21�1ðpkÞ M22�2ðpkÞ � � � M2n�nðpkÞ

..

.

Mn1�1ðpkÞ Mn2�2ðpkÞ � � � Mnn�nðpkÞ

2
66664

3
77775 ¼M

k

M1

M2

..

.

Mk

2
66664

3
77775�

�1ðuÞ � �1ðvÞ
�2ðuÞ � �2ðvÞ

..

.

�nðuÞ � �nðvÞ

2
66664

3
77775 ¼ �0;

ð10Þ

where Mij ¼ expð��jtiÞ. While every Mi is not necessa-
rily invertible, we can extract n independent rows from
their concatenation in (10) because for each j there exists
p such that �jðpÞ 6¼ 0 and the different times in Mk (for all
k) are chosen to prevent linear dependencies between the
rows. Note that at most n� 1 vertices are required to
construct n linear independent rows; since the Laplacian
has one constant eigenvector there must be a row with
two nonvanishing coefficients. Finally, we conclude that
u ¼ v using Lemma 2. tu

5 ROM AUTOMORPHISMS TO ISOMORPHISMS

In contrast to automorphisms, where one Laplacian
decomposition was required to construct signatures, we

now face two sets of eigenvalues and eigenvectors.

Assuming G and ~G are isomorphic ensures that the

eigenvalues are equal, but the eigenfunctions can be chosen

arbitrarily in each subspace corresponding to repeated

eigenvalues. In what follows, we assume that there exists a

decomposition of the Laplacian of G into �i eigenvalues and

�i eigenvectors, and the Laplacian of ~G into ~�i and ~�i such

that �i ¼ ~�i and �i ¼ ~�i for all i, where the equality in the

last equation reads that there exists f : G! ~G such that

�iðuÞ ¼ ~�iðfðuÞÞ for all u and for all i. Since the signatures

remain the same for every choice of basis, we only need to

compensate for the reordering function f .
Lemmas 1 and 2 are technical results that will be useful

here as well, while the uniqueness of the signatures needs

to be redefined.
Given two isomorphic graphs G and ~G and the

corresponding eigendecomposition of their Laplacians

�i; �i and ~�i; ~�i, we define their k-signatures for u; v 2 G
and f : G! ~G as before:

SkðuÞ ¼
�
Ktðpi; uÞ

�k
i¼1
; t 2 T;

~SkðfðvÞÞ ¼
�
Ktð~pi; fðvÞÞ

�k
i¼1
; t 2 T;

ð11Þ

where ~pi ¼ fðpiÞ and pi are the anchor vertices.
We will show that the signatures are unique in the

sense that

SkðuÞ ¼ ~SkðfðvÞÞ ! u ¼ v: ð12Þ

Signatures within each graph are unique, as seen earlier.

What remains to be shown is that between two isomorphic

graphs, the signatures are still bijective.

Theorem 3. If the Laplacians of the isomorphic graphs G and ~G

do not have repeated eigenvalues and vanishing values in their

eigenvectors, then there exists a vertex p for which S1ðuÞ is

distinct for every u 2 G, and it corresponds to only one vertex

in ~G.

Proof. S1ðuÞ is unique for every u 2 G, as proven in

Theorem 1. Following Lemmas 1 and 2, we conclude that

�iðpÞ�iðuÞ ¼ ~�iðfðpÞÞ ~�iðfðvÞÞ 8 i; ð13Þ

where f : G! ~G. Because �ðpÞ ¼ ~�iðfðpÞÞ and �ðvÞ ¼
~�iðfðvÞÞ for every v, it follows that

�iðpÞ�iðuÞ ¼ �iðpÞ�iðvÞ 8 i; ð14Þ

from which we conclude, as done in Theorem 1, that

u ¼ v, meaning S1ðuÞ is unique for every u 2 G, and it

fits only one vertex in ~G. tu

Theorem 4. For two general graphs G and ~G, there exist k < n

vertices for which SkðuÞ is distinct for every u 2 G, and it has

a unique match ~SkðfðvÞÞ in ~G.

Proof. The proof is identical to that of Theorem 2, using the

correspondence function f such that

�iðuÞ ¼ ~�iðfðvÞÞ 8 i: ð15Þ

tu
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6 ALGORITHMS

From Theorems 2 and 4, we conclude that only a subset of
vertices is required to construct unique signatures and
hence define an automosrphism or an isomorphism. We
provide a greedy algorithm that constructs the signatures
by adding new matches pi ! ~pi in the ith step. We must
emphasize that even though we considered a joined
eigendecomposition in the proof given earlier, it does not
have any effect on the algorithms as the signatures are not
influenced by different decompositions. We summarize the
procedure in Algorithm 1.

Even though jV j different times are needed for distinct
signatures, we noticed in the experiments that, in practice,
fewer times are actually required.

The complexity of the algorithm is exponential when
there exists an exponential number of automorphisms, for
example, in a clique where all matches are possible, and it
can be exponential for a polynomial number of symmetries.
Still, in all the experiments, we performed a branch never
back folded; hence, polynomial time, in the number of
vertices, was measured.

It led us to define an optimistic isomorphism algorithm.
We do not perform a split in the solution space but rather
choose a single path. While this process is efficient, we
cannot guarantee its success. Yet, we did not encounter a
case in which it failed.

The spectrum can be evaluated at a complexity of OðV 3Þ,
but, in practice, we need only partial decomposition and the
power method becomes a good alternative. In our experi-
ments, we used Matlab eigendecomposition functions. For
large graphs, we only used part of the eigenfunctions
(around 1 percent) and received perfect results.

We use a small (constant) number of times (scales),
which means that in the each stage, where one additional
anchor vertex is added, it requires OðjV j2Þ in the worst case

to find all matches between signatures. In practice, we use
an approximate nearest neighbors (ANN) framework for
those comparisons, which is OðjV j log jV jÞ.

In Algorithm 2, we do not perform a split; hence, given
k anchor vertices, the complexity is OðkjV j log jV jÞ, where
usually k is very small. In Algorithm 1, an exponential
number of ANN evaluations with respect to the number of
vertices can be required, but in all the graphs, we examined
only a linear number of ANN evaluations with respect to
the number of symmetries was measured.

7 NUMERICAL VALIDATION

In the following experiments, we used 10 different times
spreading linearly from 10�1 to 10�4. We found the
framework robust for different times given small to
medium graphs. We used all eigenvectores in the construc-
tion of the signatures. Basic shapes such as lines, triangles,
and squares are the first to be explored. In Fig. 1, we see that
all automorphisms were found. More challenging graphs
are presented in Fig. 2.

We applied our method on several benchmarks. Fig. 3
depicts 9 out of the 336 automorphisms that were found for
the Coxeter graph. It is a 3-regular graph with 28 vertices
and 42 edges. Using the proposed algorithm, all auto-
morphisms were detected. Next, we considered the
dodecahedral graph that is the platonic graph correspond-
ing to the connectivity of the vertices of a dodecahedron.
Fig. 4 depicts 9 out of the 120 automorphisms. Again, all
automorphisms were found. After evaluating the eigenva-
lues and eigenfunctions, we measured linear complexity of
the algorithm for both graphs. This means that once a match
between vertices was marked, the algorithm did not
disqualify it in the following steps.

Next, we checked the Frucht graph, shown in Fig. 5,
which is a 3-regular graph with 12 vertices and 18 edges but
with no nontrivial symmetries. As expected, no additional
matching signatures were found.
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Finally, we searched for isomorphisms between two
graphs. In each experiment, we show two graphs and the
isometry by matching colors and numbers. In Fig. 6, we
provide one isometry between nodes of the Coxeter graph
after randomly shuffling its indices and in a similar manner
for the dodecahedral graph in Fig. 7. The last small-scale
experiment was done on a bipartite graph, as seen in Fig. 8,
where we present one of the 48 possible isometries with the
connectivity table below.

We compared our results to the results obtained by
using the bliss package, and found that for random graphs
that have only one automorphism, the bliss package is
faster. This is due to the time needed for spectral
decomposition. Yet, bliss failed to find all symmetries even

for simple cases. It did find all 120 automorphisms of the
dodecahedral graph, but only 12 out of the 336 of the
Coxeter graph, while the proposed method found all of
them. In addition, Jiang et. al. [9] evaluated all the
symmetries of the dodecahedral graph on a 2.4-GHz
computer using their branch-and-bound approach and
reported it took 131.2 seconds. Using the proposed method,
we found all symmetries after 0.35 seconds, including the
eigendecomposition step, on a 2.7-GHz computer running
Matlab as well.

In Algorithms 1 and 2, we stated that two signatures are
similar if they have equal values. In practice, we considered
two signatures to be equal if l1 difference between them was
extremely small (10�10). To find approximate symmetries,
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Fig. 1. Automorphisms of basic shapes. Matching vertices have similar numbers and colors.



we use the weighted Laplacian and change the strict
equality constraint to a threshold barrier. We tested our
scheme on a dodecahedron (Fig. 9). Instead of using its
adjacency matrix, which is the dodecahedral graph we
previously examined, we chose weights as the distances
between vertices. In Table 1, we show that for a low
threshold only the identity is found, but as the threshold
increases we find additional symmetries. We repeated the
experiment on different noisy versions of the dodecahe-
dron. The original length of each edge was ð1þ

ffiffiffi
5
p
Þ=2, and

we added 5, 10, 15, 20, and 25 percentage of a Gaussian
noise with a zero mean and a variance of one. The barrier on
the signatures’ proximity was increased by a factor of 1.5 for
each experiment starting with 10�8.

We tested the framework on large random graphs. We
found that in all cases, only one (nonconstant) eigenvector
was actually needed to find the matches. We used a 2.7-GHz
computer with 4 GB memory, with Matlab code for all stages.
We repeated the experiment 50 times on graphs with 1K to
7.5K vertices, and 10K to 750K edges, and provide the average

timing of the entire process in Table 2 and the matching part

alone (without eigendecomposition) in Table 3.
Finally, we tested our framework on strongly regular

graphs. Such graphs are known for a high number of
automorphisms with various connectivities. A regular graph
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Fig. 3. Nine out of the 336 automorphisms of the Coxeter graph. All self-matchings were detected.

Fig. 4. Nine out of the 120 automorphisms of the dodecahedral graph. All self-matchings were detected.

Fig. 5. The Frucht graph has no nontrivial automorphisms. No additional
matchings were found by the algorithm.



with v vertices and degree k is called strongly regular with
parameters � and � if every two adjacent vertices have �
common neighbors and every two nonadjacent vertices have
� common neighbors. We denote such a graph by ðv; k; �; �Þ.
In this experiment, we used 10 different times spreading
linearly between 10�3 to 10�1. In Table 4, we provide the
timing results of the framework using the optimistic
algorithm for isomorphisms search. For each graph shown
in the left column, we provide the timing (second column)
for full eigendecomposition and the timing results of five
experiments (columns 3 to 7). We search for an isomorph-
isms between the strongly connected graph before and after
we permute the vertices (third column). We repeated the
experiment after we removed and added one and two edges
such that no isomorphism exists.
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Fig. 6. One isometry between two coxeter graphs with different indexing. Similar colors and arrows represent the isometry.

Fig. 7. One isometry between two dodecahedral graphs with different indexing. Similar colors and arrows represent the isometry.

Fig. 8. One isometry between two bipartite graphs (left two columns) with different indexing. Similar colors and arrows represent the isometry (right

column). We provide the connectivity tables in the bottom row.

Fig. 9. A dodecahedron before (black) and after (red) adding
Gaussian noise.
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TABLE 1
Symmetries of a Noisy Dodecahedron

In each row, a different magnitude of white noise was added to vertices’ location. In each column, we increased the threshold of signatures proximity.
As the threshold increases, we find more optional symmetries.

TABLE 2
Timing (Seconds) of Random Graphs Isomorphism Search

The number of vertices increases in each row and the number of edges per vertex increases per column. The largest graph has 7.5K vertices and
0.75M edges.

TABLE 3
Timing (Seconds) of Random Graphs Matching Search

A similar experiment as shown in Table 2, but without the eigendecomposition preprocessing.

TABLE 4
Timing (Seconds) of Strongly Regular Graphs Matching Search

For each graph shown in the left column, we provide the timing (second column) for full eigendecomposition and the timing results of five
experiments. We search for an isomorphism between before and after we permute the vertices (third column). We repeated the experiment after we
removed and added one and two edges such that no isomorphism exists.



8 CONCLUSIONS

We analyzed graph automorphisms and isomorphisms from
a spectral point of view, based on concatenation of HKSs. We
found the scheme to be efficient, robust, and feasible for
practical usage. The arbitrary choice of time in the algorithm
may not be sufficient for all graphs, and further research is
needed, especially for large challenging graphs.
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