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ABSTRACT

Fast algorithms, associated with the names of Schur and Levinson, are known for
the triangular factorization of symmetric, positive definite Toeplitz matrices and their
inverses. In this paper we show that these algorithms can be derived from simple
arguments involving causality, symmetry, and energy conservation in discrete lossless
transmission lines. The results not only provide a nice interpretation of the classical
Schur and Levinson algorithms and a certain Toeplitz inversion formula of Gohberg
and Semencul, but they also show immediately that the same fast algorithms apply not
only to Toeplitz matrices but to all matrices with so-called displacement inertia (1, 1).
The results have been helpful in suggesting new digital filter structures and in the
study of nonstationary second-order processes.

1. INTRODUCTION

The aim of this paper is to show that a simple physical device, known to
electrical engineers as a discrete transmission line (i.e. one with piecewise
constant impedance profile) and to geophysicists as a “layered earth” model
(see e.g. [3], [6], [15]), can be used to easily derive fast algorithms for the
triangular factorization of matrices with a certain structure. The need for the
factorization of a symmetric, positive definite matrix R into the product of
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(lower and upper) triangular factors arises in many contexts. This so-called
Cholesky factorization is unique if the diagonal elements of the factors are
arranged to be positive, as can always be done for positive definite matrices.
There are several algorithms for Cholesky factorization (see e.g. [9]), and all of
them require O(N?®) elementary operations (additions or multiplications of
two real numbers) for the factorization of a general N X N matrix.

In many applications the dimension N can be quite large, and therefore
there is interest in determining special classes of matrices for which the
computational effort can be significantly reduced. It was shown by Bareiss
(2], Morf [12], Rissanen [14], and others that symmetric, positive definite
Toeplitz matrices, i.e. matrices of the form

TNZ[CiAj],'A,]j=() (1'1)

can be factored with O(N 2) elementary operations. This is an important class
of matrices; for example, covariance matrices of stationary Gaussian random
sequences are Toeplitz. The so-called fast Cholesky algorithms obtained in the
above references are slightly different, but the derivations are all algebraic
and involve considerable manipulation.

In this paper we shall show that a discrete, nonuniform, and lossless
transmission-line model can be used to obtain a simple graphical description
and derivation of the fast Cholesky algorithm for Toeplitz matrices. Moreover
the transmission-line derivation almost immediately yields the interesting and
useful result that the same fast algorithm can be used to factor any positive
definite matrix of the form

RN=L(UN)LT(UN)_L(VN)LT(VN)’ (1-2)

where L(U) denotes a lower triangular Toeplitz matrix with first column
equal to the vector U. Symmetric Toeplitz matrices are a special case of (1.2)
arising from the identity

TN=L(EN+CN)LT(EN+CN)_L(CN)LT(CN)a (1-3)

where Ey=[1 00 --- 0]"and Cy=[0 ¢; ¢, --- cy]” (and ¢, =1).

We shall also show that the general fast algorithm is in fact completely
equivalent to a recursion given by I. Schur in [16] for checking if a power
series in z is bounded inside the unit disc |z| <1 (see also [1, p. 101]). The
paper of Schur also contains an identity that sheds more light on the extension
from Toeplitz matrices to matrices of the form (1.2). This identity shows that
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any such matrix R, is in fact congruent to a symmetric Toeplitz matrix, and
the congruence matrix A  is lower triangular Toeplitz and given by

Ay =L(Uy—Vy). (1.4)

These results motivate us to explore the transmission-line structure further,
and this leads to the discovery that the line can also be used to obtain a fast
algorithm for factoring inverses of matrices of the type (1.2). Moreover these
arguments also lead to the result that

Ry' = L(Fy)L'(Fy)— L(Gy)LY(Gy), (1.5)

which may be recognized as a special case of a closure theorem for matrices
with a so-called displacement structure.

An Outline of Results

The basic results of this paper are simple enough to be described here. If
Uy = [ug, ty,..., uy]T and Vy =[v,y, 0y,...,05]" are given sequences for
which (1.2) is a positive definite matrix (and v, = 0), we shall show that we
can always set up a discrete transmission line as shown in Figure 1, so that the
sequence defined by V,, will be the causal response of the line (starting at
rest) to the input sequence U,. Let

x,;(j) = the value appearing at time j at the input of the ith delay element in
Figure 1.

Note that, by causality of the signal flow, we have

x(j)=0  for j<i. (1.6)

Xol) X,() Xn ()

Kn i

+

Z(Kn.u)

U=[u°u, uz...]

V=[v° v.vz,.,]

F1c. 1. Discrete transmission line (scattering representation).
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Then the matrix

[ x,(0) 0 0o .- 0
() 1) 0 .. 0

X =| x4(2) x,(2) x5(2) 0 (1.7)
%(N) 5(N) 5(N) o xy(V) ]

will be the lower triangular Cholesky factor of the matrix given by (1.2), i.e.,
Ry = L(Uy)L"(Uy)—- L(Vy)LY(Vy)L = XX”. (1.8)

In other words, the history of the input to the ith delay element is the ith
column of the Cholesky factor of R . A simple energy-conservation justifica-
tion of the identity (1.8) will be given in Section 3.

The transmission line structure of Figure 1 can be modified so as to
reverse the direction of the signal flow on the lower line, while preserving the
relationships between the values of the inputs and outputs of each section.
The resulting lattice structure is shown in Figure 2, and a discussion of its
properties is given in Section 4. If the resulting forward-propagation system is
excited with the sequence [1 0 0 0 --- 0] at both input points, then
denoting

y,(j) = the value appearing at time j at the input of the ith delay element in
Figure 2,

we have that the signal flow dictates

y(j)=0 for j>i (1.9)

[...0001] TN B(K,)

Fic. 2. Discrete transmission line (transfer representation).
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Then, we shall show that due to the symmetry of the medium, the matrix

_yo(o) !-11(0) 92(0) yN(O) W
0 y1(1) yz(l) T UN(I)
Yy=| O 0 yy(2) - yn(2) (1.10)
T

is an upper Cholesky factor of the inverse of the Toeplitz matrix Ty, defined
in (1.1), i.e.,

Ty =Y\ Y!. (1.11)
Moreover, letting
Yi= [UN(N) yv(N-1) yy(N-2) - yN(O)]T,
Yy= [0 ynv(0) yn(1) uyn(2) - yn(N-— 1)],

we shall show, by using an argument based on signal flow reversal, that we
have

Ty l=L(Y*¥)LT(Y*N) = L(Yy)L'(Yy). (1.12)

This is a special case of a formula due to Gohberg and Semencul, who derived
a similar expression for not necessarily symmetric or positive definite Toeplitz
matrices (see e.g. [8, Chapter 4]). Using the fact that a general positive
definite matrix of the form (1.2) is always congruent to a Toeplitz matrix via a
congruence matrix which is lower triangular, we then show that similar results
hold for the inverse of R . Explicitly the results are as follows.

Given R, of the form (1.2), we have

Ry =L(Uy = Vy)TyL (Uy = Vy), (1.13)

" where Ty, is Toeplitz. Then Ry ! is factored into an upper-lower product, and
the factor matrices can be read out as signals on the transmission line when
fed with the sequence T'=[y, v; Yo '+ 7Yn..-] that defines the lower
triangular Toeplitz matrices L~ *(Uy — Vy). The Gohberg-Semencul-type for-
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(0,) .
T EH o HE

- -
H(z,) H (zg) H(Zp.) H(Zo.)
0, itn, )

Section 1 Section n

F1c. 3. The voltage-current evolution.

mulas that result are of the form (1.5), where F,, is the convolution of Y
corresponding to Ty with I'y, and G is the convolution of Y, with the same
sequence.

2. DISCRETE TRANSMISSION-LINE MODELS

A transmission line with piecewise constant impedance profile propagates
impulses of current and voltage. Regarding signals of the form &, _ ya,8(¢ — i)
as sequences of numbers defining discrete time series, a transmission line can
be modeled as a cascade of elementary sections which are order-1 linear
systems (see e.g. [4], [5]). The propagation of the voltage and current
sequences along the line is described by the propagation equations (see Fig-
ure 3).

V(n+1,i) - A 0 - V(n,i)
[I(n+l,i)}_~ (Z")[O 1}~(Zn)[1(n,i) ] (2.1)

Here

- _ Z—l/2 Zl/2
‘(Z)_[z—l/z —zl/z]’ (2.2)

with Z >0 the local impedance, and A stands for the unit-time-delay
operator. Transforming the {V, I} variables into the so-called “wave vari-
ables,” defined as

Wr(n,i) B V(n,i)
[WL(n,i)]“@(Z")[z(n,i) ] (2:3)
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we obtain the evolution equations

W(n+1,i) A 0][Wiln,i)
[WL(n+1,i)]=®(k")[0 1”WL(n,i)]‘ (2:4)

Here, the gain matrix O(k,) is defined as

1 -k

—_ 1 _ 1 n
O(k,)==(Z, )= (Z")_W[—kn i } (2.5)

where

k,=ontl”Zn (2.6)

are the local “reflection coefficients”. The flow of signals described by (2.4) is
the transmission-line model of Figure 2. Wave variables physically propagate
in opposite directions: Wy propagates from left to right and W, propagates
from right to left. Therefore, a scattering description is physically more
appealing than the transfer description of (2.4). The scattering description of
an elementary line section relates the pair { Wg(n +1,i), W (n,i)} to the
incoming waves { Wy(n, i), W, (n +1,i)}, and describes the physical interac-
tion between the waves propagating in opposite directions. For the gain
matrix we have, by some simple algebra,

Wa(n+1,i) | |(1-k2)" —k, || Wa(n,i—1)
W, (n,i) k, (1-k2)"* || W(n+1,4)
We(n,i—1
—3(k,| VA : (27)
W, (n+1,i)

where 3(k) is the scattering matrix. Note that, as an immediate consequence
of losslessness, we have

O(k)is J= [(1) _?]—orthogonal, ie., O(k)JOT(k)=17, (2.8)

S(k) is orthogonal,  i.e., =(k)=T(k)=1. (2.9)



8 T. KAILATH, A. BRUCKSTEIN, AND D. MORGAN

These relations show that at the level of each transmission-line section we
have local energy conservation, i.e., the sum of squared input values equals
the sum of squared outputs (in the scattering description). Clearly, this local
energy-conservation property has further important consequences.

Now, it is clear how the transmission-line model of Figure 1 arises. The
lossless cascade system depicted in Figure 1 is parametrized by the sequence
of reflection coefficients {k,}. It follows from the positivity of the transmis-
sion-line impedance profile that

lk,)<1  forall n (2.10)

Suppose that the sequence Wy(0, *)=U = [u,, u, uy,..., uy,...] is sent
into a quiescent transmission line, and the reflected, causal response of the
system is W, (0, *)=V = [0y, v,,0,,..., Vy,...]. From Figure 1, it follows
immediately that v, = 0. Furthermore, since the cascade structure modeling
the wave propagation on the discrete transmission line is a linear, time-
invariant system, we have the following result:

Given an arbitrary sequence Q = [q,,qy, qy,...,qy,...], the response of
the transmission line to the input sequence Wy(0, -)* Q (where * denotes
convolution), is the sequence W, (0, -)* Q.

Writing out the convolution in matrix form and considering time lags up
to N, we have for any given response pair {U,V }, in obvious notation,

4do

(input) U = L(Uy) ?‘ , (2.11)

| AN |

90

(output) V¥ = L(Vy) ?1 . (2.12)

qn |

Incidentally, this shows that for all fixed N, the matrix
L(UN)LT(UN)_L(VN)LT(VN) (2‘13)

is positive definite. Indeed, for any vector Q% =[qn,qn_15---,Go]7, the
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quantity
Q;\';T[L(UN)LT(UN)_ L(VN)LT(VN)] Qf\kl (2-14)

is easily seen to measure the difference between the energy sent into the
medium by the sequence U* and the energy that flows out of the medium via
V * up to time N. This however must be a positive quantity, the system being
passive.

The Inversion Process; Schur’s Algorithm

Consider now the following problem. Suppose we are given a pair of
sequences {U,V) and we wish to determine whether they are a causal
input-response pair for some lossless transmission line, and if this is the case,
we also want to find the corresponding sequence of reflection coefficients.
Assume that the given sequences do correspond to the response of a transmis-
sion line. Then inspection of Figures 1 and 2 shows how to determine the
reflection coefficients. Indeed, from the assumed quiescence of the line and
by causality of the signal flow it follows that v, = 0, but also that

c

ko= L. (2.15)

(=}

Once k,, is determined, we can use (k) to compute the waves Wg(1,i) and
W, (1,1), which form a new causal-response pair for the portion of the line
starting at depth 1. Now, however the second reflection coefficient can be
determined and the process can be continued recursively. Hence we obtain a
simple recursive procedure that determines the sequence {k,} for n=
0,1,...,N—1 from {ugy, u,ty,...,uy} and {vy, v}, 0,,...,0y}. Further-
more, this recursive procedure yields the reflection coefficients up to depth N
in O(N?) computations, since we need 2N +1 elementary operations per
transmission-line section. Note that the reflection-coefficient computations
have a nice, nested structure. The algorithm described above is in fact the
prototype of a number of results in inverse scattering theory, an inverse
scattering problem being the determination of the parameters of a layered
medium from data gathered at the boundaries. We shall call the above-
described inversion algorithm the Schur procedure, since it implicitly appears
in a paper of I. Schur of 1917 [16], dealing with the problem of determining
whether a function of the complex variable z, analytic inside the unit disc, is
bounded by 1 there. The connection to our problem is the following: if u, =1
and u, = 0 for all n > 0, the impulse response of the line [s,, s}, $5,..., Sn,-.-]
is obtained as V. The passivity of the transmission line implies that the
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function
2Sg(z) = as, + 22, + 235+ 2%+ -+ -, (2.16)

where the s,’s are the lags of the impulse response, is bounded by 1 on the
unit disc. Thus [Sy(z)| <1 for |z| = 1. Schur proved that any function S(z) is
bounded on the unit disc iff the sequence of numbers {k,} defined by the
recursion

1 S.(z)—k,

S"“(z)=ZTT,,S,,(?5’ k,=S,(0), (2.17)

obeys |k, | <1 for all n. Writing the impulse response of the line as
e = 25,(z) (2.18)

and making the recursion (2.17) explicit in terms of the waves Wy and W,
results precisely in the inverse scattering algorithm described above. In fact
Schur himself proposed such a “linearized” implementation of his bounded-
ness test. Therefore the classical result of Schur in terms of transmission-line
theory is: a complex function in z is bounded on the unit disc if and only if
there exists a lossless transmission line having it as its causal reflection
function.

We briefly note one more connection to complex-function theory. Suppose
we probe the transmission line as follows: we put a perfect reflector boundary
at the origin that forces v, = u, for n > 1 and set u, = 1. This probing setup
is drawn in Figure 4. In this case we have

WR(O,Z)=1+C’(z)=C—(?2);1, (2.19a)
W0, z) = C(z) = C(—zz)_—l (2.19b)

where C(z) and C(z) are defined accordingly. The connection between the
wave transfer function zS(z) and the function C(z) is obviously

C(z)-1

zSy(z) = )71

(2.20)
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This perfect-reflection experiment corresponds, in the {V, I} description, to
providing the voltage response V(0,t)=8(t)+X% ,c;6(t —i) to a forcing
current 1(0,t)=8(t). It is a classical result that if |S(z)| <1 on the unit disc
then C(z) is a positive real function (or Caratheodory-type function). This
implies that the symmetric Toeplitz matrices

Tv=[e_ ;1.0 =1 (2.21)

are positive definite for all N. This result we already know, since it is easy to
check that

Ty = L(Uy)L'(Uy) - L(Vy)L'(Vy) (2.22)

for Uy=[lc; ¢y c3 -+ cy]lTand Vy=[0 ¢; ¢, c5 -+ cyl”

We remark that the Schur algorithm is in fact an implicit test for positivity
of matrices of the form L(Uy)L'(Uy)— L(Vy)L'(Vy) and in particular of
Toeplitz matrices. The matrix is positive definite provided the sequence of
reflection coefficients obtained in the inversion process obeys |k,| < 1.

3. ENERGY CONSERVATION AND FAST CAUSAL FACTORIZATION

Suppose we are given two time sequences U and V that form a causal
response pair for some discrete, lossless transmission-line model. Equivalently,
the matrix

RN=L(UN)LT(UN)_L(VN)LT(VN) (3-1)

is positive definite for all N. Then we can construct a lossless transmission line
(via the Schur process) that responds to U, with V). Also, by the linearity of
the transmission-line model, if {U',V'} and {U2V?} are two causal re-
sponse pairs, the response to y,U" + y,U? will be y,V'! + y,V2 Any portion
of the discrete transmission line is a linear system, the state vector at time i,
x(i), being defined as the inputs to the delay elements. The delay elements
store their input for one unit of time and then feed into the next section the
stored value. The structure of the transmission-line model is such that, by
causality of the signal propagation, the sequence of state vectors x(i) = [x (i)
xy(i) xo(i) -+ xy(i)] obeys

x,(i)=0  for j>i. (3.2)
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This is obvious, since the right-propagating wavefront, which generates the
reflected response, travels at the speed of one section per unit time. The
linearity of the model also provides that the state history for a linear
combination of inputs is the corresponding linear combination of state
vectors. With these preliminatires we can show that the stacked state history
yields the “causal-anticausal” or “lower-upper LU” decomposition of the
matrix R . Indeed, it is clear that, by energy conservation, we have to have at
all times ¢ that the total energy in the state equals the difference between the
energy that went into the system up to time ¢ and the energy that left the
system via the output during the same time. Formally, it can be readily
proved from local energy conservation [cf. (2.9)] and causality that

t t

';Ou?— 'gov?= Z:Ox?(t). (3.3)

Define now the row vectors ¥, of dimension 2N +2 as follows:

‘I’,=[u, U_y 0 ouy 0 - 0 v v, o oy, O .- ()]

(3.4)

and then (3.3) shows that

\p,[(’) _()I]\I't=x(t)xT(t). (3.5)
We can further show that in fact

qr[(l) _OI]\I'sT=x(t)xT(s). (3.6)

This follows from the fact that

2, W) = (¥, + ¥, ¥+ ¥ )y — (W, ¥ )y — (W, ¥y (37)

and that, by linearity and time invariance,

(U, + ¥, ¥, + ), =(x(t)+x(s), x(t) + x(s)) (3.8)
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In the above expressions (-, -), denotes the indefinite inner product, as
defined by the left-hand side of (3.6), say. Without the asterisk, the usual
inner product is invoked. Thus (3.6) is proved, and by stacking (3.5) and (3.6)
for t =0,1,..., N it follows that

Ty= L(UN)LT(UN)"L(VN)LT(VN)=XXT- (3.9)

Therefore, a simple causality argument, together with linearity and energy
conservation, shows that a transmission-line model provides the Cholesky
factorization of matrices of type Ry. In particular, if some special sets of
scattering data, or causal-response pairs, are chosen, we get the factorization
of various structured positive definite matrices. For example, response-
response pairs of the form {[1,¢,, ¢y - - cy),[0,¢1, ¢y * - cy]}, corresponding
to perfect reflection experiments as discussed in the previous section, yield
the factorization of positive definite Toeplitz matrices Ty as defined by
(2.18). This follows from the easily verified identity Ty = L(Ey + Cy)L"
(Ey + Cy)— L(Cy)LT(Cy). Furthermore the impulse-response data for the
wave-propagation model provide factorizations of matrices of the form I+
L(S)LY(S).

The factorization of matrices of the form given by (1.2) is thus seen to be
as easy as the factorization of Toeplitz matrices. An algebraic explanation of
this fact follows from the observation, also due to Schur, that R y is congruent
to a Toeplitz matrix. Indeed, we have the identity

L(U)L(U) - L(V)LY(V)

L Y U-V)L(U+V)+ LI (U+V)L"(U-V)

=L(U-V) 5

L'(U-v),
(3.10)

and the matrix inside the square brackets is easily recognized to be Toeplitz.
[In the above we have dropped the subscripts, but clearly we are dealing with
matrices of size (N +1)X(N +1).]

The factorization algorithms described above have a computational com-
plexity of O(N?2), the operation count of the general Schur algorithm. We
note here that it is only due to the particular delay structure of the
transmission-line model that we obtain a lower-upper factorization algorithm.
If, for example, a completely equivalent model (from the I/O point of view)
were chosen with a different location for the delay elements, say on the lower
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line in Figure 1, the state history would not provide an LU factorization.
Although it will be true in general that

L(U)LY(U)~ L(V)LT(V) = XXT, (3.11)

the matrix X will in general be (countably) infinite-dimensional and not lower
triangular, as before. The result of causal-anticausal factorization follows from
the fact that if the state-history matrix is lower triangular, then we have a nice
nesting property: the (N +1)X(N +1) principal minor of the complete
(infinite-dimensional) product XX is equal to the product of the correspond-
ing minors in X.

Matrices of the form L(U)L'(U)— L(V)L'(V) are characterized by
having “displacement” structure of the form

Uy

, 3.12
v (312)

st i 3|

where Z is the shift matrix having ones in the positions (i,i — 1) and zeros
everywhere else. It is possible to extend the above methodology to the
factorization of matrices that have more complicated displacement structures,
with displacement rank higher than two and arbitrary displacement inertia
(P, q). The general form of such matrices is

RY, = ¥ L(UY)LI(UY)— ¥ L(VI)LI(V) (3.13)
1 1

For an account of results concerning matrices with this structure see e.g. [7],
(10}, [11], [13].

4. TRANSMISSION-LINE TRANSFER-FUNCTION PROPERTIES

In this section we shall derive several properties of transmission-line
transfer functions that are needed for the derivation of results concerning
factorizations of inverses of structured matrices. The discrete signal propa-
gation model under study is described by the polynomial (or ztransform)
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domain recursions (see Figure 2)

Wi(n, z) z 0| Wg(n—1,z)
[WL(n,z)]=®(kn_l)[0 1][WL(n—1,z)]’ (4.1)

where

o= el 1]

The matrix transfer function My(z) relating the signals at the origin to the
signals at depth N is therefore given by

M(z) = m,y(N, z) M21(N,z)} ﬁl{G(k [ (1)]} (4.2)

mg(N,z)  mg(N, 2) N-
The persymmetry of the ©(k) matrices, i.e. the fact that
10(k)I=0(k),  where i=[(1) (1)],

induces a series of important properties for the transfer-function matrices
M (z). Clearly, the entries of these matrices are polynomials in z of degree
at most n. Also a simple argument based on the symmetry of ©(k) provides
that

myy(N, 2) = szu(N, z~1)’

m (N, z) = 2¥my (N, z271), (4.3)

i.e. the elements on the diagonals are reversed polynomials. We note once
more that these results follow not from the losslessness of the medium but
from its symmetry in the transfer representation. In fact any sequence of gain
matrices 0, of the form

_|e B
onefir B »

Ay,
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will induce the same overall properties for M(z). By causality of propa-
gation in the scattering domain we know that if Wy(0,i)=[u, u, u,

uy ---]and W;(0,i)=[0 v, v, --- vy ---] are an input-response pair
for the transmission line, then at depth N we shall have

0 for i<N,
N ) N-1
We(N,i)= Il (1- kf)l/z for i=N, (4.5a)

0

W.(N,i)=0 for i<N. (4.5b)

Writing out the above results explicitly in the time domain in matrix form, we
readily obtain the following basic set of linear equations

0
0
0
L(Uy)mY, + L(Vy)mYy = » (4.6a)

SO O

L(Uy)mg) + L(Vy)m§, = (4.6b)

These equations simply follow from the fact that the waves at depth N are the
convolution of the transfer-function matrix with the data. We have used the
following notation: m?;. represents a column vector stacking the successive
coefficients of m, j(N, z) in increasing order (of powers of z), and, as usual,
L(X) is a lower triangular Toeplitz matrix with X as its first column.
Together with (4.3), which can be rewritten as

mY,=Im), and mY,=Im),, (4.7)

these relations can be used to determine the entries of My(z) from the
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scattering data. They are the basic and most general relations for inverse
scattering via matrix equations. The classical approach to inverse scattering
for transmission-line models is indeed via solutions of matrix equations;
however, those are usually derived in the literature for particular types of
scattering data. The general approach, which works for arbitrary data sets, is
described in [5]. For a survey of classical inverse-scattering results in the
discrete case see e.g. [3] or [6).

Considering the set of equations (4.6), we can solve for m5) in the second
equation, and substituting the result into the first one, we obtain

0
0
0
[L(Uy) = LVO)IL (U L(V)T ] my = ‘
Nl:ll(l—k?)‘/2
L 0 ]

(4.8)

Also, by using the symmetry relations (4.7) and adding the equations of (4.6)
we get

_ 0 .
0
. 0

[L(Uy) + L(Vy)T] (m}) + m§, ) = . (4.9)

N-1

T (1-k2)"”

Writing out the above equation for the case when U is a unit impulse
sequence U=[1 00 --- 0 ---], so that V is the reflection function or
impulse response data V=[0 s, sy s; -+ sy ---], results in the
Marchenko equation (see [3]). The equations of Gelfand and Levitan invoke
the “perfect reflection” case discussed in the previous section. Indeed, if
U=[lc, cycy -+ cy --]andV=[0 ¢, ¢ c5 -+ ¢y --](see Sec-
tion 3), we obtain an equation of the Gelfand-Levitan type, with a Hankel +
Toeplitz kernel (or coefficient matrix). However for the “perfect reflection”
case there is another classical inversion equation, due to Krein, having a
symmetric Toeplitz kernel. To obtain this equation, note that (4.6)
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becomes, for L(Uy)=1+ L(Cy) and L(Vy)= L(Cy),

0
0
0
mY, + L(Cy)(m}, + mY,) = : , (4.10a)
N1 1/2
IT(1-k2)"
L 0 -
K
0
m$ + L(Cy)(my +mby) = | O |. (4.10b)
L0
But from (4.10) and (4.7) it follows that
o
0
. _ 0
{I+[L(CN)"'IL(CN)I]}(’"%'*'m72)= :
N-1 s
IT (1-3)"”
L 0 -4
(4.11)

The kernel I + L(Cy)+ IL(Cy)I = T, is symmetric and Toeplitz. This is the
Krein equation for discrete inverse scattering. The equations derived above
are the basis of the classical scattering algorithms (see e.g. [3] or [5]).

5. FACTORIZATION OF INVERSES OF TOEPLITZ AND RELATED
MATRICES

It is known and easy to check that stacking the successive solutions of
equations of the form

R,a,= . ) (5.1)
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where R is symmetric and a (i) denote the entries of the column vector a,,,
yields the upper-lower factorization of R y*

Ry!=UU", (5.2)
where
(a)(1) ay(1) ay(1) -+ ay(D) ]
0 02(2) 03(2) aN(2)
Uu=| 0 0 a3 -+ ay(® | (5.3)
0 0 0 e aym]

In the previous section we have shown that causality of signal propagation
on the transmission line, together with some simple symmetry considerations,
leads to equations of the type (5.1) for various combinations of vectors that
describe the forward transfer function for portions of transmission line of
increasing size. Indeed, recalling Equation (4.8), we realize that finding m',
for n=0,1,2,..., N and stacking the solutions into a (N + 1) X (N + 1) matrix
provides the upper-lower factorization of

[L(Uy)— L(Vy)IL=Y(Uy) L(Vy)I] (5.4)

Similarly, considering equations of the form (4.9), we have that the vectors
(m%, + mjy,), for n=0,1,2,... N, provide by stacking the upper-lower factori-
zation of

[L(Uy)+L(Vy)I] ™, (5.5)

i.e. of the inverse of a Toeplitz+ Hankel matrix. When writing out the above
results for the particular impulse response and perfect reflection data sets, we
see that a triangular factorization always underlies the classical inverse-scatter-
ing methods. The most interesting factorization is the one related to the Krein
system of equations. Equation (4.11) shows that a matrix stacking the vectors
y, =m}, + ml,, for increasing values of n (and suitably continued with
zeros), yields the upper triangular factor of the inverse of the positive definite
Toeplitz matrix T,. Furthermore, for the lossless case of Equation (4.11), we
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have the nonzero term at the right given by

n—1

We(n,n)= 'E)(l—k?)l/z, (5.6)
and it turns out that (see Figure 2)
n—1 “1s2
yn(n) =mi(n)+miy(n)= l:)] (1-k7)" " (5.7)

Therefore the remarks associated with (5.1) directly apply, and we can say
that the symmetric, positive definite Toeplitz matrix Ty ! is factored as

Ty !=YYT, (5.8)
where
(400 0.(0) w(0) - yy(0) ]
0 yl(l) y2(1) T !/N(l)
Y=| 0 0 y(2) -+ yy(©2) | (5.9)
i 0 i O 0 T yN(‘N) |

A natural question that now arises is: how can we obtain the polynomials
y(n, 2)=my,(n, 2)+ my(n, z), or the columns of the upper triangular factor
Y, by using the structure of the transmission line identified by the scattering
data (in this case the perfect-reflection scattering data)? The answer is that we
can obtain y(n, z) and its reverse polynomial by forming

myy(n, z) m12(n’z)J[l]=[ y(n, z) }

ma(n ) ma(n ) |[1]7 |2y(nz 0 P10
Therefore the successive columns of the upper triangular factor of Ty ! can
be obtained by feeding the forward-propagation structure of F igure 2 with
the signals Wy(0, z) =W, (0, z)=1. Considering the forward-propagation
model, it is therefore clear that the time history of the ith state (input to the
ith delay) is the vector y;. This result should be compared with the corre-
sponding one of Section 3 (see Figure 4), which shows that the state of the
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Kn

— Sikn)

U=[u°u|u2‘.. ]=[|,c|,c2,...]

V=[v°v, v, .,.]=[O,c|,t:2 ]

Fic. 4. The reflection experiment.

feedback line driven by the data U=[1 ¢, ¢, ---]and V=1[0 ¢; ¢, ---]
determines the lower triangular factor of Ty. The energy-conservation proof
of that result used the identity

Ty=XX"=L(Ey+Cy)L(Ey+Cy)—L(Cy)L'(Cy). (5.11)

This suggests that we might find a similar formula for Ty ' by again
appealing to energy-conservation arguments. To carry this out, note that, by
reversing the direction of flow in the lower line of Figure 2, which we have
just used, we get the equivalent structure of Figure 5. If this structure is now
fed from the right with the input z"y(n, z ~'), it is immediate to realize that
the state history remains the same as in the forward structure of Figure 2. The
structure is however lossless. Applying energy-conservation arguments as in
Section 3 [Equation (3.10)] shows that the state history on the transmission
line provides the factorization of the matrix

L(Y3)LT(Y¥)— L(Yy)L'(Yy) (5.12)
where Y * denotes the reversed vector and Yy =[0 y,(0) -+ yy(N—D)]%
Yol y, () y )

" |
sk TUKy) Ty vE

Fic. 5. Proof of the Gohberg-Semencul formula.
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But the state history is in this case mapped by Y, and therefore we get
YY'=Ty = L(Y¥)L(Y¥)— L(Yy)LT(Yy), (5.13)

which is a particular case of the striking formula of Gohberg and Semencul for

the inverse of a Toeplitz matrix.
Incidentally, this also proves that if Ty is a symmetric positive definite

Toeplitz matrix with reflection coefficient sequence {k,, k vkov i ky 1),
then its inverse Ty ' has similar displacement structure and the correspond-
ing reflection coefficients are {ky_, ky_,,..., k,).

6. INVERSION OF GENERAL STRUCTURED MATRICES

In the previous section we have rederived a number of well-known results
for inverses of Toeplitz matrices via transmission-line arguments. The special
structure of the arguments used to obtain the Krein equation (4.11) that was
the starting point of these arguments would not seem to extend to general
kernels of the form L(U)L"(U)— L(V)LY(V), for which we have obtained
direct factorization results in Section 3. However, the congruence reduction of
such matrices to Toeplitz form via a lower triangular Toeplitz matrix can be
effectively used to obtain the appropriate generalizations of the results for
Ty '. For convenience we shall first restate (and in fact rederive) the
congruence identity here.

Given a matrix Ry of the form (1.2), we wish to determine a congruence
matrix A, such that

L(UN)LT(UN)—L(VN)LT(VN)= ANTVAY. (6-1)
Recalling that a symmetric Toeplitz matrix can always be represented as
TN=L(EN+CN)LT(EN+CN)—L(CN)LT(CN)’ (6.2)
we immediately have for A
ANL(Ey+Cy)=L(Uy) and AyL(Cy)+L(Vy), (6.3) .
which determines the congruence matrix to be

Ay =L(Uy - Vy). (6.4)
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Therefore, if the factorization of Ty ! is available, the corresponding
factorization of Ry' will be

Ry'=L "(Uy—Vy)YY'L™(Uy - Vy) = UL (6.5)

(U upper, L lower), i.e., the lower triangular factor of the general structure
matrix is YL~ }(Uy — V). Finding the inverse of a lower triangular Toeplitz
matrix is an easy and efficient computation of complexity O(N log N);
however, the multiplication of a general lower triangular matrix with the
Toeplitz matrix L~ YUy — V) requires at least O(N 21og N) computations.
But the columns of Y, are certainly not arbitrary; we can use again the
insight provided by the transmission-line model to show that determining the
factor of Ry! is inherently an O(N?) computation. To do so, note that
the kth row of YyL YUy —Vy) is obtained by passing the sequence
[0,0,...,0, y(k), y(k — 1),..., y(0)] through a linear time-invariant filter with
impulse response Yy, Y, Ys»---> Yn»---» Where the sequence I' is defined by

L™Y(Uy—Vy)=L(Ty). (6.6)

Alternatively, we can regard the resulting row as obtained by passing the
sequence I' through a filter with impulse response [0,0,..., y(k),
yu(k —1),..., y,(0)]. But we know that such a filter is readily available for us.
Indeed, the feedforward structure of Figure 2 provides a nested realization of
such transfer functions, the output being taken from the lower line. Therefore,
applying the sequence Yy, v;,... as an input to the system of Figure 2, we can
read out the rows of the factor of Ry! as the first k + 1 lags of the lower line
outputs at stage k. In conclusion, due to the built-in transmission-line struc-
ture of the Toeplitz factorization process we obtain fast factorizations of
general L(U)LT(U)— L(V)LY(V) matrices. Similar results hold for the gen-
eral displacement structure matrices, as demonstrated in [7], [10]-[13].

Gohberg-Semencul Formulas
We saw that the inverse of Ty ! can be expressed as

Ty 1= LOY)LI(Y) ~ L(Xy) ET(Yy). (6.7)

Next we shall derive a similar formula for the inverse of R . We saw that it
follows by congruence that

Ry'=L""(Uy—Vy)YY'L"(Uy—Vy)=UL (6.8)
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s
—' PReFILTER

+
\@(K.N T B(K,)
ROWS OF THE FACTOR OF Ry,

Fic. 6. Factorization of Ry'.

(U upper, L lower). Using the persymmetry property of Ty, and Ty !, i.e. that
IT\i=Ty and ITy'U=Ty!, (6.9)

we obtain that
IRV =1L~ "(Uy — V)ITy 'IL~ (U, — V). (6.10)

From (6.10) and the Gohberg-Semencul formula for Ty ! it follows that

IR = L(Fy)L'(Fy)— L(Gy)LY(Gy), (6.11)
where
Fy=[Yo, Vi Yaser o Tn ) # YR (6.12)
and
Gy =[Yos Y1sYaoe- > Y ] * Yy (6.13)

Note that Fy and G, are obtained by reading out the output of the
transmission line structure of Figure 2 to the “prefilter input sequence”
defined by [v,,y),...], determined by the matrices L~ YU, — V) (see Fig-
ure 6).

7. CONCLUDING REMARKS

In this paper we have presented a rather comprehensive account of results
concerning fast factorization of matrices having a certain displacement struc-
ture. Toeplitz matrices, for which such results are more frequently encoun-
tered in the literature, are just particular cases of a general class of matrices
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for which fast algorithms can be derived. The analysis of signal propagation in
a linear time-invariant system modeling a discrete transmission-line structure
proved very useful in deriving, unifying, and summarizing the factorization
results. Also it provides a direct route to generalizations of these factorization
results to matrices with more complex displacement structures. Such generali-
zations are discussed in the recent paper of Lev-Ari and Kailath [10] and in
many of the references cited therein.
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