
Mathematical Entertainments Michael Kleber and Ravi Vakil, Editors

Crazy-Cuts: From
Theory to App
YOTAM ELOR, DORON SHAKED, AND ALFRED M.
BRUCKSTEIN

This column is a place for those bits of contagious

mathematics that travel from person to person in the

community, because they are so elegant, surprising,

or appealing that one has an urge to pass them on.

Contributions are most welcome.

� Please send all submissions to the Mathematical

Entertainments Editor, Ravi Vakil, Stanford University,

Department of Mathematics, Bldg, 380, Stanford,

CA 94305-2125, USA

e-mail: vakil@math.stanford.edu

CC
razy-Cut puzzles are fascinating and often quite
challenging: Given a planar shape (as for example
depicted inFigure 1a), finda cutting curve thatdivides

the shape into two parts, identical up to Euclidean transfor-
mations (rotations and translations). The solution, as seen in
Figure 1b, is not trivial to find. Several further Crazy-Cut
dissectionpuzzles are shown inFigures 2and12.Apparently,
suchpuzzles were invented byHenry Dudeney (see Eriksson
[1]) about one hundred years ago, but it was Martin Gardner
whopopularized them in the 1970s in his Scientific American
column [2] and in his books [3]. Gardner also posed the
challenge of finding a formal algorithm for solving Crazy-Cut
puzzles. In this article, we describe some recent work on
algorithms for solving Crazy-Cut challenges that led to the
designofapuzzlegameforsmart-phonesandpadcomputers.

Eriksson was the first to propose an algorithm for solving
polygonal Crazy-Cut challenges [1]. In Eriksson’s algorithm,
two points on the perimeter of the shape are selected, and,
starting from these points, two congruent paths are con-
structed, one of them (the ‘‘master’’) leads by following the
boundaryof the shape,whereas the secondpath (the ‘‘slave’’)
is led by the congruence constraint and is allowed to cross the
shape. If the two starting points happen to be in ‘‘corre-
spondence’’ when there is a solution to the challenge, the
‘‘slave’’ path will split the shape into two identical pieces; see
an example in Figure 3. Eriksson proved that by checking all
possible pairs of points, one will find the correct cut if such a
cut exists or will determine that the shape cannot be cut into
two identical parts. Following Eriksson’s work, Rote, with
co-workers, improved and further elaborated upon Eriks-
son’s algorithm [4, 5]. El-Khechen et al. then proposed an
algorithm for a variant of theproblem inwhich the twopieces
are required to be mirror congruent, that is, identical up to
reflection, rotation, and translation [6].

A previous work by the second and third authors of this
article reconsidered Crazy-Cut puzzles from a different point
of view. Quoting [7]: ‘‘We first analyze the inverse problem of
assembling a planar shape from two identical shapes that
have partially matching boundaries. This problem may be
regarded as solving a simple jigsaw puzzle of two pieces
(with no drawings on them).’’ Then the self-docking analysis
readily provides a Crazy-Cut algorithm, and more impor-
tantly for us here, the insights also provide the mathematical
basis required to design Crazy-Cut riddles systematically.

In this work, we improve on our previous analysis,
thereby enabling a simpler Crazy-Cut algorithm. Further-
more, based on the improved analysis, a formal method to
design Crazy-Cut riddles is proposed.

Self-Docking and the Grammar of Crazy-Cuts
In this section we review the analysis of [7] and improve upon
it. A simple planar shape (with no holes) may be represented

50 THE MATHEMATICAL INTELLIGENCER � 2012 Springer Science+Business Media, LLC

DOI 10.1007/s00283-012-9281-4

by the closed planar curve of its boundary. The curve is
described by a function k(s), with the value of k(s) being the
curvature of the boundary at point s for any s 2 ½0; L�, L being

the total length of the boundary, and s = 0 being an arbi-
trarily selected starting point. An example of a smooth
boundary description can be found in Figure 4a. If the
boundary is nonsmooth, we can define k(s) as having
d-function components describing sharp angles at break-
points; see Figure 4b. It is important to note that such
boundary descriptions are Euclidean-invariant, that is,
invariant under translations and rotations in the plane. Since
the task is finding two pieces that are identical up to Euclid-
ean transformations, using a Euclidean-invariant shape
descriptor is both natural and necessary.

Given two shapes SI and SII, which dock to each other, we
may now ask what characterizes the matching portions of
their boundaries. If kI(s) and kII(s) describe the boundaries of
the two shapes in a clockwise traversal from arbitrary initial
conditions, and the portion between sA

I and sB
I on the

boundary of SI matches the portion between sA
II to sB

II on the
boundary of SII, we shall have (see Figure 5) that:

kI ðsI
A þ sÞ ¼ �kII ðsII

B � sÞ s 2 ½0; sI
B � sI

A�

Clearly along the common boundary portions of the shapes
SI and SII we have the same traversal rate (arc-length tra-
versal is unit-speed clockwise travel along the boundary!)

(a) (b)

Figure 1. (a) The puzzle, (b) the ‘‘crazy cut’’ into two identical

parts.

...

A
U

T
H

O
R

S YOTAM ELOR received his B.Sc. in Electri-
cal Engineering and his B.A. in Physics in

2007 from the Technion–Israel Institute of

Technology. He is working toward a Ph.D. in

the Department of Computer Science,

Technion, under the supervision of Profes-

sor Alfred M. Bruckstein. He is mainly

interested in distributed (swarm or multi-

agent) robotics. When he is not studying
ants, Yotam can be found at the pool or

hanging out with his wife-to-be.

Department of Computer Science

Technion–Israel Institute of Technology

Technion, Haifa 32000

Israel

e-mail: yotame@cs.technion.ac.il

DORON SHAKED received his B.Sc. from the

Ben Gurion University in Beer Sheva, Israel, in

1988. He received his M.Sc. and D.Sc. degrees

from the Technion–Israel Institute of Tech-

nology in 1991 and 1995, respectively. Since
then he has been with Hewlett-Packard

Laboratories Israel in Haifa, where as a

principal researcher he has led multitalented

research teams focusing in the areas of printing

automation, technologies, image enhance-

ment, and data mining.

HP-labs
Haifa, Israel 32000

e-mail: doron.shaked@hp.com

Figure 2. Some further Crazy-Cut challenges. The solutions

can be found in Figure 13.

Figure 3. Illustration of Eriksson’s algorithm.

� 2012 Springer Science+Business Media, LLC, Volume 34, Number 2, 2012 51

and the velocity vectors at each point are in opposite
directions. Let JI be the portion of SI, which is docked to SII,
and let JII be the portion of SII, which is docked to SI. JI and
JII can be described by

JI : kI ðsI
A þ sÞ ¼ �kII sII

B � s
� �

s 2 ½0; sI
B � sI

A�
JII : kII ðsII

A þ sÞ ¼ �kI sI
B � s

� �
s 2 ½0; sII

B � sII
A �;

that is, the matching portions, have the same length and are
(up/down) and (left/right) mirror reflections of each other;
see Figure 5. For any two curves A and B, we will use the
notation A ¼ �B to imply that A is an (up/down) and (left/
right) mirror reflection of B; for example, we have JI ¼ JII .

Up to this point, the discussion was for two arbitrary
shapes SI and SII. However, we are interested in matching
identical shapes, that is, SI : SII : S. Let J and �J be the k(s)

description of the boundary portions in the description of S
over which the docking is done. An intriguing result of [7] is
that the intervals cannot partially overlap, that is, J and �J are
either disjoint or fully overlap. If the intervals J and �J are
disjoint, it means that there are two distinct portions on the
shape’s boundary that can be matched, see Figure 6a. On the
other hand, when the intervals fully overlap, the region has
the property of self reversal, that is, J ¼ �J ; see Figure 6c.
As an informal proof of the impossibility of partial overlap,
consider the partially overlapping J and �J in Figure 6b. By
definition, J is the portion of the boundary over which the
docking is done. J of Figure 6b is only a part of that portion,
as canbe seen in Figure 6c where J then extends to comprise
the whole docking portion, and J and �J fully overlap.

LE M M A (SE L F-DO C K I N G DI C H O T O M Y) [7]. A pla-

nar shape either ‘‘docks’’ to itself over totally disjoint

matching portions of its boundary or over the exact same

portion of its boundary, and it cannot possibly have a self-

docking that matches over boundary portions that are only

partially disjoint.

Figure 4. Euclidean-invariant boundary signatures for shape

description: (a) Smooth case, and (b) polygonal case.

Figure 5. Two shapes docking.

...

ALFRED M. BRUCKSTEIN received his B.Sc.
and M.Sc. degrees at the Technion, Haifa, in

1976 and 1980, respectively. He then earned a

Ph.D. degree in Electrical Engineering from

Stanford University, California. Since October

1984 he has been with the Technion, where he

holds the Ollendorff Chair in Science. His

present research interests are in swarm/ant

robotics, image and signal processing, analysis
and synthesis, pattern recognition, and various

aspects of applied geometry. In his free time, and

during boring meetings or lectures, he enjoys

drawing and designing logos.

Department of Computer Science

Technion–Israel Institute of Technology

Technion, Haifa 32000, Israel
e-mail: freddy@cs.technion.ac.il Figure 6. Two identical shapes docked.

52 THE MATHEMATICAL INTELLIGENCER

The consequences of these observations are far-reaching
indeed: If the docking is over the same portion of the
boundaries ðJ ¼ �J Þ, then the boundary of the concatenated
shape will necessarily be the concatenation of two identical
boundary curves (see Figure 6c), that is, the boundary of S
can be described by PJ and the boundary of the concatenated
shape by PpPp where p is a segment of infinitesimal length
over which a turn of 180� occurs.

To observe that the p turn is indeed required, fix any
coordinate system and let hI(s) be the direction of the tangent
to the boundary of SI at point s. Similarly, let hII(s) be the
direction of the tangent to the boundary of SII. Recall that
point sB

I is the point connecting J to P on the boundary of SI,
and sA

II is the point connecting P to �J on the boundary of SII.
Both sB

I and sA
II correspond to point M of Figures 6c and 7.

Because of the congruence relation between J and �J , we see
thathI(sB

I) = hII (sA
II) + 180�. Hence, inorder to connectP to P

on theboundaryof the concatenated shape, an ‘‘on-the-spot’’
turn of 180� is required. The relation hI(sB

I) = p + hII (sA
II)

holds even when there are d-functions at the endpoints of P
or J, however this case is quite confusing; see Figure 8 and the
explanations in the legend.

Note that in the PpPp case, the cut curve is completely ‘‘out
of sight,’’ that is, hidden inside the composite shape, and in
fact any symmetrical cut from the beginning to the end of P
(M to M0 in Figure 6c) will yield a possible solution. In case
the self-docking is along disjoint portions of the boundary
(see Figure 6a), the boundary of S can be described by P �JQJ
and the boundary of the concatenated shape by P �JQpQJPp.

Hence if a shape can be represented as the docking of two
identical jigsaw-puzzle pieces, its boundary must be of the
form:

S ¼ PpPp if S ¼ PJ with J ¼ �J
P �JQpQJPp if S ¼ P �JQJ

�

In our previous analysis [7] we allowed any connecting
angles between P �JQ and QJP (or P and P) as long as the
resulting boundary is simple and closed. In this work the
analysis was sharpened by noting that the connecting angles
equal p.

Crazy-Cut Algorithm for Polygons
In this section, it is assumed that k(s) is the boundary of a
polygon with n vertices. The analysis described in the pre-
vious section yields an efficient algorithm for finding the
crazy cut if such a cut exists, or determining that such a cut is
not possible. In order to find a crazy cut or to determine
impossibility, we have to determine whether the polygon’s
k(s) has, from some starting point, the structure PpPp or the
structure P �JQpQJPp. Testing for the structure PpPp is the
same as testing for a 180� rotational symmetry, which can be
done easily. However, testing for the structure P �JQpQJPp is
more challenging. The challenge arises from thepossibility of
several vertices being absent from the boundary descriptor
(k(s)), that is, vertices that vanishbecauseof theemergenceof
internal angles of 180�; see an example in Figure 9. The
possibility of missing vertices makes the recognition of the
composing polylines (P, Q, and J) more complex.

Consider any three polylines P, Q, and J such that kðsÞ ¼
P �JQpQJPp is a boundary of a polygon. Denote the vertex
connecting P to �J by vP �J , the vertex connecting J to P by vJP,
and the vertex connecting P to P by vPP. The algorithm of [7]
is based on the following observation: at least two of these
three vertices must not vanish. Based on the observation, all
portions of k(s) of the form PpP canbe found byperforming a
threefold search:

1 . For every selection of two vertices, check whether the
clockwise path connecting them is a valid PpP segment.
It is easy to see that all portions of k(s) of the form PpP
where the vertices vJP and vP �J did not vanish will be
discovered in this search route. Note that the midpoint
vertex, that is, the vertex connecting P to P, might be
missing, for example, see the top right PpP polyline in
Figure 10.

2. For every selection of two vertices, let the clockwise path
connecting thembe the P polyline, and check whether the
continuance of the boundary conforms to pP. Note that

Figure 7. Point M of Figure 6c.

Figure 8. Example of a PpP portion from the boundary of a

Pp Pp composite shape. The curvature of P includes two delta

functions: di = 105� at the beginning of P and df = 75� at its

end. The curvature of the boundary of the composite shape at

point M is given by k(M) = df + 180� + di. In the example,

k(M) = 360� = 0 so the boundary is smooth at M.

Figure 9. Example of absent vertices. The two vertices

connecting P to J and J to Q ‘‘vanish,’’ that is, they are missing

from the description of the polygon’s boundary (k(s)).

� 2012 Springer Science+Business Media, LLC, Volume 34, Number 2, 2012 53

the PpP polyline does not have to end in a vertex, for
example, see the bottom left PpP polyline in Figure 10.
This search pattern will discover all PpP instances where
the vertices vJP and vPP did not vanish.

3. For every selection of two vertices, let the counter-
clockwise path connecting them be the P polyline, and
checkwhether the continuance of theboundary conforms
to pP hence discovering all PpP instances where the
vertices vPP and vP �J did not vanish.

Following the remainder of the algorithm of [7], for every
candidate for the PpP portion, we check whether the rest of
the boundary conforms to �JQpQJ : We start assembling the
candidates for the J and �J segments by following the bound-
ary on both ends of the PpP segment. We match the length of
thefirst edgeonbothends andmake sure thenext turn angles
are negatives of each other. We continue until one of the
conditions is broken. If the angle condition was met and one
of the edge segments is shorter, we stop the J �J search in the
vertex of the short edge and in the middle of the longer edge.
If the edge-length condition has been met, but not the turn-
angle condition, we stop at both vertices. Notice that this
stage cannot fail (we start with a successful vertex condition
andmaywell stopon thefirst edge). The remainingboundary
segment should now correspond to the QpQ segment. The
latter is verified by cutting it in midpoint, and checking
exactly as we did the PpP segment (in stage 1 of the search).
Having found three polylines P, Q, and J such that
kðsÞ ¼ P �JQpQJPp, we have found the cutting curve!

Note that according to the algorithmof [7], after identifying
appropriate P, Q, and J polylines one must verify that the
resulting cutting curve does not intersect with the boundary.
But if P, Q, and J are such that kðsÞ ¼ P �JQpQJPp, the curve
cannot intersect the boundary. Thus the verification is
unnecessary.

Recall that n is the number of vertices of the polygonal
shape. To summarize the complexity of the algorithm: For
every one of the three search routes, there are O(n2) candi-
dates for a PpP segment. For every PpP candidate, the
traversal of all the other conditions, including checking the
PpP segment, the J and �J segments, and the QpQ segment
amounts to an O(n) processing time. Hence the total algo-
rithm complexity is O(n3).

Design of Crazy-Cut Challenges
A popular talk about Crazy-Cuts given by Bruckstein in 2011,
and the crowd’s positive reaction to the riddles presented in
the talk, brought about the idea of designing and program-
ming a Crazy-Cut puzzle game for smartphones and pad
computers. The analysis in the first section of this article
readily provides the theoretical basis for generating Crazy-
Cut challenges. We know that there are two types of Crazy-
Cut shapes: PpPp and P �JQpQJPp. However, since PpPp
shapes have infinitely many solutions that are relatively easy
to find, it was decided to use solely riddles of the form
P �JQpQJPp. Therefore, in order to construct a Crazy-Cut
shape challenge, three paths P, Q, and J must be defined such
that P �JQJ and P �JQpQJPp are simple and closed. Clearly there
are many methods for constructing a set of paths fulfilling
these stated requirements. After several attempts, the fol-
lowing method was chosen. Initially, P, Q, and J are set to be
straight line segments such that P �JQJ is a quadrilateral. Then,
P, Q, and J are altered while keeping their endpoints fixed.
Note that special attention must be paid in order to avoid
creating polyline intersections in P �JQJ and P �JQpQJPp.
Finally, two copies of the shape are docked to each other to
yield the riddle shape.Anexampleof theprocess is presented
in Figure 11.

Another game-play issue to consider is user interaction, in
other words, how the user specifies his hypothesis of the
location and structure of the cut. Given that we have touch-
screen platforms, a straightforward solution is asking the user
to draw the hypothesis with his finger. One should carefully
determine how precise the hypothesis must be in order to be
considered a valid solution. Finger-pointing is very inaccu-
rate, hence in our experiments, when the required precision
was too high, the game became frustrating, because the user
knew the solution but could not draw it accurately enough.
On theother hand, if the requiredprecisionwas too low, very
crude hand-drawn curves were considered valid even for
highly complex cuts, thus making the game too easy. While
testing iPhone-size devices it became clear that every level of
sensitivity is either too low or too high. Therefore, it was
decided to use a different mechanism.

Since only polygon riddles were designed, the cut-line
hypothesis is limited to polylines. In the selected mechanism,
for every riddle, a polyline hypothesis with the appropriate
number of vertices is presented to the user. The user can drag
and place the vertices with his finger. When the cut hypoth-
esis is similar enough to the solution, the hypothesis is
accepted, and the puzzle is considered solved.

Figure 10. Example of the search for PpP polylines. The top

right PpP polyline is found in the first search route; note the

‘‘missing vertex’’ in the center of the polyline. The bottom left

PpP polyline is found in the second search route; note the

‘‘missing vertex’’ at the end of the polyline.

(a) (b) (c)

Figure 11. Constructing a Crazy-Cut riddle: (a) The initial

quadrilateral, (b) after alteration, and (c) the docking.

54 THE MATHEMATICAL INTELLIGENCER

A space theme was chosen for the ‘‘skin’’ of the game. The
cut vertices are designated by tiny flying saucers, and the
polyline itself by straight laser beams between the flying
saucers. For more Crazy-Cut challenges from the game, see
Figure 12. The game is freely available for Android and iOS
platforms under the name ‘‘Magic-Cuts.’’

REFERENCES

[1] K. Eriksson. Splitting a polygon into two congruent pieces. The

American Mathematical Monthly, 103(5):393–400, 1996.

[2] M. Gardner. Mathematical Games, Scientific American, volume

237, pages 132–137, 1977.

[3] M. Gardner. My Best Mathematical and Logic Puzzles. Math &

Logic Puzzles. Dover, 1994.

[4] G. Rote. Some thoughts about decomposition of a polygon into

two congruent pieces. unfinished draft, http://page.mi.fu-berlin.de/

rote/Papers/pdf/Decomposition+of+a+polytope+into+two+con

gruent+pieces.pdf, 1997.

[5] T. Fevens, J. Iacono, D. El-Khechen, and G. Rote. Partitioning a

polygon into two congruent pieces. In Kyoto International Confer-

ence on Computational Geometry and Graph Theory, Kyoto

CGGT2007, Kyoto, Japan, 2007.

[6] T. Fevens, D. El-Khechen, and J. Iacono. Partitioning a polygon

into two mirror congruent pieces. In Proceedings of the 20th

Canadian Conference on Computational Geometry, CCCG, Mon-

treal, Quebec, August 13–15 2008.

[7] A. Bruckstein and D. Shaked. Crazy cuts: Dissecting planar shapes

into two identical parts. In Martin Ralph Hancock, Edwin and

Malcolm Sabin, editors, Mathematics of Surfaces XIII, volume 5654

of Lecture Notes in Computer Science, pages 75–89. Springer:

Berlin, Heidelberg, 2009.

Figure 12. Some Crazy-Cut challenges taken from ‘‘Magic-

Cuts’’.

Figure 13. Solutions to the challenges presented in Figure 2.

� 2012 Springer Science+Business Media, LLC, Volume 34, Number 2, 2012 55

http://page.mi.fu-berlin.de/rote/Papers/pdf/Decomposition+of+a+polytope+into+two+congruent+pieces.pdf
http://page.mi.fu-berlin.de/rote/Papers/pdf/Decomposition+of+a+polytope+into+two+congruent+pieces.pdf
http://page.mi.fu-berlin.de/rote/Papers/pdf/Decomposition+of+a+polytope+into+two+congruent+pieces.pdf

	Crazy-Cuts: From Theory to App
	Self-Docking and the Grammar of Crazy-Cuts
	Crazy-Cut Algorithm for Polygons
	Design of Crazy-Cut Challenges
	References

