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Abstract. An adaptive version of the integrate and fire- 
at-threshold model for the neural coding process is 
presented. The encoder transforms stimulus intensity 
information into sequences of identical membrane 
depolarization spikes, their times of occurrence defin- 
ing a modulated point process. Several theoretical 
decoding schemes are then introduced and their per- 
formance analyzed. These implement simple, recursive 
parameter estimation algorithms and their output 
reproduces reliably the encoded time-varying stimulus 
level. 

1 Introduction 

The nervous system employs for long distance trans- 
mission of information a pulse frequency modulation 
technique; membrane depolarization spikes, essen- 
tially identical in shape, propagate along neuronal 
axons carrying messages encoded in patterns of in- 
terspike intervals (Katz, 1966). Neural encoders are in 
fact complex pulse frequency modulators transforming 
analog signals, usually slowly varying in time, into 
sequences of "all-or-none" events. The coding process 
is far from being completely understood, in spite of 
many important discoveries such as the Hodgkin- 
Huxley (1962) membrane theory, and of steady im- 
provements in experimental techniques (see Jack et al., 
1975). 

Since the intricate, distributed, spatial and tem- 
poral processing which takes place at spike initiation 
loci is, in most cases, affected by a large number of 
factors, a practical and meaningful way to analyze the 
experimentally recorded neural activity is to provide 
some statistical description for it (Gestri, 1971 ; Knight, 
1972). Adopting this approach, the sequences of spikes 
propagation along the axonal channels are regarded 
as realizations of stochastic point processes, the suc- 

cessive interoccurrence intervals being series of po- 
sitive random variables. It is the task of experimental 
research in neurophysiology to provide ensemble stat- 
istics for the neural activity in response to specific 
stimuli and environmental conditions. Once such pro- 
babilistic descriptions become available, one can define 
and analyze mathematical models for the coding pro- 
cess. From an engineering point of view, these models 
are stochastic pulse frequency modulators that sum- 
marize experimental results and predict, with varying 
degrees of success, the neural response under yet 
untested conditions. It is clear that such models need 
not have structural relations to the actual physiologi- 
cal processes that lead to depolarization spikes in 
response to stimuli. Most models under study do, 
however, incorporate some rough and abstract ma- 
thematical descriptions of the basic phenomena phy- 
siologists believe to constitute the coding process. 
These are the integration of ionic currents at the 
membrane level resulting in changes of polarization 
and the initiation of the neuron firing at a certain 
threshold level of membrane depolarization (Gestri, 
1971 ; Knight, 1972; Jack et al., 1975). If some struc- 
tural assumptions lead to improved behavior of the 
encoder model in terms of matching and predicting 
experimental results, one may gain valuable insights 
into the actual coding process and also provide gui- 
delines for further physiological research. 

This paper briefly presents an adaptive "integrate 
and fire at threshold" neural encoder model the output 
of which is a selfexciting point process (Bruckstein, 
1980 ; Bruckstein and Zeevi, 1983). The slowly varying 
stimulus together with two feedback effects, selfinhi- 
bition and refractoriness, determine the interspike 
interval distributions. Subsequently, some simple de- 
coding techniques are introduced and analyzed. These 
demodulation schemes are in fact recursive parameter 
estimation procedures; the algorithms derived are 
based on the assumption that the decoder has infor- 
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mation concerning the nature of the encoding process, 
the level of the stimulus being the parameter to be 
recovered. Computer simulations of the encoding pro- 
cess as well as of the demodulation algorithms comple- 
ment the performance analysis of the neural com- 
munication model under study. 

2 The Integrate and Fire at Threshold Model  

Let the neural encoder input, representing the intensity 
of a "generator current" which depends on primary 
stimuli, be a slowly varying time function 2( 0.  We 
will assume that 2( 0 , representing stimulus intensity, is 
always positive. The encoder output is the realization 
of a stochastic point process {tn}n~ N where the n-th 
interoccurrence interval is given by: 

i n = t n + l - t  n. (1) 

Clearly i n is the realization of a random variable and 
the output point process can be characterized by the 
statistics of the sequence {In}n~N of successive random 
interspike intervals. 

Consider now the following encoder model: start- 
ing at an occurrence say t n an "effective input" 2*(0 >0  
derived from the input 2(0 is integrated until the 

nondecreasing function u ( t ) =  i 5~*(Od~ first upcrosses 
tn 

a threshold level a, (Fig. 1). 
The equation: 

tn+ 1 

j ),*(~)d~ = a n (2) 
tn 

determines the next neural event's occurrence time 
t.+ r At time t.+ ~ the process restarts - thus given 2*(0 
and the sequence {an} the output is "recursively" 
generated. The an's are considered realizations of ran- 
dom variables A, (the threshold process) and we 
assume that their distribution depends on the past 
history of the output process up to t = t n 

p A.l~.(al an) = to(a, m a. ) . (3) 

Here Zn represents the past of the output process up to 
t n and a n is the sigma field associated with the event 
{t o, tp . . . ,  t,}. The function m~. is, as indicated, measur- 
able on a n and determines the memory depth (in fact 
the past dependence) of the threshold process. 

Under the assumption that 2*(0 changes slowly 
(being almost constant over interspike intervals) we 
can write from (1) and (2) that: 

).*(tk) i k "~ a k . (4) 

Therefore i k and a k are related through a 2*(tk)-Scaling 
and one can immediately write the following ex- 
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Fig. 1. The adaptive "integrate and fire-at-threshold" neural encoder 
model 

pression for the interspike interval distribution: 

pi~lz~(i I%) = 2*(tn)/c(i2*(tn), ma~ ) . (5) 

Let us now turn to the issue of the dependence 
between the effective input and the primary stimulus 
intensity. Some models simply assume that 2*(0 = 2(t). 
A better, more general, assumption would be that the 
effective input depends not only on the primary sti- 
mulus strength but also on the past output of the 
encoder. We can formally write that 

)t*(tn) = H(~(tn), sag), 
where H is some function of the input and of the 
an-measurable quantity sa. This assumption turns out 
to be well motivated physiologically. 

A specific form for the kernels ~c(.,.), that allows 
for considerable flexibility in describing experimental 
data is the following: 

~:(a, m a ) = ( m a " ) O a ~  1 exp [ - a(m~,)] 
- F(~2) (6) 

This is a Gamma distribution of order f2 with param- 
eter m~, which provides immediately for the moments 
of the random variable A n (Karlin and Taylor, 1975): 

f2 
E [ A n J r n ]  = , (7) 

m a  n 

Q 
var EA,IZn] - (r%~)2. (8) 

Now using (5) one obtains for the interval transition 
kernels : 

[2,(tn) (mr -1 exp [ - i,~*(t n) (m~,)]. (9) 
P~"lz"(ila") = F ( a )  

It is clear from the above that the {Ik}k~N process has 
statistics governed by Gamma type transition kernels 
having order f2 and parameters: 

q~n = (ma) 2 *(tn). (10) 



47 

From (9) it readily follows that: 

f2 
E[InlSn] = ~- ,  (11) 

f2 
var I-InlSn] ---- ~ - .  (12) 

The above results clearly display the fact that the 
interval process has realization-dependent evolution, 
thus the output point process is selfexciting (Snyder, 
1975). 

The above described model is yet quite general, 
more specific and commonly used models being ob- 
tained through further assumptions on the threshold 
behavior and on the dependence of the effective input 
on past firing activity. 

Considering a wide range of experimental obser- 
vations on the overall behavior of neural coding units 
as well as physiological evidence on ionic flows 
through the neuronal membrane during the firing 
activity (Katz, 1960; Jack et al., 1975 ; Sokolove, 1972; 
Bromm and Tagmat, 1977 ; Gestri et al., 1980; Walloe, 
1969; Sanderson et al., 1973) we decided on a set of 
assumptions on the past-dependence of the encoding 
process. These are: 

1) The effective input has the following form: 

{2(tn) - San for 2(t,)-- San > •min 
2*(tn)=(2(tn)--Sa~)+= •min  otherwise. 

(13) 

Here sa, is a selfinhibitory current - measured at t~ - 
resulting from the activity of an active electrogenic 
"ion pump" that evacuates the surplus of ions which 
diffuse across the membrane and cumulate within the 
nerve cell due to the repetitive firing. The selfinhibitory 
current is considered to be described by first order 
dynamics (Sokolove, 1972; Bruckstein, 1980) 

where S represents the quantile charge diffusing into 
the cell during the time course of a single action 
potential and ~ is the time-constant of the selfinhi- 
bition process. 

2) The threshold control function rna~ has to ac- 
count for the trend observed when correlating suc- 
cessive intervals, therefore we choose 

ma~=M(1-fl) ~ flxi,,-x-~ with f l < l .  (15) 
x=0 

Here M is a gain parameter and fl determines the 
memory depth of the threshold control function. This 
moving average relationship for mao clearly implies 

that most recent intervals determine its value and since 
E[I,lS,]=O/man , one obtains that short intervals in- 
crease the expected length of the following ones, as 
desired (Walloe, 1969). 

Under the above assumptions one gets the follow- 
ing description for the encoder output: {tk} is the 
sample path of a selfexciting point process, the evolu- 
tion of which in terms of the interval process is given 
by the following transition kernels: 

~nOi t~-I exp [ - ~,i] (16) 

Here q)n =ma,(2(t,)-San) + and s~ and rn~ are given by 
(14) and (15) respectively. 

The encoder output can easily be simulated by 
generating realizations of the sequence {Ik} according 
to (16), however an analytical approach to the study of 
the ensemble behavior of the output process is practi- 
cally impossible. For selfexciting processes of this type 
only some local, sample-path characterizations can be 
obtained (Snyder, 1975). In biological investigations 
we are mainly interested in the ensemble behavior, this 
being the description obtained through experiments. 
In this case, computer simulations can provide a good 
idea of the typical encoder response. An alternative 
approach leading directly to an approximate descrip- 
tion of the ensemble behavior (through a nonlinear 
dynamic system, or ordinary differential equations) 
also proved to be feasible (Bruckstein and Zeevi, 1983 ; 
Zeevi and Bruckstein, 1981). 

The above introduced encoder model accounts for 
the experimental findings in terms of general trends in 
the behavior of neural coding units. In order to apply 
the model to a particular neurosensory system and 
thereby explain its responses, one must introduce some 
specific assumptions. The model is however readily 
seen to reproduce the characteristics of adaptive be- 
havior. If increased stimulus leads to a decrease in 
interoccurrence intervals (higher frequency) for a cer- 
tain period of time the resulting probabilistic increase 
in threshold will tend to increase the following in- 
teroccurrence intervals in an "automatic-gain- 
control'-like mechanism. Increased neural activity 
over a longer period will lead to a decrease in the 
effective generator current. This is an output feedback 
mechanism that also reduces the firing frequency 
through the action of the selfinhibition process, If the 
threshold control or refractoriness mechanism is fast 
compared to the selfinhibition process one obtains two 
time constant transients of adaptation when step-like 
changes in the stimulus occur. The integrate to thresh- 
old scheme has as a built in characteristic the scaling 
property concerning the output variability. Transient 
changes in the stochastic structure of the response can 



48 

250 120 I 

200 100 [ 

80 
150 

o_ o- 60 

lOO 

50 20 

0 
10 20 30 40 50 60 0 10 20 30 4'0 50 

[seconds] [seconds] 
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(encoder test sequence) and b sinewave of span 1-10 

60 

be accounted for only by assuming changes in the 
order of the transition kernel, induced by high output 
activity (Bruckstein and Zeevi, 1981). 

The above encoder model was simulated using the 
following values for the parameters: f2= 10.0,//=0.99, 
M=0.1,  zs=5.0, S=0.05. The inputs tested were dou- 
ble steps and sinewaves. It is to be noted that, with the 
chosen parameters, the selfinhibition was only rarely 
high enough to "cut off'  the effective input to ~min and 
this is indeed the case in physiology. The cutoff 
becomes obvious only when a sudden significant drop 
in the stimulus level occurs in which case a silencing of 
the neural activity is observed. Typical simulation 
results are presented in Fig. 2 indicating that the 
physiological characteristics of encoder behavior are 
well reproduced. Further discussion of the model and 
its responses is beyond the scope of this study and can 
be found in the references (Bruckstein, 1980; 
Bruckstein and Zeevi, 1983). 

3 The Decoding Algorithms 

Suppose that at the "receiving end" sequences of spikes 
are observed and it is required to recover the primary 
input to the encoder Z(t). In the nervous system there 
may, of course, be no need to demodulate the se- 
quences of neural events in order to continue their 
processing. The question is, therefore, mainly of 
theoretical importance : it is to evaluate the amount of 
information on the stimulus time course 2( 0 that is 
retained in the random patterns of spikes that form the 
encoder response. 

In order to recover 2(0, the demodulator observes 
the sequence of occurrence times and it is assumed to 
have knowledge of the encoding mechanism, i.e. the 

a,-measurable functions me, and sr This is not a 
restrictive assumption since even in the biological 
setting at the decoding sites one has local encoders that 
could simulate the behavior of a far-end coding unit, 
providing a model-reference for the decoding mecha- 
nism (Bruckstein and Zeevi, 1983). 

There are several possible ways to approach the 
decoding problem, either through the use of classical 
estimation techniques or by model reference and sto- 
chastic approximation methods. The algorithms that 
will subsequently be presented were tested in simu- 
lation as follows: a stimulus function (double step) 
was applied to the encoding model and the encoder 
output was used as a test input to the decoding 
schemes. The demodulation method performance 
could then be judged by the quality of stimulus signal 
recovery (in terms of acquisition times and tracking 
capability). 

3.1 Maximum Likelihood and "Bayesian" Estimation 

At time t = t, the information available to the decoder 
is % and the a -measurable functions s~, and m~, can 
be computed since, by assumption, the decoder has 
knowledge of the encoder behavior and has clearly 
seen the past encoded sequence. Thus at t=t+ the 
receiving end knows that the next interval to be 
observed, i,, is the realization of a random variable 1, 
with distribution given by (16). If no prior information 
on 2(t,) is assumed to be available at time t,, the 
natural choice would be to estimate it by the value that 
maximizes the likelihood of the observed interval i,. 
This Maximum Likelihood Estimator (MLE) for 
2, = 2(t,) is readily obtained as: 

Q 
2 ( t , ) = s o + - -  if ,~(t,)-s~ >2mi . .  (17) 

inm~. 
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In case of large i., that yields .~-so. < 2mi n we shall set 
the 2-estimate to s~. + 2m~ .. This estimator is extremely 
noisy for the obvious reason that it does not take into 
account prior knowledge on either the behavior of the 
input (for example that it changes very slowly most of 
the time) or on its level as gained through previous 
observations. The prior information can be assumed to 
be summarized in the current estimate 2(t._ 1)- Indeed 
if we take into account that 2(t) has a smooth evolution 

reflect our "degree of confidence" in the previous 
estimate. After having assigned the prior, one is in a 
position to find the "optimal Bayes estimate" of 2(0 as 
the mean of the ).-distribution conditioned on the 
observed interval. From Bayes' rule we have: 

palx.(2[in) = Pr"IA(in[2)PA(2) (22) 
Pr.(i) 

providing after some algebraic manipulation: 

pAli.(2[ i) = (mo i. + 7")~ a(2 -- s~.) ~ ~ exp [ - (m~ i. + 7")(2- s~.)] 
F(O + n) 

(23) 

most of the time (although jumps can occur), we may 
consider a technique that does not discard the infor- 
mation contained in previous estimates of the input 
level up to time t.. Therefore we shall concentrate on 
the following demodulation method: the current es- 
timate 2._ 1 determines a prior distribution for the next 
one. Choosing this prior involves a tradeoff between 
contradicting requirements ; the prior should constrain 
the next estimate to the neighborhood of i . _  1 but also 
allow it to track possible jumps in the input. For 
simplicity we consider the following distribution type 
for the prior: 

PA(2) = 7"0(2 _ S~,,)O- 1 exp [ -- 7"(2 -- s~n)] (18) 
r(o) 

In case the previous estimate is lower than so.+2mi n 
(which rarely occurs) we shM1 set it equal to this value. 
Now one has to specify the parameters O and 7" to set 
the expected value of the prior to )-n- 1- The additional 
constraint will be the assignment of the prior variance. 
Since (18) is a so -displaced Gamma distribution we 
have : 

O 
E[2] = s ~ +  ~ (19) 

and therefore one readily gets 

_~ i 
7" . -  1 - s ~ .  ( 2 0 )  

The variance of the prior distribution is given by: 

o _ 1 - ( 2 1 )  var [2] - 7, 2 7" 

and one must choose a procedure to assign this 
parameter in order to determine the values of O and 7". 
The variance of the prior actually reflects the relative 
weight assigned to the next observation in the process 
of updating the estimate of the input. Two methods to 
choose the prior variance can be thought of: the 
variance can be set to a fixed value or can be chosen to 

This result shows a nice reproducing property of 
Gamma type distributions. Since (23) is a s~ -displaced 
Gamma density, one obtains: 

f2 + O (24) 
2 .=E[2 [ i . ]=s~  + m ~ i . + ~ "  

Suppose at time t. we have chosen the prior param- 
eters O. and 7". so that we have 

7"~n = 'n- l - -San 

yielding 

On 
and ,~-  = V. (25) 

7". 

and O n -  (~'"-1 - s~n) 2 (26) 
v. v. 

Now the estimation algorithm becomes: 

1 .=so  + O + O .  (27) 
" m ~ i . + 7 " , , "  

In order to complete the recursion we need to specify 
V.. If fixed prior variance is assigned then V.= V0, 
however, if we wish to adjust V. according to a measure 
of confidence in previous estimates, we may choose V. 
to be a cumulative function of the errors in predicting 
the interspike intervals based on previous estimates. 
This method will assign a prior variance that measures 
the likelihood of  previous estimates. The rationale: if 
the evolution of 2 did not closely follow that of the true 
input the prediction errors will cumulate and thus 
assign a higher prior variance resulting in the assign- 
ment of more weight to the new information. In the 
algorithm that was implemented the prior variance 
was 

la sliding mean of prediction errorsl 
V. = a sliding mean of intervals V~ (28) 

providing a relative measure of confidence in ).. In the 
above-discussed algorithms the prior variance acts as 
an "inertia" parameter since, for example, a small V 0 
will confine the next decoder output to a value close to 
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Fig. 3a and b. Quasi-Bayes decoder performance a fixed prior variance: 0.1 and b adaptive prior variance 

the previous one. This improves steady-state "identifi- 
cation" accuracy at the expense of reducing con- 
vergence rate and thus tracking capability. Simulation 
results with these "quasi-Bayes" demodulation tech- 
niques are presented in Fig. 3. 

3.2 Prediction Error Demodulation Techniques 
The general philosophy of prediction error decoding is 
the following: using the current, local estimate of 2(t), 
and taking advantage of some knowledge on the 
encoder structure, a prediction of the next interval is 
generated. This can be done for example by re- 
encoding the local estimate through a locally available 
encoder. Theoretically this prediction may be the 
expected value for i, given the local input estimate, or 
alternatively the value that has maximum occurrence 
likelihood. The prediction is then compared to the 
actually observed interval and the estimate of the input 
is corrected (updated) by an amount depending on the 
resulting prediction error (Ljung, 1981). Since at t=t, 
we know s~. and m~. we can predict the next interval 
conditioned on 2,_ ~ as : 

f2 (29) 
i, = E [ i [ % ,  2 . _  ~] = m ~ ( 2 . _ 1  - sa . )  + " 

The prediction error demodulator will, therefore, 
implement variations of the following general 
procedure : 

Q 
1) predict next interval" i', = m~.(2,_ 12--s~,) + '  

2) compute prediction error: e, = i, - i,, 
3) update local estimate : 2, = ~._ i + 7,f(e.), where 

7, is a gain sequence and f(e,) is some function of the 
prediction error. 

The gain sequence in the above procedure may 
depend on the history of the observations and on the  

past evolution of the prediction error. In the following 
section we define and analyze some specific decoding 
algorithms which are particular cases of the above 
general procedure. 

3.2.1 Prediction Error Random Walk Decoder 
A very simple prediction error decoder can be obtain- 
ed from the general procedure by assigning a constant 
gain sequence, 7,=2o, and defining f ( e , ) = -  sign(e,). 
Now the algorithm becomes: 

'~, = 2,-~ - 70 sign(e,). (30) 

A 70-adjustment is thus made in the local estimate 
according to the sign of the prediction error. 
Assuming, for the moment, that 2(t)= 2o, i.e. constant 
stimulus level applied to the input, we can readily 
compute the probability of "up" or "down" adjust- 
ments in the estimate of 2 as a function of its current 
value. We have 

Pr{i,>i,12(t)=2o,2,_l,X }= ~pi.l~.,~o(ila,)di. (31) 
in 

Using the Gamma distribution function defined as: 

x 

1 ~ r 1 exp ( -  r162 
F r ( x ) -  C(a) -~o 

one gets, after some straightforward manipulations' 

F o(& - s~,) + ] 
Pr{i,>t,12o,~.,_l,X }=l-Fr[(~ ,_  _s~.) + ~. (32) 

Now assuming s~. very small compared to both input 
level and its local estimate (which is to be expected at 
higher input levels) we can make the approximation 

(;~o - s ~ . )  + 2o 

An - 1 - -  San ~n  - 1 
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yielding the following result: 

Pr{2n=)',-1 +?0} =Pr{i,<i,l'"}=Vr(~), (33) 

Pr{2"=X"-l-Y~ f22~ ' (34) 

In fact the decoder output takes values only on the 
levels {k7o} and it performs a random walk with 
transition probabilities given by (33) and (34). A plot of 
the "up" and "down" adjustment probabilities as a 
function of the state, k, reveals that the transition 
matrix of the random walk drives the encoder output 
towards a value close to 2 o a "crossover" region of the 
curves defined by (33) and (34). In order to roughly 
estimate the variance of the decoder output when the 
markov chain is already in stationary regime, we can 
approximate the crossover interval by considering up 
and down adjustment probabilities that vary linearly 
with k over this region, say (k L, k L + R). The stationary 
probability distribution for the resulting markov chain 
is: 

Pr{state=kL+X}=2-R(R) (35) 

with corresponding expected value and variance of 

R R(R- 1) E[X] = ~- var IX] - 4 (36) 

This result, together with the fact that the crossover is 
near the value of k that yields kTo - 2 o  and its span is 
proportional to 2 o show that the expected decoder 
output is approximately the true stimulus intensity 
whereas the variance about this value is proportional 
to 2o, but independent of ~;0. Small values of 7o will 
result in slow tracking dynamics; the value of this 
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parameter should, thus, be chosen to allow for good 
tracking capability. Simulations with this demodu- 
lation algorithm clearly exhibit the above discussed 
characteristics (Fig. 4). 

3.2.2 The Stochastic Approximation Approach 
Originally introduced by Robbins and Monro, the 
stochastic approximation (R-M) technique is a partic- 
ularly simple but powerful and important method of 
parameter identification (Ljung, 1981). A stochastic 
approximation decoder can be obtained in the pre- 
diction error method framework by setting 
fie,) = - e , .  At t = t, the error is given by 

f2 
G =i.- m~,(~,_l-s~n) + 

and it follows that 

E[enjEn,,~ 1] = f2 I 1 1 ,+.1.(37 ) 
mac i2(tn)~Sa.) + (,~n-l--San) J 

Now, clearly, the expected value of the error is zero if 
and only if the input estimate coincides with the true 
input level, provided they are both above the selfinhi- 
bitory current, In this case the error expected value is 
positive for 2(t.)<Z._ 1 and negative otherwise, thus 
the procedure of updating the local estimate: 

'~, = ' ~ , - 1 - 7 , e ,  (38) 

will indeed produce a correction which, on the average, 
is in the desired direction (it is assumed here that the 
input does not vary considerably over successive in- 
tervals). Note that here the application of the stochas- 
tic approximation procedure differs slightly from the 
usual case since the error process is causally 
realization-dependent. In order to have good tracking 
capabilities in an algorithm like (38) but also good 
accuracy in identifying a constant input level, if the 
case arises, the gain sequence must be chosen as 
follows : 

1) When predictions are good, on the average, G 
must approach 0 as 1/n (the estimate is, in this case, 
close to the true value and this method improves 
accuracy as in the usual R - M  procedure). 

2) When a cumulative process defined on the 
prediction error evolution (a forgetting-factor weight- 
ed average, for example) reaches a certain threshold, 
indicating that the procedure consistently either under 
or overestimates the input level, the gain sequence 
must be restarted at some reasonably high value in 
order to give more weight to the new information. 

In the algorithms implemented a somewhat more 
sophisticated gain restart scheme, based on the above 
principle, was used (multiple thresholds and several 
gain restart points were chosen). Following Nevelson 
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and Hasminski' (1973), an "adaptive" stochastic 
approximation method was also implemented and 
proved to be the best of all decoding algorithms that 
were tested in this study. The modified estimate up- 
date formula is: 

r d 
~n:'~n 1 q- [d-~ moo(E-so)12: o t] "~nen" (39) 

The better performance of this procedure can be 
explained by the fact that, while the usual R-M 
method is a "gradient"-type algorithm, the adaptive 
scheme is close to the "stochastic Newton" recursive 
identification method. We note, however that the true 
stochastic gradient and Newton algorithms would be 
obtained by defining the above demodulation problem 
as a process of minimizing the expected mean square 
prediction error. This latter approach leads to slightly 
different decoding algorithms that are, however, close 
to the ones described. The performance of the above 
algorithms is illustrated in the simulation results pre- 
sented in Fig. 5. Comparing the decoder performance 
to the simulations using other approaches it is clear 
that the adaptive method has the fastest level acqui- 
sition time and accuracy and also better tracking 
capability. 

4 Concluding Remarks 

A model for the neural encoder was presented and 
briefly analyzed. Several recursive demodulation 
methods were then introduced to test possible ways to 
recover stimulus strength information from the en- 
coder output, a selfexciting point process. Such idea- 
lized decoding schemes enable us to evaluate the 
amount of information on the stimuli carried by the 
rate-modulated random sequences of spikes. 

Among the different decoding schemes, best perfor- 
mance was obtained with the adaptive stochastic 
approximation algorithm. However, all proposed de- 
coding techniques performed well on the tests that 
required the demodulation of spike trains resulting 
from the encoding of step and sinewave functions. This 
indicates that, from a communication-theoretic point 
of view the encoded sequences are able to reliably 
convey the relevant information, in spite of the noisy 
threshold behavior. (Note that the threshold noise can 
be regarded as summarizing all possible sources of 
randomness in the coding process.) In this context, it is 
also important to notice that the adaptive characteris- 
tics of the encoder model significantly contribute to a 
better decoding performance since sharp changes in 
stimulus level are enhanced and this leads to better 
tracking of sudden changes in input. 
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