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Epi-convergence of Discrete Elastica 
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Lucent Technologies, Murray Hill, NJ, USA; 'Flarion Technologies, 
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Curves that pass through specified locations with specified orientations and minimize an 
energy functional are called elastics. While physical splines readily assume minimal 
energy configurations, finding the numerical solutions of variational problems involving 
integrals of nonlinear functions of the curvature remains quite a formidable challenge. 
Approximate solutions of such problems yield satisfactory results and the computer- 
aided design field relies heavily on polynomial or rational curve designs. In this paper 
we discuss a method for discretizing the problem of nonlinear spline design, an 
alternative to the more traditional approach of discretizing the differential equations 
that solve the variational problems involved. We show that discretizing the energy 
functionals (i.e, considering polygonal approximations of the curves and finding the 
ones that minimize their "energy" defined directly in terms of turn angles and segment 
length) is an approach that is simpler and leads to solutions that, in the limit of very 
small segment lengths, converge to the optimal continuous solutions. 

Keywords: Curve; Numerical methods; Approximation; Epi-convergence; Variational 

AMS: 65D17; 65K10 

1 INTRODUCTION 

Before computers became the dominant tools in the design of 
industrial products, elastic rods called splines were widely used in 
drafting and designing the shapes of smooth curved objects. 

*Corresponding author. 
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138 A.M. BRUCKSTEIN et al. 

Physically, an elastic rod confined to obey some constraints like pas- 
sing through a set of points at given directions, will settle into a "mini- 
mal energy configuration". The energy of such a bent, elastic rod is a 
functional of its curvature profile, hence the problem of smooth 
constrained interpolation curve design naturally leads to variational 
optimizations involving functionals of curvature, see e.g. [I-31. 

Since, in general, solving variational problems with cost functionals 
dependent on curvature leads to nonlinear differential boundary value 
problems, the CAD community resorted to approximations that 
stimulated an active and very interesting and successful area of cubic 
(or general polynomial) or rational spline curve design, see e.g. 
[C6]. The original nonlinear spline design problem continued to be 
of interest, however, to mathematicians and CAD people alike. The 
nonlinear problems are, after all, modeling the "real" elastic rods 
that have led to several wonderful designs in the past, and are math- 
ematically very beautiful and challenging. Recently, the topic of 
smooth interpolation curves has also arisen in several other areas of 
endeavor like robotics and computer vision [7-121. This paper deals 
with the topic of discretization in conjunction with nonlinear design. 
When the variational problems of elastica are to be solved to yield 
usable curve designs the issue of discretization necessarily arises: the 
computer will have to generate a sequence of points or some other dis- 
crete representation of the nonlinear spline. The traditional approach 
to discretization was the following: reduce the variational problem to a 
(nonlinear) differential equation and use the arsenal of numerical 
methods provided by numerical analysis to solve the differential 
boundary value problems necessary for curve designs. While this 
approach is indeed natural and yields a wealth of practical nonlinear 
spline design methods, (see e.g. [13]) another natural approach to dis- 
cretization seems to have been neglected. The alternative approach 
that we shall mathematically analyze in this paper proposes the discre- 
tization of the spline design problem itself. Instead of aiming at produ- 
cing smooth splines, this approach seeks polygonal approximations 
(for the nonlinear splines) directly. The desired curve is therefore a 
piecewise straight curve with small segments that minimizes an 
energy functional defined in terms of the segment length and vertex 
angles of the polygonal spline approximation. This approach was 
numerically tested for various types of energy functionals in [14] and 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 139 

produced pleasing results. However, if we also want to claim that 
"discrete elastica" designs are a viable procedure to solve (i.e. discre- 
tize) continuous nonlinear spline design problems, we must prove 
mathematically the convergence of these polygonal curves to their 
continuous versions. Note that what we are doing is discretizing the 
problem at the outset by defining energy functionals over polygonal 
curves and then proving that correct choices of such energy functionals 
will yield discrete elastica that converge, in the limit of an infinite 
number segments of infinitesimal length, to the optimal continuous 
curves that minimize a "limit" energy functional defined over the 
class of continuous and smooth curves. 

In this paper we use the theory of epi-convergence, as developed by 
DeGiorgi and his associates [15] under the name F-convergence, and 
independently by Attouch [16], to provide such convergence results. 
To understand the aims and issues that we want to address let us 
start with a trivial example from the calculus of variations. 

Example I Suppose we are searching for the function f(x) so that 
over [0, 11 we minimize 

and f(0) = a and f (1) = b. This is a very simple problem in the calcu- 
lus of variations and the Euler equation provides, see e.g. [17, p. 371, 

Fortunately, we can solve this equation explicitly to get f (x) = a x  + #? 
and determine (a, ,9) that satisfy f (0) = a, f (1) = b; i.e. #? = a, 
a = (b - a). If we were not so fortunate in getting an Euler equation 
that is explicitly solvable we would have had to numerically solve 
for f satisfying f"(x) = 0 and the boundary conditions; i.e. we would 
have had to discretize (d2/dx2) f(x) = 0, and this would have led us 
to determining a function f(x) defined, for example, at xo = 0, 
xl = A, x2 = 2 A , .  . . X N  = N A  = 1 obeying 
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140 A.M. BRUCKSTEIN et al. 

with f (xo) = a and f (xN) = b; yielding ?(xi) = a + (b - a) iA as 
the approximate solution. This happens to be an exact sampling of 
the true solution (f (x) = a + (b - a)x) and, were we not so fortunate 
as to have the true solution for comparison, we would have had 
to worry about the quality of the approximate solution f" and its 
behavior as A + 0 (N p co). This is, in fact, the main concern of 
classical numerical analysis. 

The method outlined above is the traditional approach to solving 
the variational problem 

minimize ~ ' ( ~ ) ) ' d x  

subject to f (0) = a, f (1) = b. 

An alternative approach, the subject of this paper, is to discretize the 
problem itself. We could have said: let us not look for solutions of the 
problem in the space of all smooth functions f (x) over [0, I] but rather 
for solutions of a discretized problem in a restricted space of functions 
over [O, 11 parameterized by N discrete values denoted by ~ O ) ,  
+(I), . . . ,@(N - 1). For example, we could have considered the 
functions that are piecewise constant over the intervals [0, A], 
[A, 2A], . . . , [(N - 1)A, NA], where NA = 1 (as before), and let 
+(i) = f D ( i ~ ) ,  be the parameters for optimization. Once we decide to 
proceed in this way we must define a new cost functional that some- 
how mimics &(f'(~))~ over the space of functions under consideration. 
A rather straightforward proposal is of course 

and now we can pose the discrete variational problem corresponding 
to (I) as follows 

minimize x ( @ ( i )  - @(i - 1)l2 

subject to +(O) = a, +(N) = b 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 141 

This problem is readily solved as follows 

{[4(i) - 4(i - I)] - [@(i + 1) - @(i)]} = 0 for i = 1,.  . . , (N - 1) 

Hence we have 

{@(i+l)-2$(i)+q5(i-1)=0} for i =  1,2, . . . ,(  N -  1) 

with $(O) = a and $(N) = b yielding 

as the optimal solution. 
In this simple case the solution of the discrete optimization problem 

is "identical" in some sense to the discrete solution of the continuous 
problem. When we cannot exhibit explicit expressions for the solutions 
of the discretized continuous problem and the corresponding discrete 
problem we must be concerned about the nature and quality of the 
approximation. 

Example 2 Suppose next we are trying to solve the following 
variational problem: 

1 

minimize 1 [ f '(x)12 w(x)dx 

subject to f (0) = a and f(1) = b, where w(x) is a given smooth posi- 
tive function. In this case the Euler equation is 
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142 A.M. BRUCKSTEIN et al. 

where F(x, y') = w(x) (y~)~, and ( y = f ) .  So: 

d d - w(x)2y1(x) = 0 * - w(x) f ' (x )  = 0 
dx dx 

hence 

fl(x)w(x) = const. 

w(x) f " (x)  + wl(x) f  ' (x )  = 0. 

The solution of this equation is 

where f  (0) = a and & (c/w(t))dt + a = b determines the constant c. 
If we have to solve numerically f ' (x)  = c/w(x) we would proceed via 

where fi(x,) = w(xn) or (w(xn) + w(xn+1))/2 etc. (the superscript ND 
indicates that f  arises from a non-discrete functional), yielding 

with fND(xo)  = a  and f N D ( x N )  = b. The relation between the solu- 
tion provided by (3) above and the "true" discrete values at the 
sampling points now depends on the behavior of w(x) and the 
choice of the approximation +(xu). For well behaved w(x) it would 
be easy to show that a variety of numerical schemes will yield that 
fND(xi) + foPt(x) in various senses. 

Let us next analyze the corresponding discretized problem. 
Assuming we deal with piecewise linear functions between the samples 
at 0, A, 2A, . . . , N A  = 1 of the discrete functions f  D(x), [i.e. f  D ( i ~ )  = 
4(i)] (the superscript D indicates that f  arises from a discrete 
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EPI-CONVERGENCE O F  DISCRETE ELASTICA 143 

functional), we can now postulate the discrete optimization problem as 
follows 

N 

minimize [@(i) - @(i - 1)l2G(i~) 
i= 1 

subject to @(O) = a and @(N)  = b. 

Here 

yields: 

This equation is equivalent to 

an equation that can be recognized as the discretization of (2). 
Here again the question arises whether the discretizations of the 

problem yield solutions that approach, as N p oo, the continuous 
solution of the original variational problem. This question could, 
here too, be addressed rather directly, yielding conditions on the 
relations between the discrete cost functions and the continuous one 
to ensure the convergence of the solutions to the continuous 
optimizing function. The theory of r-convergence, to be discussed 
and used in the sequel provides general conditions under which 
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144 A.M. BRUCKSTEIN et al. 

discrete functionals (cost functions) of discretized functions yield in 
the limit of N 7 co minimizers of desired continuous functionals of 
continuous and smooth functions. 

Example 3 Let us consider extending Example 2 so that the Euler- 
Lagrange approach becomes problematic. Suppose that the f of 
Example 2 is to serve as a boundary separating the box {(x, y) : x E 
[0, l],y E [-A,A]} (A sufficiently large) into two regions. Suppose 
further that there is a function g(x, y) which is to be smoothed, by 
averaging, in both regions independently and that the boundary is 
chosen to minimize the discrepancy between g and its piecewise 
smoothed versions.' Thus, we seek to minimize: 

+ ( x ) ) 2 d x ,  subject to f (0) = a, f ( I )  = b. 
0 

(4) 

(Here cl and c2 are constants to be optimized: they will be averages of 
g over the corresponding regions.) In this case it is possible to derive 
Euler-Lagrange equations for f ,  but they are complicated and 
non-local so that direct numerical solution is not obvious. 

If, alternatively, we discretize the box [O, 11 x [ -A,  A] then it is clear 
how to discretize the functional above. The r-convergence theory 
allows one to conclude convergence of solutions of the discretized 
problem to solutions of the continuous problem from the correspond- 
ing convergence of solutions in Example 2. The reason for this is that 
the extra terms introduced depend "continuously" on f .  

Example 4 This example is the topic of planar curve design, and 
introduces some of the issues that will be addressed in the main part 
of our paper. An intrinsic description of a planar curve is the direction 
angle versus arc length, or I)($, description. Suppose we want to 
design a planar curve that starts at the origin (0, O), ends at (1,O), is 
of given length L, with $(O) = @o and @(L) = I)f (i.e. preset initial 
and final directions) and minimizes the elastic energy measured 

'This simple example is based on the variational formulation of edge detection in 
images [19]. 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 145 

by the integrated squared curvature k(s) = (d/ds)$(s) over [0, L]: 
C($) = fi[(d/ds)$(s)12ds. This problem leads to the following Euler- 
Lagrange differential equation: 

subject to $(O) = $0 and $(L) = $f, where hl and h2 are Lagrange 
multipliers. A variety of numerical methods could be used to 
solve (5) to determine $(s) that obey the boundary conditions, i.e., 

j0 sin #s)ds = ~y = o 

and $0 = $(O); $f = $(L). However, here too, we could proceed 
by discretizing the problem itself. We could consider approximately 
the curve by an n-link polygonal chain having, say, equal E = 
(l/n)L-length straight segments. In this setting we could pose the prob- 
lem of determining the poly-line that minimizes a discrete version of 
the elastic energy. The curvature in this energy functional could be 
measured by the turn angle from one chain link to the next. 
Suppose the links are oriented at the angles $0, $2, . . . , $N-I = 
$f. Then ki = (1Cri+1 - $J/l could serve as a discrete curvature and 
we could pose the problem of minimizing 

subject to 

with $0 and $- = qNWl predetermined. (See Fig. 1.) 

D
ow

nl
oa

de
d 

by
 [

T
ec

hn
io

n 
C

ity
] 

at
 0

0:
22

 2
9 

D
ec

em
be

r 
20

17
 



A.M. BRUCKSTEIN et al. 

FIGURE 1 Polygonal curve. 

This problem leads to a system of nonlinear equations for $,, 
$2,. . . , as opposed to the differential equation (5) two point 
boundary value problem for the continuous problem. Indeed using 
the Lagrange function 

and differentiating with respect to $', . . . , $,,-2 we obtain: 

with qo and = $f. This system of equations can be solved by a 
variety of methods in terms of the Lagrange multipliers hl,h2 that 
must be set to meet the required start-point/endpoint conditions, see 
e.g. [11,14]. The question that arises in this context is the following: 
if we increase n, we would like to obtain a sequence of polygonal 
approximations to the solution of the original continuous problem. 
However, note that we have not discretized the solution of the conti- 
nuous problem but rather we have discretized the problem itself. As 
such, the sequence of solutions that we obtain are polygonal lines 
(non-smooth by definition) that should, in some sense, converge to 
the solutions of a continuous problem. 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 147 

This paper presents and discusses the theory of F-convergence of 
such approximations, obtained by discretizing the problems at the 
outset, to the solutions of continuous variational problems involving 
several types of cost functions that are functionals of curvature for 
planar curves. 

The curvature dependent functionals that were proposed and dis- 
cussed in the paper Discrete Elastica, [14] and for which convergence 
results will be proved herein are the following: 

(1) $ ~ k l ~ ~ d s  - classical elastica; 
(2) L . it (k12ds - similarity invariant elastica; 

(3) f i (k /~ , , , )~~ds  - elastica with hard limits on turn. 

Note that (1) and (3) are equivalent. The distinct interest in (3) arises 
by considering allowing a to tend to infinity. The limiting func- 
tional is simply a hard limit on curvature. From the perspective of 
r-convergence theory, functional (2) is a continuous perturbation 
of functional (1). Thus, convergence results for (2) will follow easily 
from those for (1). Hence, in our technical development, we will 
focus on (1). 

-). + 
Consider a polygonal curve consisting of segments C1,. . . , C, with 

lengths e l , .  . . ,en. (To simplify the presentation we will always 
assume that the initial point of a polygonal curve is the origin and 
we will denote by [;I, . . . , in] the polygonal curve whose kth vertex is 
given by ~ f z ;  &.) Corresponding to the functional 1: ~ k l ~ ~ d s ,  we con- 
sider discrete functionals of the form 

defined over n-segment polygons. 
As we shall see using the general r-convergence approach, we can 

prove that various such discrete functionals approximate the continu- 
ous one in a rigorous sense. The main implication of this approxima- 
tion is that minimizers of the discrete problems converge to minimizers 
of the continuous problems as n tends to infinity. 
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148 A.M. BRUCKSTEIN et al. 

2 EPI-CONVERGENCE FOR ELASTICA 

As our examples indicate, many optimization problems are amenable 
to variational analysis leading to differential equations satisfied by 
optimal solutions and Euier's elastica is a classical example. As 
discussed in the introduction, one could attempt to compute a solution 
to the differential equation directly. In many other situations it is very 
difficult to obtain Euler-Lagrange equations much less solve them. An 
alternative approach, better suited to such situations would be to 
discretize the functional to be minimized and then to minimize the 
discrete function directly using relaxation methods or other numerical 
methods. The theory of r-convergence then allows one to rigorously 
prove approximation properties of the solutions obtained thereby. 

In this paper we focus on functionals defined over curves. We are 
interested in approximating functionals that depend on norms of the 
curvature of the curve, e.g., 

where 1 < a! < co. The case a! = 1, Fl(y), is the total absolute curva- 
ture of y. It has a well known analog for polygonal curves: the sum 
of the exterior angles. We are primarily interested in the case a! > 1 
for which provably good approximations are not well known. 

The functionals we consider are often introduced in applications as 
regularization terms. Other terms depending on the curve usually do so 
in a lower-order way, e.g., they depend continuously on the curve. A 
r-convergence result on the regularization term is easily extended 
since r-convergence is stable under continuous perturbations. 

Given a functional F defined, essentially, over smooth curves we will 
define functionals K,,, essentially, over polygonal curves in such a way 
that 

r 
where here -+ denotes r-convergence. The word 'essentially' appears 
here because the r-convergence theory requires that all curves live in 
one ambient metric space, so functionals K,, and F must be defined 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 149 

over the entire space. This is accomplished in a trivial way: the func- 
tional~ are set to +m on curves over which they are not intrinsically 
well defined. 

The general structure of r-convergence theory is the following. 
Let X be a separable metric space and let Fn, n = 1,2, . . . and F be 
functionals defined over X. We say F, r-converges to F if 

(L) Vx E X : x, + x =+ lim inf Fn(xn) 2 F(x) 
n-+ w 

(U) Vx E X : 3x, -+ x such that limsup Fn(xn) 5 F(x). 
n+ ca 

Proving r-convergence amounts to proving (L) and (U). (Here (L) 
stands for 'Lower limit' and (U) stands for 'Upper limit'.) 

The theory of r-convergence then provides the following key result: 
I- 

THEOREM 1 Let F, --+ F and let x, minimize F,. I fx  is a cluster point 
of {x,} then x minimizes F .  

(Under various regularity hypotheses, e.g., lower-semicontinuity 
of F ,  one can relax the condition that xn be an exact minimizer 
of F,.) This theorem says that all limit points of minimizers of F, 
are minimizers of F. Thus, we can compute minimizers of Fn and, as 
n increases, if the solution converges then it converges to a minimizer 
of F .  Similar remarks apply to local minimizers. This is what makes r- 
convergence practical: one can obtain approximations to minimizers 
of F without having to obtain explicit representations of them. 

r-convergence is stable under various perturbations. In particular, r' I- 
if G is a continuous function on X and F, -+ F,  then G + F, -+ 
G + F. If, moreover, G 2 6 > 0, then GF, -f-, GF. 

In this paper the separable metric space X is the space of rectifiable 
curves of finite total absolute curvature, or turn, in Rn, endowed with 
the metric defined by 

where @ is a homeomorphism, i.e., a reparametrization, and we 
assume, without loss of generality, that yl and y2 are defined on [0, I]. 
(Formal definitions can be found in Section 2.) 
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150 A.M. BRUCKSTEIN et al. 

We consider polygonal curves which, modulo a starting point, can 
be interpreted as a series of links or vectors 2z1, . . . ,2& in Rn (the 
reason for the factors of 2 will be apparent later). Let Ai,i+l denote 
the exterior angle between Zi and i i+l  and let l denote llzll. We 
will define various functionals G on pairs of segments and consider 
functionals on polygons of the form 

The critical issue is the choice of G .  In general, for a given continuous 
domain functional which one wants to approximate, there will be more 
than one good choice for G. In our case of interest, approximating Fa, 
we will consider the three below. 

When cr is an even integer, the case of most practical interest, G: 
simplifies; In particular, we have 

(Some readers may object to the explicit appearance of the angle A in 
these formulas since it is, in general, relatively expensive to compute. 
We remark that the substitution 2: (11t2 - (.?I, &))/(l1l2) may be 
used without changing the main results.) 

Our canonical problem is to find a curve y which minimizes 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 151 

subject to boundary conditions specifying end points and end 
tangents. It is possible to consider more relaxed boundary conditions 
but extensions to such cases are straightforward. As a discrete 
approximation, we consider n segment polygons satisfying the same 
boundary conditions. We define the functionals 

with some modifications, and show that they r converge to Fa as the 
number of segments tends to co. 

3 MATHEMATICAL PRELIMINARIES: THEORY OF CURVES 

A parameterized curve is a continuous function c : [a, b] + R" that 
is non-constant on any open subinterval. A curve is an equivalence 
class of parameterized curves where a parameterized curve 
c' : [d, el + R" is equivalent to c if there exists a homeomorphism 
+ : [c, el -+ [a, b] such that +(d) = a, +(e) = b, and c' = c o +. 

Let vo, vl, . . . , v, be the ordered vertices of a polygonal curve P and 
+ 

define ti := (vi - ~ ~ - ~ ) / 2 .  Let Ai-l,i denote the exterior angle formed 
+ 

by the ordered vertices vi-1, vi, vi+l, i.e., the angle between t i  and 
+ 

t+ l ,  for i = 1,. . . , n - 1. The length of a polygonal curve P is 
defined as 

where I . I denotes the Euclidean norm and we use t i  to denote @il. The 
total absolute curvature or turn of P is defined as 

A polygonal curve P is inscribed in a curve c if, under any param- 
eterization c(t), there exists to < t l  < . . . < t, such that vi = c(ti). 
We extend the definition of L and K1 to arbitrary curves by 

L(c) := sup{L(P) : P is inscribed in c}, 
Kl(c) := sup{K(P) : P is inscribed in c}. 
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152 A.M. BRUCKSTEIN et al. 

These definitions are equivalent to the classical ones for smooth 
curves. This definition of total absolute curvature appeared first in [13]. 

If L(c) < m, then c is a rectifiable curve. Rectifiable curves admit an 
arc-length parameterization. This is the unique parameterization 
c : [0, L(c)] + Rn such that L(C\[~, ,]) = t. This parameterization can 
be renormalized (linearly scaled) so that L(C~[~,,]) = tL(c), which is 
then called a normalized arc-length parameterization. Arc length par- 
ameterized rectifiable curves are absolutely continuous functions; 
therefore, they possess a derivative (of unit magnitude) almost 
everywhere. Let t(t) denote the unit tangent vector to c wherever it 
exists. Since we deal exclusively with rectifiable curves, we will usually 
not distinguish between a curve and its arc-length parameterization. 

The I?-convergence theory requires a separable metric space over 
which all functionals are defined. This means that we require a 
space of curves which includes polygons and smooth curves and 
over which a suitable metric is defined. A natural choice is the space 
of RFT curves: rectifiable curves of finite total absolute curvature 
endowed with a metric d defined as follows 

where yl(t), t E [0, 11 is any (canonical) parameterization of yl and 
y2($(t)) is any (canonical) parameterization of M. This metric is a 
natural one: it measures how far apart two pencils would have to 
separate if the two curves were drawn simultaneously. 

We now present some elementary theoretical results for RFT curves 
which establish their appropriateness for the problem at hand. The 
first several results appear without proof and can be found in [20]. 
Throughout this section, unless specified otherwise, c(t) is an arc- 
length parameterized curve of finite total absolute curvature in Rn. 

THEOREM 2 Let ci, i = 1,2, . . . be a sequence of RFT curves converging 
to an RFT curve c with respect to d(-, .). Then 

L(c) 5 lim inf L(ci), 
1 + 0 0  
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EPI-CONVERGENCE OF DISCRETE ELASTICA 153 

THEOREM 3 Let ci be a sequence of arc-length parameterized curves 
satisfying K ( c ~ )  5 M ,  L(ci) 5 M ,  and max, lci(t)l f M for some 
M < co. Then either limi+, L(ci)  = 0 or there exists a subsequence {cik) 
and an arc-length parameterized curve c such that tik + t umformly, 
where : denotes normalized arc-length parameterization. Furthermore, 
for any such subsequence, we have L(cik) + L(c). 

The next lemma provides some regularity properties. 

LEMMA 4 I f c  is an RFT curve then i. has right and left limits at t ,  i.(t+) 
and i ( t - ) ,  respectively, at all interior t and i. has the appropriate one 
sided limit at its end points. 

Since c is absolutely continuous, it follows that i.(t-) and C(t+) are 
also the right and left tangents of c at t ,  respectively. Thus, RFT 
curves have well defined endpoint tangents i.(O+) and i.(L(c)-) 
respectively. We will say a curve y matches the first order endpoint 
conditions of c if the endpoints of the curves coincide and their 
tangents also coincide there. 

The unit tangent curve i.(t) of a curve c(t) of finite total turn is a 
function of bounded variation. Thus, the second derivative of such 
curves can be represented as a measure. We will say a curve is 
weakly twice differentiable if the curvature measure is absolutely 
continuous with respect to arc-length. We will say that a curve c is a 
W21a curve if it is weakly twice differentiable and the Radon- 
Nikodyn derivative of the curvature measure, which we denote by c, 
has finite La[O, L(c)] norm. Thus, roughly speaking, w ~ , ~  curves are 
curves whose curvature has finite energy. 

Given a curve RFT y and a constant 1 5 a < oo we define the 
functional Fa as follows. If y is not weakly twice differentiable 
then FU(y)  = GO otherwise we set Fa(y)  to be the ath power of the 
La[O, L(c)] norm of j;, i.e., 

LEMMA 5 I f  limn+, d(yn, y) = 0 then 

F f f ( y )  5 lim inf Fa(y,) 
n+w 
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154 A.M. BRUCKSTEIN et al. 

Proof Since L(y) 5 lim inf,,, L(y,) the lemma follows easily from 
standard lower-semicontinuity of L, norms. 0 

4 APPROXIMATING ONE CURVE BY ANOTHER 

The proof of r-convergence requires various approximations of curves 
of one regularity class by curves of another regularity class. In this 
section we develop all of the required approximation results. The 
approximations are of two types. The first type is directed toward 
proving the upper limit of r-convergence. Here we will approximate 
polygons by C2 curves to obtain lower-semicontinuity results for 
them. The second type goes the opposite way: we approximate 
smooth curves by RFT curves. 

4.1 Approximation of Polygons by Piecewise c Curves 

If y is a smooth curve then Fl(y) = K(y). Thus, K generalizes Fl. 
We desire to similarly extend the definition of Fa, a! > 1, to poly- 
gonal curves. The fundamental technical problem we must solve is 
how to assign a curvature functional to polygons that mimics and 
approximates F,. 

Our general strategy is the following. Given a polygonal curve P we 
will produce a piecewise c2 curve y that approximates P; it coincides 
with and is tangent to P at the midpoint of each segment and on the 
first and last half segments. Thus, each vertex and its adjoining seg- 
ments can be considered separately. If 2 6 ,  2?2 are adjacent segments 
in P, then we approximate [?I, &] with a (piecewise) C2 curve y satis- 
fying the first order endpoint conditions of [?I, &I. We then define 
G(;I,&) in order to approximate F,(y). In all cases, when C1 = C2 
the approximating curve will be a circular arc, or approximately so, 
at least in the case of small A, the angle between C l  and C2. 

Let xl = + & be the endpoints of [?I, {2]. Without loss of general- 
ity we may consider the plane of ;* and C2 to be the complex plane, 
and we may assume that the direction of the segment ?l is the direction 
of the positive real axis. (Our constructions will be invariant under 
rotation and translation.) 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 155 

Construction 1 

Let us first consider the equal length segment case: Let ll = l2 =: l 
and let A E ( 0 , ~ )  be the angle between 21 and &. There is a unique 
circular arc I',(Zl, 22) matching the first order endpoint conditions of 
[il,&], see Fig. 2. The magnitude of the curvature of I',(i(,&) is 
tan(A/2)/l. Since the length of the arc is A times the length of the 
radius, we have 

It follows trivially that d(~,(Zl,i2),[il,&]) 5 l ,  but for A 5 n/2 we 
have the stronger estimate 

We now consider the general case, i.e., we no longer assume ll = l 2 .  
Let ; = 21 + z2. Consider the polygonal curve [hil,  (1 - A);, hz2] where 
h E (0,l). For a unique choice of h we have (1 - h)v = h(ll + 42). It is 
not difficult to solve for this h: We have 

where B is the angle between ; and zl and C = A - B, see Fig. 3. Thus, 
we have h = 4 + o(A~).  

FIGURE 2 Circular arc fit of equal length line segments. 
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156 A.M. BRUCKSTEIN et al. 

FIGURE 3 Framework for fitting piecewise circular C2 curve. 

By identifying the plane of the curve with the complex plane we can 
rewrite the polygonal curve [ i l l ,  (1 - A);, A&] as 

i.e., as the concatenation of two equal length segments pairs. Thus, the 
piecewise c2 curve 

matches the first order endpoint conditions of [il, &I. Moreover, we 
have 

Since i = 4 + O(A2), B = l2/(t, + t2)A(1 + o(A~)), and A = B + C we 
obtain 

This motivates the definition 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 157 

Construction 2 

Note that the functional presented above is not, by any means, the 
only possible one. In the special case a = 2 we have 

The construction below leads to the following slightly different 
functional 

Let A be the exterior angle of [il,&]. If A = 0 then we set 
r ( z 1 , i 2 )  = [il,&]. Henceforth we assume A > 0. If A is large, 
A 2 3n/4 say, then any reasonable choice of r(j1, Z2) will suffice. 
Henceforth, assume 0 < A 1 3x14. 

Let K(S) := a + bs with 

and define 

The arc-length parameterized curve z(s) satisfies z(0) = 0, z(0) = 1, 
and i(ll + e2) = eiA. Furthermore it is easily verified that F2(z) = 

-9 -9 21'~' K ~ ( s ) ~ s  = G ; ( l l ,  12). More generally we may define 
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158 A.M. BRUCKSTEIN et al. 

Note that if a! is an integer, then we can write 

and (e l  - L 2 )  is a factor of (4L1 - 2L2)~+l - (4L2 - 2 L 1 ) ~ + 1 .  
Although z does not satisfy both end point conditions, we may per- 

turb it to do so. Let i l  and i2 be defined by z(Ll + t2)  = i l Z l  + i 2 Z 2  

and define the 2 x 2 matrix 

where rn(i1, z 2 )  denotes the 2 x 2 real matrix whose columns are the 
vectors & and & represented as real 2-dimensional vectors. It follows 
that the curve i ( s )  given by 

satisfies 2(0) = 0 ,  i (0 )  = 1 / i 1 ,  .&Ll + L2) = ( 1  / i2)eiA, and i(L1 + L2) = 
+ Z2. Thus P matches the endpoint conditions of &&. Let us define 

We claim that 

Thus i is not very different from z when A is small, and in fact it 
follows that 

We now prove the claim. 
Consider ~ ( s )  := [ l ~ ( t ) d t  = as +$bs2.  It is easy to see that if 

2C2 > C 1  then 0 5 p(s) 5 A. If 2L2 < E l  then we have A$(Ll - 2L212/ 
(L: - l:) 5 q(s) I A .  In either case we have (cp(s)( I A.  Thus, if A is 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 159 

small, then we have 

and hence 

We now have hl = 1 + O(A2) and h2 = 1 + O(A2) and since 
det m ( i l ,  i 2 )  = tlt2 sin A we obtain 

M = I + O(A).  

Construction 3 

Without loss of generality let t l  5 t2.  Now, consider the piecewise C2 
curve 

It is clear that r3( i1 ,  z2) matches the first order endpoint conditions of 
[il&] and 

This motivates the definition 

Let the segments of a polygonal curve P be 2 i 1 ,  2 i2 , .  . . , 2 i n  with 
exterior angles A12,  A23,. . . , NOW consider replacing each 
piece [&,6+1] with the curve rj(ti, t i+l) ,  j E {I, 2 , 3 }  and let # be the 
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160 A.M. BRUCKSTEIN et al. 

resulting piecewise c2 curve. It follows that 

where Amax is the maximum among the Ai, i + l +  

4.2 Approximation of RFT Curves by Smooth Curves 

Ultimately we are interested in approximating RFT curves with 
polygons. As an intermediate step we will first approximate them 
with smooth (c*) curves. In Appendix 1 we prove the following. 

LEMMA 6 For any RFT curve y and constant a E [l, m) there exists a 
sequence {y,} of smooth (e.g. C2) curves such that y, matches thefirst 
order endpoint conditions of y and such that 

In Appendix 2 we prove the following. 

LEMMA 7 For any C2 curve y there exists a sequence of equal length 
segment polygons P,, with segment length l ,  + 0, such that each 
polygon P, matches the first order endpoint conditions of y and 

m,-1 
A? i+ t lim z - = F&), 

n+oo lg-1 
i=O 

where m, is the number of segments in P,. Furthermore, we have 
L(P,) + L(Y) and d(Pn, y) 4 0. 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 161 

5 PROOF OF r-CONVERGENCE 

We are now in a position to prove the essential ingredients of r-con- 
vergence, i.e., to prove (L) and (U). First we prove (L). This requires 
constructing good polygonal approximations to curves with respect to 
the given metric and the functional to be approximated. It turns out 
that we can obtain good approximations by focussing on polygons 
consisting of equal length segments. 

LEMMA 8 Let ~ $ 1 ,  &) satisfy 

Then for any w2," curve y 
curves P,, each satisfying the 
y, such that 

there exists a sequence of polygonal 
same first order endpoint conditions as 

Proof Let yj be a sequence of c2 curves satisfying (i), (ii), and (iii) 
in place of P,. For each j there exist a sequence Pjn such that (i), 
(ii), and (iii) are satisfied with Pjn replacing P, and yj replacing y.  
By a standard diagonalization argument we can extract a subsequence 
satisfying (i), (ii), (iii). 17 

We are now ready to prove part (U) under the assumption that the 
segment lengths tend to zero. We will address this issue further in the 
next section. 

LEMMA 9 Let P, be a sequence of polygons satisfying d(Pn, y) + 0 
and such that the maximum segment length in P, tends to 0 .  Then 

F,(y) 5 lim inf K;(P,) 
n- roo  

for j E {1,2,3).  
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162 A.M. BRUCKSTEIN et al. 

Proof For each j we find a piecewise c2 curve yn according to the 
constructions above approximating Pn. Without loss of generality 
we assume lim K~(P,) exists and is finite. It follows that the maximum 
angle between adjacent segments in Pn tends to 0. Hence d(y,, P,) + 0 
and &(Pa) - Fff(yn)l + 0. Since yn E w2,, and d(yn, y) + 0 we have 

F,(y) 5 lim inf F,(yn) = lirn K,(P,). 
n+ w n+m 

6 APPLICATIONS 

In this section we apply our results. Note that most of our convergence 
results require that the maximum length of a segment in the approxi- 
mation tend to zero. This natural condition is actually necessary. 

+ + 

Consider the (polygonal curve) y = [ e l ,  421 .  We have F,(y) = +GO 

but without requiring segment lengths to tend to zero we can duplicate 
y with a multi-segment polygon while keeping K, bounded. Thus, the 
maximum length condition should be enforced in order to obtain 
r-convergence results. In the constructions of [14] this was accom- 
plished by using only equal segment polygons. Another way to enforce 
this is to append another term to the functional. There are many pos- 
sibilities; a simple example is Reg(P) := n C&l( l i  - li+l12. Note that 
this functional is zero on equal segment length polygons but does 
not force all lengths to be asymptotically equal since it tends to zero 
as long as the maximum segment length is O(l/n). As long as the 
length of P is bounded below by a positive constant, then Reg(P) 
will be grow to co unless the maximum segment length tends to zero. 

Consider the following problem: Given first order endpoint 
conditions, find the curve y which minimizes 

where O(x,y) is any continuous function satisfying lirn,,, O(x, 
y) = 00. 

Now consider the following discrete problem. Find the n segment 
polygon which minimizes 
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EPI-CONVERGENCE OF DISCRETE ELASTICA 163 

where 

f o r j =  l , j = 2 o r j = 3 .  
If we extend both functionals to RFT curves by setting them to oo 

on curves for which they are not intrinsically well defined, then we 
have 

Note that this holds true if we restrict to equal segment length poly- 
gons and, in this case, we can remove the redundant term Reg(P). 

This example covers all of the original functionals (Section 1) 
provided the endpoint conditions guarantee that any finite solution 
must have positive length. 

As a final example we consider the problem of Dubins [18]. Given 
first order endpoint conditions, Dubins's problem is to find the 
curve y (in the plane) of shortest length satisfying the endpoint 
conditions that has curvature no greater than K. We can approxi- 
mate this cost functional with a smooth functional as follows. 
Consider the functional 

on curves y satisfying the endpoint conditions. If we let a -+ oo then, 
for twice weakly differentiable y, this functional converges to L(y) or 
+oo for L, norm of j; less than or more than K, respectively. The case 
11  yllm = K is, unfortunately, a little problematic. However, a slight 
variation of the functional such as below, 

guarantees convergence to L(y) if l l  yll, = K. 
Letting a be integer, the functionals above r-converge to Dubins's 

functional. It follows that if we have sequences Ha,, which r-converge 
in n to Ha, then by a suitable diagonalization there exists a sequence 
Ha,,, which r-converges to Dubins's functional. The dependence of a, 
on n depends on the relative rates on convergence. 
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164 A.M. BRUCKSTEIN et al. 

Thus, we may provably approximate Dubins's problem on poly- 
gonal curves. 

6.1 A Computational Lifting Scheme 

If we restrict to polygons of equal length segments then the polygon is 
easily approximated using circular arcs. Thus, under this restriction 
r-convergence is easily proved. If we wish to find a "good" functional 
~( i~ , i2 )  for some particular functional and a then we may use the 
equal length segment approximation to compute an approximation 
for the more general case. 

For example, for some fixed il we can compute for various & a 
polygon locally minimizing K, +BL, where BL is necessary for 
regularization of the functional. Having sampled the functional K, 
for various values of i2 we may attempt to find an analytic expression 
to approximate K, especially in the regime of small A. We can use this 
lifting approach to build good approximations of various functionals. 

7 CONCLUSIONS 

We have shown that it is feasible to find good piecewise linear approxi- 
mations to various types of planar elastica curves by first discre- 
tizing the problem itself. This is a viable approach to the practical 
design of splines, as already exemplified in [ l l ]  and [14]. The theory 
of r-convergence shows that we can get better and better approxima- 
tions to the 'continuous' solutions of the original elastica problems by 
increasing the number of linear segments allowed in the polygonal 
approximations. 
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APPENDIX 1: APPROXIMATION OF RFT CURVES 
BY SMOOTH CURVES 

This section is devoted to proving Lemma 6 which we restate here for 
the reader's convenience. 

LEMMA 6 For any RFT curve y  and constant ol E [I ,  m) there exists a 
sequence { yn }  of smooth (e.g. c2) curves such that yn matches the first 
order endpoint conditions of y  and such that 
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166 A.M. BRUCKSTEIN et al. 

Proof If y is not a w2," curve then the result is trivial so we assume 
y E w21". Let fn be a sequence of smooth functions converging to y 
in Lu [0, L(y)]. Define 

Applying the Holder inequality we obtain 

where a' is defined b y  1 /a' + l / a  = 1. For n large enough we have 
F,(s) # 0 hence Fn(s) is a parameterized curve. 

It is clear that Fn matches the first order end condition of y at s = 0. 
To complete the proof we modify F, so that it also matches the first 
order end condition of y at s = L(= L(y)). To this end we define 

( L )  - F )  12 L 
gn (s) : = fn ($1 + L +-(--s)  L3 2 

and set 

A straightforward calculation verifies that G,(L) = y(L) and Gn(L) = 
y(L). Furthermore, we have D
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so that G,(s) is a parameterized curve for n large enough. Assuming 
this is the case we set y, = G,. Since 

we obtain L(y,) -t L(y).  Let t denote arc-length along y,; define 
t(s) = J: IG,(u)ldu, and let s(t) denote the inverse of t(s). Then 

We have G,(s) -+ y(s) uniformly and g,(s) + y(s) in L,, so (G,(s), 
g,(s)) + 0 in L, and dt(s)/ds, ds(t)/dt, and IG,(s)J all converge to I 
uniformly. We conclude j&(t) - g,(s(t)) + 0 in L, and, moreover, 

APPENDIX 2: APPROXIMATION OF c2 CURVES BY POLYGONS 

We now present the proof of Lemma 7, restated here for the reader's 
convenience. 

LEMMA 7 For any C2 curve y there exists a sequence of equal length 
segment polygons P,, with segment length l ,  + 0, such that each Pn 
matches the first order endpoint conditions of y and 

where rn, is the number of segments in P,. Furthermore, we have 
L V , )  + L ( y )  and d(P,, y) -t 0. 
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Proof Given any endpoint conditions it is easy to construct polygons 
with n 2 5 equal length segment satisfying the endpoint conditions. 
We will now give a construction approximating y, which is valid for 
all n sufficiently large. 

Let y be c2 curve with maximum curvature magnitude M, i.e., 
\yJ 5 M. Given a small positive constant 6, we will construct a 
polygon P consisting of equal length segments of length C 5 6 such 
that P matches the first order endpoint conditions of y and all 
except the second and penultimate vertices of P lie on y. Our purpose 
is to show that F,(y) can be well approximated by K,(P) when 6 is 
small. Furthermore, we will have C/6 + 1 as 6 + 0, and the number 
of segments required will increase monotonically in steps of size one 
as 6 is decreased. 

Without loss of generality we assume 6 5 min(i diam(y), $ ~ ( y ) ,  
1/(4M + 1)). Setting C = 6 define vo = y(O), v l  = Cy(0) + vo, wo = 
y(l), and wl = wo - Cy(1). Define ta = minit > 0 : Ily(t) - vlll > 8). 
Similarly, assuming it exists, define ti  = minit > ti-1 : ((y(t) - vi-111 2 
C)  and define ti = max{t' < L(y): I(y(t') - will 1: C). It can be easily 
seen that there is some smallest m such that tm 2 4. If tm = ti we define 

and we are done. If t, > ti then we continuously decrease C (C < 6) 
until we have t, = 4. It is easy to see that both t ,  and ti are conti- 
nuous monotonic functions of C. Moreover, as 6 decreases the 
number of segments required increases in discrete jumps of size one. 

We will now examine how well F,(y) and L(y) can be estimated from 
P. Let s denote arc-length along P and let t denote arc-length along y. 
Let so < sl < . . < sm+2 be defined by P(si) = vi (where vm+l = wl, 
vm+2 = w0). We define a piecewise linear homeomorphism $I: [O, 
L(y)] + [0, L(P)] as follows: For s = si, i = 0,2,3,. . . , m, m + 2 we set 

and inbetween we linearly interpolate. We claim that for each 
i = 2 ,  ..., m-2wehave 
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The left inequality is trivial. To prove the right inequality we first 
prove the following 

Without loss of generality we assume t  2 s. The angle 0 formed 
between y(t) and y(s) is bounded above by M(t  - s ) .  Now, 
(y( t) ,  y(s)) = cos 0 1 1 - 02/2, so we obtain 

By assumption we have M l  5 i. Therefore, if t - s = l ( l  + (M212/6)) ,  
then 

From this the claim (6) follows. 
For any a E [0, l ]  we have 

so we have 
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By Jensen's inequality we have 

And, again by Jensen's inequality, we have 

Now, note 

and 

that 

so we obtain 

Putting the above together we have 
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Without loss of generality we assume ti+l - ti 2 ti - ti-1. We now 
have 

Applying equation (6) we now obtain 

e l - f f  t /J,"1: J) Iii(niffdt 2 (, + ,,,,),,-, 2d2(1 - cos A ~ ,  i + 1 ) f f 1 2  

We have now shown 

Note that had we inscribed P the limits of the sum would be 0 and m. 
However, it is easy to show that there is a constant c depending only 
on M such that if S is sufficiently small then A: i+l /aff-'  5 c l .  We have 
therefore proven Lemma 7. 0 
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