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Abstract Analysis of deformable two-dimensional shapes
is an important problem, encountered in numerous pat-
tern recognition, computer vision and computer graphics
applications. In this paper, we address three major prob-
lems in the analysis of non-rigid shapes: similarity, par-
tial similarity, and correspondence. We present an axiomatic
construction of similarity criteria for deformation-invariant
shape comparison, based on intrinsic geometric properties
of the shapes, and show that such criteria are related to the
Gromov-Hausdorff distance. Next, we extend the problem
of similarity computation to shapes which have similar parts
but are dissimilar when considered as a whole, and present a
construction of set-valued distances, based on the notion of
Pareto optimality. Finally, we show that the correspondence
between non-rigid shapes can be obtained as a byproduct of
the non-rigid similarity problem. As a numerical framework,
we use the generalized multidimensional scaling (GMDS)
method, which is the numerical core of the three problems
addressed in this paper.
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1 Introduction

Many of the objects surrounding us in the world are non-
rigid and, due to their physical properties, can undergo de-
formations. Such objects are encountered at various resolu-
tion levels—from amoebae on microscopic scales to bodies
of humans and animals on macroscopic ones. Modeling and
understanding the behavior of such objects is an important
problem in pattern recognition, computer vision and com-
puter graphics, and has recently attracted significant atten-
tion in different applications (Bronstein et al. 2007b).

We outline three major problems in the analysis of non-
rigid shapes, which are explored in this paper:

− Deformation-invariant comparison (Fig. 1a): finding a
similarity criterion between shapes insensitive to the de-
formations they undergo;

− Partial comparison (Fig. 1b): finding similarity of de-
formable shapes which have only partial similarity, i.e.,
have similar as well as dissimilar parts.

− Correspondence (Fig. 1c): finding correspondence be-
tween points on deformable shapes.

The problems of similarity and correspondence are inti-
mately related, and in most cases, solving one problem al-
lows to solve the other. Broadly speaking, similarity and cor-
respondence can be thought of as two archetype problems in
the analysis of non-rigid shapes; the similarity problem is of-
ten encountered in computer vision and pattern recognition
applications, whereas that of correspondence arises in com-
puter graphics and geometry processing. Partial similarity is
a more general setting of the shape similarity problem, in
which the shapes have similar parts but are dissimilar when
considered as a whole.

The main difficulty in analyzing non-rigid shapes stems
from the fact that their geometry varies and it is not clear
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Fig. 1 (Color online) Three
main problems in the analysis of
non-rigid shapes

what quantities characterize the shape and which can be at-
tributed to the deformation. Recently, several methods for
deformation-invariant description of shapes have been pro-
posed, targeting mainly three-dimensional objects. Elad and
Kimmel (2001) used geodesic distances as invariant descrip-
tors of three-dimensional non-rigid shapes under the class of
isometric deformations. Their approach created a represen-
tation of the intrinsic geometry of a shape (referred to as
the canonical form) by finding a minimum-distortion em-
bedding into a Euclidean space. The embedding was per-
formed by applying multidimensional scaling (MDS) to the
geodesic distances. This approach showed good results in
the problem of expression-invariant three-dimensional face
recognition, where the deformations of the facial surface due
to expressions were modeled as near-isometries (Bronstein
et al. 2003, 2005a). However, the canonical forms approach
allows only for an approximate representation of the intrin-
sic geometry, since usually a shape cannot be isometrically
embedded into a Euclidean space.

In a follow-up work, Mémoli and Sapiro (2005) proposed
using the Gromov-Hausdorff distance, introduced in Gro-
mov (1981), in order to compare the intrinsic geometries of
three-dimensional shapes. Their paper was the first use of
this distance in pattern recognition. The Gromov-Hausdorff
distance has appealing theoretical properties, and in particu-
lar, lacks the inherent inaccuracy of the canonical forms, but
its computation is NP-hard. Mémoli and Sapiro suggested
an algorithm that approximates the Gromov-Hausdorff dis-
tance in polynomial time by computing a different distance
related to it by a probabilistic bound. More recently, Bron-
stein et al. developed an approach, according to which the
computation of the Gromov-Hausdorff distance is formu-

lated as a continuous MDS-like problem and solved ef-
ficiently using a local minimization algorithm (Bronstein
et al. 2006a, 2006b). This numerical framework was given
the name of generalized MDS (GMDS). GMDS appeared
superior to the canonical forms approach in face recogni-
tion (Bronstein et al. 2006c) and face animation applications
(Bronstein et al. 2006d).

In this paper, we consider a two-dimensional setting
of non-rigid shape analysis, where shapes are planar and
can be thought of as “silhouettes” of deformable objects.
Analysis of such shapes is often encountered in the com-
puter vision literature (Fischler and Elschlager 1973; Ull-
man 1989; Grenander et al. 1991; Mumford 1991; Stark
and Bowyer 1991; Lades et al. 1993; Rivlin et al. 1992;
Geiger et al. 1998, 2003; Gdalyahu and Weinshall 1999;
Latecki and Lakamper 2000; Cheng et al. 2001; Belongie
et al. 2002; Felzenszwalb and Huttenlocher 2005), typically
as a subset of the more generic problem of image analy-
sis (Platel et al. 2005; Berg et al. 2005; Jacobs and Ling
2005).

One of the mainstream approaches is representing shape
contours as planar curves and posing the shape similarity
as a problem of deformable curve comparison, generally re-
ferred to as elastic matching. The latter problem is usually
solved by deforming one curve into another and defining the
similarity of curves as the “difficulty” to perform such a de-
formation. Different criteria of such “difficulty” were pro-
posed (Burr 1981; Tappert 1982; Hildreth 1983; Kass et al.
1988; Yuille et al. 1989; Cohen et al. 1992; Jain et al. 1996;
Felzenszwalb 2005), in most cases, inspired by physical
considerations. Elastic matching can be performed in a hier-
archical manner (Felzenszwalb and Schwartz 2007). A more
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recent viewpoint, pioneered by Michor and Mumford (2003)
and later extended in Yezzi and Mennucci (2004), Mio et al.
(2007), Charpiat et al. (2007), considered the space of curves
as an infinite-dimensional Riemannian manifold and en-
dowed it with a distance structure, which was used to mea-
sure the similarity of two curves.

Another mainstream approach suggest computing the
similarity of non-rigid shapes by dividing them into parts
and comparing the parts as separate objects (Binford 1987;
Brooks 1981; Hoffman and Richards 1984; Biderman 1985;
Bajcsy and Solina 1987; Pentland 1987; Connell and Brady
1987; Hel-Or and Werman 1994; Kupeev and Wolfson 1994;
Siddiqi and Kimia 1996), which allows, at least in theory,
to address the problem of partial comparison as well. How-
ever, there are several difficulties in such approaches. The
first one is the problem of division of the shape into mean-
ingful parts. There is no obvious definition of what is a part
of a shape, and thus, results may vary depending on what
method is used to divide the shape. The second difficulty
is the question of how to “integrate” similarities between
different parts into a global similarity measure of the entire
shape (Geiger et al. 1998).

A simplified approach to non-rigid shape analysis is
based on the articulated shape model, which assumes that
non-rigid shapes are composed of rigid parts, each of which
has a certain freedom to move (Zhang et al. 2004). In the
recent work of Ling and Jacobs (2005), this model was used
implicitly in order to claim that the intrinsic geometry of
such shapes is nearly invariant. The geodesic distances mea-
sured in the shapes are used as deformation-insensitive de-
scriptors, in the spirit of Elad and Kimmel (2001).

In this paper, we approach the problem of non-rigid
shape analysis from the intrinsic geometric point of view,
following Ling and Jacobs (2005). We start with formu-
lating a set of desired properties that a good similarity or
correspondence criterion should satisfy. We show that the
Gromov-Hausdorff distance satisfies these properties, while
the canonical forms distance does not. We apply the ax-
iomatic construction to the correspondence problem, and ex-
tend it in order to cope with the partial similarity. Numeri-
cally, all the problems are formulated as instances of GMDS,
which allows for a computationally-efficient solution.

The paper consists of eight sections and is organized
as follows. In Sect. 2, we present a model of deformable
shapes. In Sect. 3, we formulate a set of axioms that an ideal
deformation-invariant similarity criterion should satisfy, and
compare how different distances fit into this axiomatic con-
struction. In Sect. 4, we introduce set-valued distances based
on the notion of Pareto optimality to address the problem
of partial similarity. Section 5 addresses the problem of
correspondence between non-rigid shapes. Section 6 deals
with numerical computation of the distance and correspon-
dence between non-rigid shapes using GMDS. In Sect. 7, we

present experimental validations of our approach. Section 8
concludes the paper. The proofs of the main results are given
in the Appendix.

2 Isometric Model for Deformable Shapes

2.1 Definitions

A two-dimensional shape S is modeled as a compact two-
dimensional manifold with boundary, embedded in R

2. The
space of all shapes, in which S corresponds to a point, is
denoted by M. A minimal geodesic is the shortest path be-
tween points s1, s2 in S . It consists of linear segments and
parts of the boundary (Ling and Jacobs 2005). The geodesic
distance dS(s1, s2) is the length of the minimal geodesic be-
tween s1 and s2. It is important to stress the difference be-
tween the induced and the restricted metric. The latter, de-
noted by dR2 |S , measures the distances in S using the metric
of R

2, i.e., dR2 |S(s1, s2) = dR2(s1, s2) for all s1, s2 ∈ S . The
induced metric dS , on the other hand, measures the length
of the geodesics in S . The pair (S, dS) is a metric space;
quantities expressible in terms of dS are referred to as in-
trinsic. The intrinsic geometry of a two-dimensional shape
is completely defined by its boundary. This is a fundamental
difference between two-dimensional shapes (flat manifolds)
and three-dimensional shapes, which may have non-trivial
curvature. Note that although (S, dS) is part of a larger met-
ric space (R2, dR2), from the intrinsic point of view, there
exists nothing “outside” S . We further assume that the mea-
sure μS , induced by the Riemannian structure, is defined on
S . Informally speaking, for a subset S ′ ⊆ S , we can think of
μS(S ′) as of the area of S ′ and express it in units of squared
distance.

In practical applications, shapes are usually represented
as discrete binary images sampled at a finite number of
points (pixels). A set Sr ⊂ S is said to be an r-covering of
S , if

⋃N
i=1 BS(si , r) = S , where BS(si , r) denotes a ball of

radius r with respect to the metric dS , centered at si . Since
the shapes are assumed to be compact, every shape has a fi-
nite r-covering Sr

N = {s1, . . . , sN } for every r > 0. The mea-
sure μS is discretized by constructing a discrete measure
μSN

= {μ1, . . . ,μN }, assigning to each si ∈ Sr
N the area of

the corresponding Voronoi cell,

μi = μ({s ∈ S : dS(s, si) < dS(s, sj ) ∀j �= i}). (1)

For brevity, we denote the discrete metric measure space
(Sr

N , dS |Sr
N
,μSN

) by Sr
N and refer to it as an r-sampling

of S .
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2.2 Isometric Shapes

Let S,Q be two shapes in M. A map f : S → Q is said to
have distortion ε if

disf ≡ sup
s1,s2∈S

|dS(s1, s2) − dQ(f (s1), f (s2))| = ε. (2)

We call such an f an ε-isometric embedding of S into Q.
If in addition f is ε-surjective, i.e.

⋃
q∈f (S) BQ(q, ε) = Q,

we call f an ε-isometry and say that the shapes S and Q are
ε-isometric. In the particular case of ε = 0, the shapes are
said to be isometric and f is called an isometry. True isome-
tries are cardinally different from ε-isometries. Particularly,
an isometry is always bi-Lipschitz continuous (Burago et al.
2001), which is not necessarily true for an ε-isometry.

Isometries from S to itself are called self-isometries; with
the function composition operator, self-isometries form the
isometry group which we denote by Iso(S). The most ob-
vious self-isometry is the identity map id : S → S , which
copies every point on S into itself. Normally, Iso(S) would
contain only id , a case in which it is said to be trivial.
However, if the shape has symmetries, the isometry group
is not trivial and may contain other self-isometries differ-
ent from the identity. For example, if S is a planar trian-
gle with two equal sides unequal to the third, the isometry
group is the cyclic group Z/2Z. This group contains only
two elements: the identity transformation and the reflection
transformation, which flips the triangle about its symmetry
axis.

2.3 Articulated Shapes

A shape S consisting of K disjoint parts S1, . . . ,SK and L

joints J1, . . . ,JL, such that

S = (S1 ∪ · · · ∪ SK) ∪ (J1 ∪ · · · ∪JL), (3)

is called an articulated shape. An example of an articu-
lated shape is shown in Fig. 2. We call an articulated shape
with

∑L
i=1 diam(Ji ) ≤ ε an ε-articulated shape (here,

diam(Ji ) = sups,s′∈Ji
dS(s, s′) denotes the diameter of Ji ).

Fig. 2 (Color online) Example of an ε-articulated shape, consisting of
four parts (black) and one joint (gray). The geodesic distance between
two points is shown in red. Note that the geodesic distances change is
bounded by the diameter of the joint

We denote by Mε the space of all ε-articulated shapes; M

coincides with M∞.
Given S ∈ Mε , an articulation is a topology-preserving

map f : S → S ′, which isometrically maps parts S1, . . . ,SK

into parts S ′
1, . . . ,S ′

K , and maps joints J1, . . . ,JL into

joints J ′
1, . . . ,J ′

L such that
∑L

i=1 diam(J ′
i ) ≤ ε, or in other

words, S ′ is also an ε-articulated shape.

Proposition 1 Articulations of an ε-articulated shape are
ε-isometries.

The proof is technical and can be found in Ling and Ja-
cobs (2005). The converse of Proposition 1 is not true: an
ε-isometry is not necessarily an articulation. Figure 3 il-
lustrates this difference showing the skeleton of a human
palm, which is an ε-articulated shape (left). The skeleton
is articulated by moving the bones while keeping them
connected (middle); the two postures of the skeleton are
ε-isometric. On the other hand, Fig. 3 (right) shows an-
other ε-isometry of the skeleton, which is not an articulation.
Another difference between articulations of ε-articulated
shapes and ε-isometries is the closure property. A compo-
sition of two articulations leaves the shape ε-articulated; on
the other hand, a composition of two ε-isometries is gener-
ally a 2ε-isometry.

Fig. 3 The difference between
an articulation of an
ε-articulated shape (middle)
and an ε-isometry (right)
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An ideal or 0-articulated shape has point joints; its ar-
ticulations are true isometries. Such shapes rarely occur in
practice, yet, the joints can be often assumed significantly
smaller compared to the parts, i.e., mini=1,...,K diam(Si ) 
ε (Ling and Jacobs 2005).

3 Axiomatic Approach to Shape Comparison

Our starting point in the analysis of shapes is the problem
of shape comparison. We will refer to this problem as that
of full comparison, to distinguish it from partial compari-
son discussed later. When we say that two shapes are sim-
ilar or dissimilar, we can quantitatively express this degree
of dissimilarity as a distance dF : M × M → R. The defin-
ition of similarity is rather a semantic question and cannot
be addressed in a univalent manner. Ling and Jacobs (2005)
showed that the comparison of intrinsic geometries is a good
similarity criterion for articulated shapes. Here, we present
an axiomatic construction of a dF by first listing a set of
properties such a distance should satisfy, and then introduc-
ing a distance that satisfies these properties.

3.1 Isometry-Invariant and Articulation-Invariant
Distances

Since we use the intrinsic geometry to compare shapes,
the most fundamental property that must hold is isometry-
invariance, which implies that two shapes that are related by
an isometry are similar. An ideal distance must satisfy for all
S,Q,R ∈ M the following list of axioms; we denote such a
distance by dF:

(F1) Non-negativity: dF(Q,S) ≥ 0.
(F2) Symmetry: dF(Q,S) = dF(S,Q).
(F3) Triangle inequality: dF(Q,S) ≤ dF(Q,R)+dF(R,S).
(F4) Isometry-invariant similarity: (i) If dF(Q,S) ≤ ε,

then S and Q are cε-isometric; (ii) if S and Q are
ε-isometric, then dF(Q,S) ≤ cε, where c is some pos-
itive constant, independent of S , Q, and ε.

Property (F4) guarantees that dF is a good similarity cri-
terion, assigning large distances for dissimilar shapes and
small distances for similar (nearly isometric) ones. A par-
ticular case of (F4) is the isometry invariance property:
dF(Q,S) = 0 if and only if S and Q are isometric (note
that our definition of similarity is not scale invariant). To-
gether, (F1)–(F4) guarantee that dF is a metric on the quo-
tient space M\Iso(M) (equivalence class of all isometric
shapes, in which a point represents a shape and all its isome-
tries).

Since we want the distance to be computable in practice,
we add another property:

(F5) Consistency to sampling: If Sr is a finite r-sampling
of S , then

lim
r→0

dF(Q,Sr ) = dF(Q,S).

Property (F5) allows to discretize the continuous distance
and approximate it on a finite sampling of points. It is tacitly
assumed that the discrete distance can be efficiently com-
puted or approximated.

If S is an ε-articulated shape, according to Proposition 1
we have that an articulation f is an ε-isometry. Therefore,
a distance satisfying the set of properties (F) will guarantee
that dF(S, f (S)) ≤ cε. Ideally, we would also like to be able
to say the converse: if dF(S,Q) ≤ ε and S ∈ Mcε , then there
exists an articulation f of S such that Q = f (S). Yet, this
is not true, since an ε-isometry is not necessarily an articu-
lation. We formulate this as a weaker property:

(F4′) Articulation-invariant dissimilarity: If f is an articu-
lation of S ∈ Mε , then dF(S, f (S)) ≤ cε, where c is
some positive constant, independent of S , f , and ε.

3.2 Canonical Forms Distance

Ling and Jacobs (2005) mention the possibility of using
the method of bending-invariant canonical forms, proposed
in Elad and Kimmel (2001) for the comparison of non-
rigid surfaces. The key idea of this method consists of
representing the intrinsic geometry of the shapes S and
Q in some metric space (X, dX), by means of minimum-
distortion maps ϕ : S → X and ψ : Q → X. The result-
ing metric subspaces (ϕ(S), dX|ϕ(S)) and (ψ(Q), dX|ψ(Q))

of X, are called the canonical forms of S and Q. In this man-
ner, the intrinsic geometry of S and Q is replaced by the
geometry of X, allowing the reformulation of the distance
between S and Q as the distance between two sets ϕ(S)

and ψ(Q) in a common space X. The process of compar-
ing S and Q is done in two steps. First, the canonical forms
are computed. Next, the canonical forms are compared us-
ing some distance on the subsets of X, treating the canonical
forms as rigid surfaces (see an illustration in Fig. 4).

As a particular setting of this approach, we assume here
that the canonical form comparison is carried out by means
of the Hausdorff distance,

dX

H (S,Q) = max
{

sup
s∈S

dX(s,Q), sup
q∈Q

dX(q,S)
}
, (4)

which acts as a measure of distance between two subsets
of a metric space. Here, dX(s,Q) = infq∈Q dX(s, q) denotes
the point-to-set distance in X. Since the canonical forms are
defined up to isometries in (X, dX), we define

dCF(Q,S) = inf
i∈Iso(X)

dX

H (i ◦ ψ(Q), ϕ(S)), (5)
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Fig. 4 (Color online)
Illustration of the canonical
form distance computation

by taking an infimum over all the isometries in the space X.
We refer to dCF as the canonical form distance.

The embedding space X is usually chosen as R
m, though

other choices are possible (Elad and Kimmel 2002; Bron-
stein et al. 2005b, 2005c; Walter and Ritter 2002). In gen-
eral, it is impossible to isometrically embed a non-trivial
shape into a given metric space; therefore, the embeddings
ϕ and ψ introduce some distortion. As we will see later, this
fact has a fundamental impact on the discriminative power
of dCF.

3.3 Gromov-Hausdorff Distance

Instead of using a common embedding space X, we can go
one step further and let X be the best suitable space for the
comparison of two given shapes S and Q. Formally, we can
write the following distance,

dGH(Q,S) = inf
X

ϕ:S→X

ψ :Q→X

dH,X(ϕ(S),ψ(Q)), (6)

where the infimum is taken over all metric spaces (X, dX)

and isometric embeddings ϕ and ψ from S and Q, respec-
tively, to X. dGH is called the Gromov-Hausdorff distance
(Gromov 1981) and can be thought of as an extension of the
Hausdorff distance to arbitrary metric spaces. This distance
was first used in the context of isometry-invariant matching
of three-dimensional shapes by Mémoli and Sapiro (2005).
Illustratively, we can think of the Gromov-Hausdorff dis-
tance as of trying all the possible isometries of S and Q and
matching the resulting shapes using the Hausdorff distance.

Unfortunately, dGH in (6) involving minimization over all
metric spaces X is computationally infeasible, yet, for com-
pact shapes, it can be reformulated in terms of distances in
S and Q, without resorting to the embedding space X:

dGH(Q,S) = 1

2
inf

f :S→Q
g:Q→S

max{disf,disg,dis(f, g)}. (7)

where the “mixed distortion” term

dis(f, g) = sup
s∈S,q∈Q

|dS(s, g(q)) − dQ(q, f (s))| (8)

acts as a measure of surjectivity of f and g. For a proof of
an equivalence between the two definitions, see Burago et al.
(2001).

3.4 Canonical Forms Versus Gromov-Hausdorff

We start our comparison of dGH and dCF from the follow-
ing result, stemming from the properties of the Gromov-
Hausdorff distance.

Theorem 1 dGH satisfies properties (F1)–(F5).

We do not provide a rigorous proof here. Properties (F1)–
(F4) can be found in Burago et al. (2001). Property (F4)
holds with the constant c = 2, namely, dGH(S,Q) ≤ ε im-
plies that S and Q are 2ε-isometric, and S and Q are
ε-isometric implies that dGH(S,Q) ≤ 2ε. Property (F5) fol-
lows from the fact that given Sr , an r-covering of S , we can
always construct a 2r-isometry between S and Sr . From
(F4), it then follows that |dGH(Q,Sr ) − dGH(Q,S)| ≤ r ,
which in the limit r → 0 gives us (F5).

The computation of the discrete Gromov-Hausdorff dis-
tance is an NP-complete combinatorial problem. Mémoli
and Sapiro (2005) proposed an algorithm that heuristically
approximates the Gromov-Hausdorff distance in polynomial
time by computing a different distance related to dGH by a
probabilistic bound. Here, we use a different approach, ac-
cording to which the computation of dGH is formulated as a
continuous minimization problem and solved using a local
minimization algorithm. We defer this discussion to Sect. 6.

Compared to dGH, the canonical forms distance is signif-
icantly weaker. Its properties can be summarized as follows:

Theorem 2 dCF satisfies properties (F1)–(F3) and the fol-
lowing relaxed version of the axiom (F4):
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Fig. 5 (Color online)
Illustration of partial similarity
intransitivity

(F4w) Weak similarity: Let S and Q be two shapes, whose
canonical forms have the distortions δ and δ′, re-
spectively. If dCF(Q,S) ≤ ε, then S and Q are
2ε + 4(δ + δ′)-isometric.

Theorem 2 allows us consider dCF as an upper bound on
dGH. If dCF is small, we can conclude that S and Q are sim-
ilar, but the converse is not guaranteed. Moreover, since the
canonical forms have a usually inevitable distortion, the dis-
criminative power of dCF is limited. dCF satisfies the isome-
try invariance property only approximately: if dCF(Q,S) =
0, then S and Q are 2(δ + δ′)-isometric. If S and Q are iso-
metric, we cannot say much about dCF(Q,S). Particularly,
two canonical forms of S may differ significantly. Also, due
to the lack of symmetry in (F4w), dCF does not satisfy the
sampling consistency property (F5).

4 Partial Comparison of Shapes

So far, discussion the problem of shape similarity, we tacitly
assumed that the two shapes were compared as a whole. Our
criterion of dissimilarity was the distortion of the map from
one shape to another, that is, how non-isometric the two
shapes were. In a more general setting, two shapes are not
necessarily similar if compared as a whole, yet, may have
similar parts. A comparison of shapes taking into account
such a possibility is referred to here as partial comparison.

In order to better understand the partial similarity rela-
tion, which we denote by dP(S,Q), we borrow the mytho-
logical creatures example from (Jacobs et al. 2000). A man
and a centaur are dissimilar in the sense of a full similar-
ity criterion, yet, parts of these shapes (the upper part of the
centaur and the upper part of the man) are similar. Likewise,
a horse and a centaur are similar because they share a com-
mon part (bottom part of the horse body). At the same time,
a man and a horse are dissimilar (Fig. 5). We conclude from

1. Divide the shapes S and Q into parts S1, . . . ,SN and
Q1, . . . ,QM .

2. Compare each part separately using a full similarity
criterion, dF(Si ,Qj ), for all i = 1, . . . ,N and j =
1, . . . ,M .

3. Compute the partial similarity as an aggregate
of full similarities between the parts, dP(S,Q) =
mini,j dF(Si ,Qj ).

Algorithm 1 Recognition by parts

that example that the partial similarity relation differs signif-
icantly from the full similarity. Particularly, such a relation
is intransitive (a man and a horse are similar to a centaur,
but a man is dissimilar to a horse). This implies that partial
similarity is not a metric, as the triangle inequality does not
hold.

Trying to relate partial similarity to full similarity, we can
come up with a simple theoretical algorithm for the com-
putation of dP(S,Q) (see Algorithm 1) Since the parts of
non-rigid shapes are non-rigid by themselves, we can use
the Gromov-Hausdorff distance as the full similarity crite-
rion.

Trying to implement this simplistic approach, we en-
counter two problems. First, it is not clear how to divide
the shape into parts. Many works on shape partitioning ex-
ist in the literature on object recognition, including parts
described as convex or near-convex subsets (Hoffman and
Richards 1984; Koenderink and van Doorn 1981), primi-
tive geometric objects (Binford 1987; Biderman 1985; Ba-
jcsy and Solina 1987; Pentland 1987) or parametric descrip-
tion derived from a model of the shape class (Brooks 1981;
Hel-Or and Werman 1994). The very existence of numerous
shape partitioning approaches implies that there is no objec-
tive way to define a part, and therefore, the partial similarity
criterion obtained in this way is subjective.
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Fig. 6 An illustration of the
potential danger of partial
similarity

This problem can be overcome by considering all the
possible partitions of the shapes, instead of favoring a spe-
cific one (Latecki et al. 2005). For this purpose, we denote
by ΣS ⊆ 2S and

∑
Q ⊆ 2Q the collections of all the parts

of S and Q, respectively. Here, 2S is the power set of S
(the set of all the subsets of S). Technically, we require ΣS
(or ΣQ, respectively) to be a σ -algebra, i.e., to satisfy the
following properties:

(S1) The whole shape is a part of itself : S ∈ ΣS .
(S2) Closure under complement: of S ′ ∈ ΣS , then S ′c =

(S \ S ′) ∈ ΣS .
(S3) Closure under countable union: of Si ∈ ΣS , then

⋃
i Si ∈ ΣS .

The metric on a part S ′ ∈ ΣS is assumed to be dS |S ′ . Using
these definitions, the computation of the partial similarity
can be formulated as the following problem:

dP(S,Q) = min
(S ′,Q′)∈ΣS×ΣQ

dF(S ′,Q′). (9)

Another problem arises from the possible situation in
which two different objects have small similar parts. Rely-
ing on the similarity of a such parts, the judgement about the
entire shape similarity can be completely wrong. A potential
danger of such a situation is depicted in the frivolous cartoon
by Herluf Bidstrup (Fig. 6). Our conclusion from this exam-
ple is that different parts have different importance, and that
it is insufficient for the two shapes to have common similar
parts in order to be partially similar—the parts must be sig-
nificant. Our visual system appears to have the remarkable
capability of recognizing shape form very small significant
parts. Significant parts are usually such parts which our prior
knowledge can clearly associate the entire object. For exam-
ple, seing a human eye, we expect it to be part of the human
face.

In the absence of additional information, the simplest
way to define the significance of a part is by measuring its
area: the larger is the part, the more significant it is. Using
the measures μS and μQ, we define the partiality of the

parts S ′ and Q′,

λ(S ′,Q′) = μS(S ′c) + μQ(Q′c)

= μS(S) + μQ(Q) − (μS(S ′) + μQ(Q′)), (10)

as the area remaining from the shapes S and Q after S ′ and
Q′ are cropped. Large values of partiality corresponds to
small (hence insignificant) parts.

4.1 Multicriterion Optimization and Set-Valued Distances

In order to quantify the partial similarity dP(S,Q), we are
looking for the largest and the most similar parts of S and Q.
This translates into the simultaneous minimization of dF and
λ on all the possible parts of S and Q, i.e., a multicriterion
or multiobjective optimization problem (Salukwadze 1979),

dP(S,Q) = min
(S ′,Q′)∈ΣS×ΣQ

(λ(S ′,Q′), dF(S ′,Q′)). (11)

The objective function is vector-valued and contains two
components: dissimilarity and partiality. It is crucial to real-
ize that the two criteria are competing, and unless the shapes
are fully similar, it is impossible to achieve both dF and λ

equal to zero.
Visualizing all the possible solutions of the problem as

a planar region (Fig. 7), we see that at certain points, we
arrive at the situation when by improving one criterion, we
inevitably compromise the other, that is, we can obtain a
smaller dissimilarity by taking smaller parts, and vice versa.
Such solutions are called Pareto optimal (Pareto 1906). This
notion is closely related to rate-distortion analysis in in-
formation theory (de Rooij and Vitanyi 2006) and to re-
ceiver operation characteristics (ROC) in pattern recognition
(Everson and Fieldsend 2006). In our case, a Pareto opti-
mum is achieved on (S∗,Q∗), for which at least one of the
following holds,

dF(S∗,Q∗) ≤ dF(S ′,Q′), or

λ(S∗,Q∗) ≤ λ(S ′,Q′),
(12)

for all (S ′,Q′) ∈ ΣS ×ΣQ. The set of all the Pareto optimal
solutions is called the Pareto frontier and is denoted in Fig. 7
by a solid curve. Solutions below this curve do not exist.
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Fig. 7 (Color online) Visualization of the set of all the possible solu-
tions of the multicriterion optimization problem. The Pareto frontier is
denoted by solid curve

The partial similarity criterion dP(S,Q) obtained by
solving problem (11) can be regarded as a generalized or
set-valued distance, which is quite different from the tradi-
tional concept of similarity. While previously our criterion
of similarity was the degree to which S and Q are not iso-
metric, we now measure the optimal tradeoff between the
isometry and the size of parts of S and Q.

To formalize this idea, we introduce the notion of (λ, ε)-
isometry. We say that S and Q are (λ, ε)-isometric if there
exist parts S ′ ∈ ΣS and Q′ ∈ ΣQ, such that λ(S,Q) ≤ λ

and (S ′, dS ′ |S) and (Q′, dQ′ |Q) are ε-isometric. Our dis-
tance can be represented as a non-increasing function of the
form ε(λ). We will write dP(S,Q) ≤ (λ0, ε0), implying that
the point (λ0, ε0) is above or on the graph of the function
ε(λ); other strong and weak inequalities are defined in the
same manner. To say that (λ0, ε0) is a Pareto optimum, we
will write (λ0, ε0) ∈ dP(S,Q).

Given shapes Q and S , and a full dissimilarity criterion
dF satisfying the set of axioms (F1)–(F5) with a constant
c, the partial similarity criterion obtained by solving prob-
lem (11) satisfies the following properties:

(P1) Non-negativity: dP(S,Q) ⊂ R
2+.

(P2) Symmetry: dP(S,Q) = dP(Q,S).
(P3) Monotonicity: If dP(S,Q) ≤ (λ, ε), then dP(S,Q) ≤

(λ′, ε′) for all λ′ ≥ λ and ε′ ≥ ε.
(P4) Pareto similarity: (i) If dP(S,Q) ≤ (λ, ε), then S and

Q are (λ, cε)-isometric; (ii) if S and Q are (λ, ε)-
isometric, then dP(S,Q) ≤ (λ, cε).

4.2 Scalar-Valued Partial Similarity

Though dP encodes much information about the similarity
of shapes, their main drawback is the inability to compare
similarities. For example, given three shapes, S , Q and R,
we can say that S is more similar to Q than R (which we
would normally denote as dP(Q,S) < dP(Q,R)) only when
all the points of the Pareto frontier dP(Q,S) are below those
of dP(Q,R). However, the two frontiers may intersect, such
that for some values of λ we will have S more similar to
Q, and for some the opposite. This fundamental difference
between scalar- and set-values distances stems from the fact
that there is no total order relation between vectors.

In order to be able compare partial dissimilarities, we
need to convert the set-valued distance into a traditional,
scalar-valued one. The easiest way to do so is simply by con-
sidering a single point on the Pareto frontier. For example,
we can fix the value of λ = λ0 and use the distortion ε(λ0)

as the criterion of partial similarity. Alternatively, we can
choose a point by fixing ε = ε0. A scalar distance obtained
in this way may be useful in a practical situation when we
know a priori that the accuracy of geodesic distance mea-
surement or the sampling radius is ε0. This approach resem-
bles the comparison of audio and video encoders, where the
rate-distortion curves are compared in the proximity of some
operation point, specifying either the designated bitrate, or
the designated coding quality.

We should note that both of the above choices are rather
arbitrary. A slightly more educated selection of a single
point out of the set of Pareto optimal solutions was pro-
posed by Salukwadze (1979) in the context of control theory.
Salukwadze suggested choosing a Pareto optimum, which
is the closest (in sense of some distance) to some optimal,
usually non-achievable, utopia point. In our case, such an
optimal point is (0,0). Given a Pareto frontier d(S,Q), we
define the scalar partial similarity as

dS(S,Q) = inf
(λ,ε)∈d(S,Q)

‖(λ, ε)‖
R

2+ . (13)

Depending on the choice of the norm ‖ · ‖
R

2+ in (13), we ob-
tain different solutions, some of which have an explicit form.
For instance, choosing the weighted L1-norm, we arrive at
the following problem,

dS(S,Q) = inf
(S ′,Q′)∈ΣS×ΣQ

αdF(S ′,Q′) + βλ(S ′,Q′), (14)

where α and β are some positive weights. For the particular
choice of the Gromov-Hausdorff distance as dF, in order to
make the above expression meaningful in terms of units, α

must have units of inverse distance, and β of inverse area.
One possible choice is α = 1/max{diam(S),diam(Q)} and
β = 1/(μS(S) + μQ(Q)).
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4.3 Fuzzy Approximation

In the problems (11) and (14), the optimization was per-
formed over all possible parts of the shapes, ΣS × ΣQ.
In the discrete setting, practical numerical solution of such
problems is intractable, as the number of possible parts
grows exponentially with the number of samples. In order
to overcome this problem, we need to find a different way to
represent the parts, and formulate the partiality and dissimi-
larity in these terms.

We begin with the obvious fact that a subset S ′ of S can
be described by a characteristic function

mS(s) =
{

1, s ∈ S ′,
0, else,

(15)

which indicates whether a point belongs to the subset S ′ or
not. Using the characteristic functions (mS ,mQ) to repre-
sent the parts (S ′,Q′) in our problems is still intractable,
since the requirement that mS and mQ obtain the values of
0 or 1 leads to a combinatorial optimization problem. How-
ever, by relaxing this requirement and allowing mS and mQ
to obtain the values in the entire interval [0,1], we arrive at
a computationally tractable problem, in which the optimiza-
tion variables are continuous “weights”. Sets represented by
means of such “weights” are called fuzzy sets (Zadeh 1978,
1965; Klir and Yuan 1994; Zimmermann 2001); here, fol-
lowing our terminology, we refer to them as fuzzy parts.
Parts characterized by binary-valued functions (correspond-
ing to traditional definition of subset) are called crisp. The
function mS : S → [0,1] is called a membership function.

The fuzzy set theory allows us to formulate a relaxed ver-
sion of our optimization problem, which, in turn, requires us
to extend the definition of the sets of parts, partiality and dis-
similarity to the fuzzy setting, in a way consistent with the
crisp ones. For this purpose, we make a few definitions. The
complement of a fuzzy part is defined as mc

S = 1 − mS , co-
inciding with the standard definition on crisp sets. A mem-
bership function mS is called ΣS -measurable if

{s : mS(s) ≤ δ} ∈ ΣS , (16)

for all 0 ≤ δ ≤ 1. We denote by MS the set of all fuzzy parts
of S , defined as the set of all ΣS -measurable membership
functions on S . MS replaces ΣS in our relaxed problem.

The fuzzy measure is defined as

μ̃S(mS) =
∫

S
mS(s)dμS , (17)

for all mS ∈ MS . For crisp parts, the fuzzy measure μ̃S boils
down to the standard measure μS . As a matter of notation,
we use the tilde to denote fuzzy quantities. We define the
fuzzy partiality as

λ̃(mS ,mQ) = μ̃S(1 − mS) + μ̃Q(1 − mQ), (18)

using the fuzzy measure. Since the fuzzy measure coincides
with the crisp one on crisp sets, so does the fuzzy partiality.

The definition of a fuzzy dissimilarity depends on the
specific choice of dF and may be more elaborate. For the
Gromov-Hausdorff distance, it is possible to provide a fuzzy
version, based on the following theorem.

Theorem 3 Let mS and mQ be characteristic functions of
crisp parts S ′ and Q′. Then,

dGH(S ′,Q′)

= 1

2
inf

f :S→Q
g:Q→S

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
s,s′∈S

mS(s)mS(s′)

× |dS(s, s′) − dQ(f (s), f (s′))|
sup

q,q ′∈Q
mQ(q)mQ(q ′)

× |dQ(q, q ′) − dS(g(q), g(q ′))|
sup
s∈S
q∈Q

mS(s)mQ(q)

× |dS(s, g(q)) − dQ(f (s), q)|
D sup

s∈S
(1 − mQ(f (s)))mS (s)

D sup
q∈Q

(1 − mS(g(q)))mQ(q)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(19)

where D ≥ max{diam(S),diam(Q)}.

Employing Theorem 3 with generic membership func-
tions mS and mQ, it is possible to have a consistent
fuzzy generalization of the Gromov-Hausdorff distance,
d̃GH(mS ,mQ), which by virtue of its definition coincides
with the traditional dGH on crisp sets.

Having all the above components, the fuzzy partial dis-
similarity is computed by solving the relaxed multicriterion
optimization problem,

d̃P(S,Q)

= min
(mS ,mQ)∈MS×MQ

(λ̃(mS ,mQ), d̃GH(mS ,mQ)). (20)

5 Correspondence between Shapes

The last problem we address is the deformation-invariant
correspondence problem, that is, how to find a map between
two shapes that copies similar features to similar features.
Implicitly, we have used a semantically vague definition, as
the term “similar” is subject to different interpretations. For
instance, there is no doubt how a correspondence between a
cat and a dog should look like, since both have two ears, four
legs and a tail. On the other hand, it would probably be much
more difficult to agree about a correspondence between a
dog and a bird (Bronstein et al. 2007a).
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Fig. 8 (Color online)
Ambiguity of correspondence in
case when the shape has
symmetries. Shown are two
shapes S and Q and two
possible correspondences

In our context of non-rigid shape analysis, the correspon-
dence problem can be formulated in geometric terms, as
we can use the notions of similarity introduced in Sects. 3
and 4. If two shapes S and Q are isometric, there exists
a bijective map f : S → Q between them, which estab-
lished a correspondence between intrinsically similar fea-
tures. Note that such correspondence is defined up to self-
isometries i ∈ Iso(S) and j ∈ Iso(Q), i.e., f and j ◦f ◦ i are
both legitimate correspondences. If the shapes have symme-
tries, the isometry groups are non-trivial and consequently,
the correspondence is ambiguous. Yet, most practically in-
teresting shapes have a trivial isometry group, such that an
ambiguity of this kind does not arise.

When the shapes S and Q are ε-isometric, we know
that Q can be produced from S by means of an ε-isometry
f : S → Q, and, vice versa, S can be produced from Q by
an ε-isometry g : Q → S . We can say that for every s in S ,
the corresponding point in Q is f (s), and for every q in Q,
the corresponding point in S is g(q). These correspondences
can be found by solving

(f ∗, g∗) = arg min
f :S→Q
g:Q→S

max{disf,disg,dis(f, g)}, (21)

which can be thought of as a byproduct of the computa-
tion of the Gromov-Hausdorff distance dGH(Q,S). (Here,
we tacitly assume that we can write minimum instead of in-
fimum, which is not necessarily true in the continuous case.
However, since in practice we work with discrete shapes
consisting of a finite number of samples, the minimum is
always achieved, therefore, we allow ourselves this relaxed
notation.) It is guaranteed that disf ∗,disg∗ ≤ ε, and that
both f ∗ and g∗ are ε-surjective. Each of the maps f ∗, g∗
serves as the minimum-distortion correspondence (Bron-

stein et al. 2007a, 2006d). Since the correspondence is de-
fined up to self-isometries, instead of f ∗ we may have
j ◦ f ∗ ◦ i, and instead of g∗ we may have i ◦ g∗ ◦ j

(see Fig. 8).

5.1 Partial Correspondence

The minimum-distortion correspondence (21) matches the
features of the entire shape S with similar features of the en-
tire shape Q, and can be therefore termed as full correspon-
dence. Clearly, full correspondence is not applicable when

S and Q are related by the partial similarity relation. In the
latter case, we would like to establish a partial correspon-
dence, relating the features of a part of S to similar features
of a part of Q.

Using the partial similarity from Sect. 4, we may define
the partial correspondence between S and Q as the map
between the parts (S ′,Q′) ∈ ΣS × ΣQ, which is obtained
by solving

(f ∗, g∗) = arg min
f :S ′→Q′
g:Q′→S ′

(S ′,Q′)∈ΣS×ΣQ

(

λ(S ′,Q′),

1

2
max{disf,disg,dis(f, g)}

)

, (22)

where the minimum is interpreted in the Pareto sense.
The correspondence (f ∗, g∗) is obtained between the parts
(S∗,Q∗), and can be considered as a byproduct of prob-
lem (11).

Similarly, in the fuzzy setting, the correspondence is ob-
tained by solving

(f ∗, g∗) = arg min
f :S→Q
g:Q→S

(mS ,mQ)∈MS×MQ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ̃(mS ,mQ),
1

2
max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
s,s′∈S

mS(s)mS (s′)|dS(s, s′) − dQ(f (s), f (s′))|
sup

q,q ′∈Q
mQ(q)mQ(q ′)|dQ(q, q ′) − dS(g(q), g(q ′))|

sup
s∈S
q∈Q

mS(s)mQ(q)|dS(s, g(q)) − dQ(f (s), q)|

D sup
s∈S

(1 − mQ(f (s)))mS (s)

D sup
q∈Q

(1 − mS(g(q)))mQ(q)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (23)
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i.e., as a byproduct of problem (20), in which the optimal
fuzzy parts (m∗

S ,m∗
Q) are also found. Note that here, unlike

the crisp case, (f ∗, g∗) are maps between the entire shapes
S and Q. Thresholding (m∗

S ,m∗
Q) at some level 0 ≤ δ ≤ 1,

we convert the fuzzy parts into crisp ones,

S∗
δ = {s ∈ S : m∗

S(s) ≥ δ},
Q∗

δ = {q ∈ Q : m∗
Q(q) ≥ δ}, (24)

and define the δ-partial correspondences f ∗
δ : S∗

δ → Q∗
δ and

g∗
δ : Q∗

δ → S∗
δ as f ∗ and g∗ restricted to S∗

δ and Q∗
δ , re-

spectively. The partial correspondence is the collection of
(f ∗

δ , g∗
δ ) for all 0 ≤ δ ≤ 1.

6 Numerical Framework

6.1 Discretization

The discretization of a shape S involves three components:
discretization of the set S itself, the metric dS and the
measure μS . The set S ⊂ R

2 is represented as a finite
r-sampling SN = {s1, . . . , sN }. Triangulating the points si
in the plane, we obtain a flat polyhedral (first-order) approx-
imation of S . Representing S as a triangular mesh T (SN)

allows us to work with a finite discrete set of points on one
hand, while preserving the continuous nature of the set S on
the other.

The metric on S is discretized by numerically approx-
imating the geodesic distances between the samples si on
the triangular mesh T (SN). For this purpose, we use the
fast marching method (FMM) (Sethian 1996; Kimmel and
Sethian 1998). The distances are arranged into an N × N

matrix denoted by DS = (dS(si , sj )). Fast marching com-
putes the matrix DS in O(N2 logN); parametric versions of
FMM (Spira and Kimmel 2004) can work in O(N2) and are
highly-parallelizable with only a slight degradation of accu-
racy (Bronstein et al. 2007c).

The measure on S is discretized by constructing a dis-
crete measure μSN

= (μ1, . . . ,μN }, assigning to each si
on SN the area of the corresponding Voronoi cell. In prac-
tice, when the sampling is sufficiently uniform, selecting
μi = 1/N constitutes a reasonable approximation.

6.2 Generalized Multidimensional Scaling

The basic computation involved in the problems we defined
is finding a minimum-distortion embedding of a shape S
into Q. In order to avoid optimization over all the maps
f : S → Q (which is untractable in practice), we minimize
over the images q ′

i = f (si), where q ′
i are represented in con-

tinuous coordinates on the triangular mesh T (QM),

min
q ′

1,...,q
′
N∈T (QM)

max
j>i

|dQ(q ′
i , q

′
j ) − dS(si , sj )|. (25)

Optimization problem (25) is similar in its spirit to multidi-
mensional scaling (MDS), and is referred to as the general-
ized MDS (GMDS) problem (Bronstein et al. 2006a, 2006b).
It can be reformulated as the following constrained mini-
mization,

min
ε≥0,q ′

1,...,q
′
N∈T (QM)

ε

s.t. |dQ(q ′
i , q

′
j ) − dS(si , sj )| ≤ ε,

(26)

for i, j = 1, . . . ,N , with N + 1 variables and 2N2 inequal-
ity constraints. An alternative approach adopted here, is to
replace the min-max problem by a weighted least-squares
formulation,

min
q ′

1,...,q
′
N∈T (QM)

∑

j>i

wij · μiμj (dQ(q ′
i , q

′
j ) − dS(si , sj ))

2,

(27)

where {wij } is a set of non-negative weights. In the sequel,
we show an iterative reweighting scheme, which allows to
approximate the solution of the GMDS problem in its origi-
nal L∞ formulation.

The main distinction of GMDS from the traditional MDS
problem (Borg and Groenen 1997) is the fact that the geo-
desic distances in the target space Q have no analytic expres-
sion. We have the numerically approximated geodesic dis-
tances DQ, but since the q ′

i usually fall inside the triangular
faces of the mesh T (QM), one has to compute the geodesic
distances dQ between any two arbitrary points on T (QM).
For this purpose, we use a variation of the three-point
geodesic distance approximation, proposed in (Bronstein
et al. 2006b). Let us assume without loss of generality that
we need to approximate the geodesic distance dQ(q ′

1, q
′
2),

where q ′
1 and q ′

2 are two points on the mesh T (QM). Let
us furthermore assume that q ′

1 and q ′
2 are located on the

faces t1 and t2, whose vertices are qt1,1, qt1,2, qt1,3 and
qt2,1, qt2,2, qt2,3, respectively. The location of q ′

i on the mesh
can be unequivocally described by the index ti of the enclos-
ing triangle, and the position inside the triangle. The latter
can be expressed as the convex combination

q ′
i = uiqti ,1 + viqti ,2 + (1 − ui − vi)qti ,3 (28)

of the triangle vertices, where the pair of non-negative co-
efficients (ui, vi) satisfying ui + vi = 1 is referred to as
the barycentric coordinates of q ′

i . In what follows, we will
switch freely between q ′

i and its barycentric representation
(ti , ui, vi).

We first approximate the three distances dQ(q ′
1, qt2,1),

dQ(q ′
1, qt2,2), and dQ(q ′

1, qt2,3) using linear interpolation in
the triangle t1,

dQ(q ′
1, qt2,k) = u1 dQ(qt1,1, qt2,k) + v1 dQ(qt1,2, qt2,k)

+ (1 − u1 − v1) dQ(qt1,3, qt2,k). (29)
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Note that all geodesic distance terms in the above expres-
sion are between fixed vertices of the mesh T (QM), and
can be therefore pre-computed or computed on demand
and cached. Thus, the evaluation of dQ(q ′

1, qi) has constant
complexity independent of the sample size M . The linear in-
terpolation step is repeated again, this time in the triangle t2,
yielding

dQ(q ′
1, q

′
2) = u2 dQ(q ′

1, qt2,1) + v2 dQ(q ′
1, qt2,2)

+ (1 − u2 − v2) dQ(q ′
1, qt2,3). (30)

The first-order derivatives of dQ(q ′
1, q

′
2) with respect to the

coordinates (u1, v1) and (u2, v2) are evaluated in a similar
manner.

Plugging the former result into (27), we observe that the
cost function

σ(u1, . . . , uN , v1, . . . , vN , t1, . . . , tN )

=
∑

j>i

wij · μiμj (dQ(q ′
i , q

′
j ) − dS(si , sj ))

2 (31)

is a fourth-order polynomial containing second-order terms
of ui and vi . Consequently, considering σ as a function of
a pair (ui, vi) and fixing the rest of the optimization vari-
ables, results in a convex quadratic function with respect to
(ui, vi), whose minimum (u∗

i , v
∗
i ) can be found analytically

by solving the 2 × 2 Newton system

Hi(ui, vi)(u
∗
i − ui, v

∗
i − vi)

T = −gi(ui, vi), (32)

where gi and Hi are, respectively, the gradient and the
Hessian of σ with respect to ui and vi . However, the so-
lution (u∗

i , v
∗
i ) obtained this way may not be a valid pair of

barycentric coordinates, meaning that the point q ′
i may be

displaced outside the triangle ti . To disallow such a case, we
find analytically the solution to the constrained quadratic
problem

min
ui≥0,vi≥0

σ(ui, vi) s.t. ui + vi ≤ 1. (33)

If (u∗
i , v

∗
i ) happens to lie on an edge or a vertex of the tri-

angle ti (that is, at least one constrain is active), the need to
update the triangle index ti may arise. If (u∗

i , v
∗
i ) lies on a

triangle edge shared with some other triangle t ′i , we trans-
late the barycentric representation (u∗

i , v
∗
i ) in the coordinate

system of ti to (u′
i , v

′
i ) with respect to the coordinate system

of t ′i . This translation does not change the value of σ , yet, as
the cost function is not C1 at on the triangle boundaries, the
gradient direction may change. We evaluate the new gradi-
ent direction in the triangle t ′i , and update ti to be t ′i only if
the negative gradient direction points inside t ′i . In this case,
subsequent minimization of σ with respect to the updated
(ui, vi) will guarantee cost decrease. If the triangle edge is
not shared with another triangle (i.e., the edge is part of the

1. for k = 0,1,2, . . . do
2. Evaluate the gradients gi and the Hessian matrices Hi of

the cost function σ(u
(k)
i

, v
(k)
i

, t
(k)
i

) with respect to the vari-

ables u
(k)
i

and v
(k)
i

.
3. Select i corresponding to max‖gi‖.
4. if ‖gi‖ is sufficiently small then Stop
5. Solve the constrained quadratic problem

(u∗
i , v∗

i ) = arg min
ui≥0,vi≥0

σ(ui, vi) s.t. ui + vi ≤ 1

with the rest of uj and vj fixed to u
(k)
j

and v
(k)
j

.

6. if (u∗
i
, v∗

i
) is on an edge of ti then

7. Set T ′ to be the set containing the triangle sharing the
edge with ti , or ∅ in case the edge is on the shape bound-
ary.

8. else if (u∗
i
, v∗

i
) is on a vertex of ti then

9. Set T ′ to be the list of triangles sharing the vertex
with ti .

10. else Set T ′ = ∅
11. forall t ′ ∈ T ′ do
12. Translate (u∗

i
, v∗

i
) to the coordinates of the triangle t ′.

13. Evaluate the gradient gi of σ at (u∗
i
, v∗

i
) in t ′.

14. if −gi is directed inside the triangle t ′ then
15. Update t

(k+1)
i

= t ′.
16. Go to Step 19.
17. end
18. end
19. Update (u(k+1), v(k+1)) = (u∗, v∗).
20. end

Algorithm 2 Weighted least squares GMDS

shape boundary), no index update is performed. A similar
procedure is performed in the case where (u∗

i , v
∗
i ) lies on a

triangle vertex.
The entire minimization procedure is summarized in Al-

gorithm 2. The described minimization algorithm can be
viewed as a block-coordinate descent, where at each itera-
tion the block of two coordinates corresponding to the point
with the largest gradient is selected (Step 3). The constrained
Newton descent performed in Step 7 guarantees monotonic-
ity of the sequence of values of σ produced by the algorithm.

6.3 Iteratively Reweighted Least Squares

The proposed weighted least squares minimization proce-
dure can be employed for solving GMDS problems with ar-
bitrary norms. Let us consider a cost function of the form

σρ(q ′
1, . . . , q

′
N)

=
∑

i>j

μiμjρ(dQ(q ′
i , q

′
j ) − dS(si , sj )), (34)

where ρ(t) is some norm. For example, setting ρ(t) = |t |p
gives the Lp norm, with L∞ in the limit p → ∞. Other
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robust norms are preferable in practical applications, with
the notable examples of the German-McLure function

ρ(t) = t2

t2 + ε2
, (35)

and the quadratic-linear Huber function

ρ(t) =
{

t2

2ε
, |t | ≤ ε,

|t | − 0.5ε, |t | > ε,
(36)

where ε is a positive constant. These norms exhibit good
properties in the presence of noise.

The necessary condition for q ′ ∗
1 , . . . , q ′ ∗

N to be a local
minimizer of σρ is

∇σρ(q ′ ∗
1 , . . . , q ′ ∗

N ) =
∑

i>j

μiμjρ
′(dQ(q ′ ∗

i , q ′ ∗
j )

− dS(si , sj ))∇dQ(q ′ ∗
i , q ′ ∗

j ) = 0.

Instead of minimizing σρ , we can solve the weighted least
squares problem (27), whose solution has to satisfy

∇σ(q ′ ∗
1 , . . . , q ′ ∗

N ) =
∑

i>j

2wijμiμj (dQ(q ′ ∗
i , q ′ ∗

j )

− dS(si , sj ))∇dQ(q ′ ∗
i , q ′ ∗

j ) = 0.

If we could select the weights in σ(q ′ ∗
1 , . . . , q ′ ∗

N ) according
to

wij = ρ′(dQ(q ′ ∗
i , q ′ ∗

j ) − dS(si , sj ))

2(dQ(q ′ ∗
i , q ′ ∗

j ) − dS(si , sj ))
, (37)

the two minimizers would coincide and we could reduce
the minimization of σρ to the solution of the weighted least
squares problem. However, such a selection of the weights
requires the knowledge of the minimizer of σρ , which is, of
course, unknown. A possible remedy is to start by solving
the uniformly weighted least squares problem (all wij = 1),
use the solution to update the weights, and iterate the process
until convergence. Such iteratively reweighted least squares
(IRLS) techniques are often used in statistics to approximate
the solution of problems with robust norms (Hampel et al.
1986; Forsyth and Ponce 2003; Huber 2004) and in com-
puter vision (Black and Anandan 1993).

6.4 Multiresolution Optimization

Despite the fact that the GMDS problem is convex with re-
spect to each pair of coordinates (ui, vi), like the traditional
MDS, it is non-convex with respect to all the minimization
variables together. Therefore, it is prone to converge to lo-
cal minima rather than to the global one (Borg and Groenen
1997). Nevertheless, convex optimization is widely used in

the MDS community if some precautions are taken in order
to prevent local convergence. Here, we use a multiresolution
optimization scheme that in practical applications shows
good global convergence (Bronstein et al. 2006b, 2006e).

The key idea of a multiresolution optimization scheme is
to work with a hierarchy of problems, starting from a coarse
version of the problem containing a small number of vari-
ables (points). The coarse level solution is interpolated to the
next resolution level, and is used as an initialization for the
optimization at that level. The process is repeated until the
finest level solution is obtained. Such a multi-scale scheme
can be thought of as a smart way of initializing the optimiza-
tion problem. Small local minima tend to disappear at coarse
resolution levels, thus reducing the risk of local convergence
which is more probable when working at a single resolution.

The main components of a multiresolution scheme are
the hierarchy of data which defines optimization problems at
different resolution levels, and the interpolation procedure,
which allows to pass from coarse level to a finer one. Such
a data hierarchy can be constructed using the holographic
sampling (Bruckstein et al. 1998) or the farthest point sam-
pling (FPS) strategies (Eldar et al. 1997). For passing from
one resolution level to another we use the geodesic interpo-
lation technique, detailed in Bronstein et al. (2006b).

6.5 Initialization

Though the multiresolution scheme reduces the probabil-
ity of local convergence, in order that the solutions at finer
resolution levels be in the basin of attraction of the global
minimum, the coarse resolution problem has to be initial-
ized sufficiently close to it. Given SN and QM sampled with
the radius r , we can sub-sample them with a larger radius
R, producing sparser sampling SN ′ ⊂ SN and QM ′ ⊂ QM

containing N ′ � N and M ′ � M points, respectively. We
denote by F the space of all discrete mappings π : SN ′ →
QM ′ , which can be represented as a correspondence between
N ′ indices, (1, . . . ,N ′) �→ (π1, . . . , πN ′), πi ∈ {1, . . . ,M ′}.
A mapping π with the minimum distortion is an approxima-
tion to the global minimum of the GMDS problem, and as
such, it is a good candidate for coarse resolution initializa-
tion. Unfortunately, the space F is very large even for modest
sample sizes, containing M ′N ′

mappings, and exhaustively
searching for the best mapping in it is impractical. However,
the search space can be significantly reduced by ruling out
mappings that are unlikely to have low distortion.

We observe that in order for π to be a good candidate
for a global minimum, the intrinsic properties of the shape
S , such as the behavior of the metric dS around every si
should be similar to those of Q around qπi

. In order to
quantify this behavior, for each si ∈ SN ′ we compute the
histogram h(si) = hist({dS(si , sj ) : dS(si , sj ) ≤ R′}) of the
geodesic distances in a R′-ball centered si . In the same man-
ner, the set of histograms h(qi) is computed in QM ′ . Using
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the vectors h(si) and h(qj ) as local descriptors of the points
in SN ′ and QM ′ , respectively, we compute the dissimilar-
ity of two points si ∈ SN ′ , qj ∈ QM ′ as the Euclidean dis-
tance ‖h(si) − h(qj )‖2 between their descriptors. For each
point si in SN ′ , we construct a set Ci ⊂ {1, . . . ,M ′} of in-
dices of K points in QM ′ having the most similar descrip-
tors. K is selected to be a small number, typically signifi-
cantly smaller than N ′. We define the reduced search space
Finit = C1 ×C2 ×· · ·×CN ′ . Mappings copying any si to qπi

with πi /∈ Ci are excluded from the search space.
Even though the coarse sample sizes N ′ and M ′ and

the number of initial matches for every point are relatively
small, Finit has still O(KN ′

) mappings, making an exhaus-
tive search prohibitively expensive. However, adopting the
spirit of Gelfand et al. (2005), we can use the following hi-
erarchical greedy algorithm for selecting a reasonably good
mapping from Finit.

1. Pairing: For each pair (i, j) ∈ {1, . . . ,M}2, choose the
best pair (m,n) ∈ Ci × Cj minimizing the distortion∣
∣dS(si , sj ) − dQ(qπi

, qπj
)
∣
∣. This establishes a two-point

correspondence (i, j) �→ (m,n). The outcome of this
step is the set of O(N ′2) two-point correspondences E2,
which we sort in increasing order of distortion.

2. Merging: The pairs are merged into four-point corre-
spondences. Taking the first two-point correspondence
e ∈ E2, we find another two-point correspondence hav-
ing a disjoint domain and minimizing the distortion of
the obtained four-point correspondence. We remove all
correspondences sharing the same domain from E2 and
continue until E2 becomes empty. The merging contin-
ues hierarchically, producing E2k from Ek , stopping typ-
icall at E8 or E16.

3. Completion: We select the minimum distortion cor-
respondence (i1, . . . , ik) �→ (πi1, . . . , πik ) from the last
produced Ek , and complete it to a full N ′-point corre-
spondence by adding the missing indices {ik+1, . . . , iN ′ }
= {1, . . . ,N ′} \ {i1, . . . , ik} and their images πik+1 ,

. . . , πiN ′ . For each added point j , we select

πj = arg min
πj ∈{1,...,M ′}

max
i∈{i1,...,ik}

|dS(si , sj )

− dQ(qπi
, qπj

)|.

The returned results are the mapping π and its distortion
εmin.

Since the algorithm never backtracks, it may produce a sub-
optimal mapping π . However, practice shows that if some
good pairs are found at Step 1, the algorithm tends to pro-
duce a very good estimate for the minimum distortion map-
ping on Finit.

A guaranteed global minimum on Finit can be computed
by using a branch and bound algorithm similar in spirit to

that presented in Gelfand et al. (2005) for improving conver-
gence of iterative closest point-based extrinsic surface align-
ment. The idea of the algorithm is based on the fact that if
a good estimate for π is found using the greedy matching, a
large set of mappings in Finit can be further eliminated effi-
ciently. The algorithm is initialized by πmin and εmin found
by greedy matching, and proceeds as follows:

1. Given a correspondence of k − 1 feature points (1, . . . ,

k − 1) �→ (π1, . . . , πk−1), we would like to establish
k �→ πk .

2. Prune: For each potential correspondence πk ∈ Ck , eval-
uate

max
i=1,...,k

|dS(si , sk) − dQ(qπi
, qπk

)|.

If the obtained distortion is larger than εmin, discard the
potential correspondence.

3. Branch: For each remaining πk , recursively invoke
Step 1 with (1, . . . , k) �→ (π1, . . . , πk).

4. Bound: If k = N ′, compute the distortion dis(π). If
dis(π) < εmin, set εmin = dis(π) and πmin = π .

6.6 Computation of dGH and the Full Correspondence

So far, our focus was on finding the minimum distortion
embedding of a shape S into another shape Q. However,
the GMDS framework can be straightforwardly adapted for
computation of the Gromov-Hausdorff distance between
two shapes. In fact, Definition 7 suggests that dGH can
be formulated as two minimum-distortion embedding prob-
lems, coupled together by the third distortion term dis(f, g):

dGH(QM,SN) = 1

2
min

q ′
1,...,q

′
N∈T (QM)

s′
1,...,s

′
M∈T (SN)

max
i,j=1,...,N

k,l=1,...,M

max

⎧
⎪⎨

⎪⎩

|dS(si , sj ) − dQ(q ′
i , q

′
j )|,

|dQ(qk, ql) − dS(s′
k, s

′
l )|,

|dS(si , s
′
k) − dQ(qk, q

′
i )|

⎫
⎪⎬

⎪⎭
, (38)

where the minimization is performed over two sets of con-
tinuous variables q ′

i = f (si), and s′
k = g(qk). This problem,

in turn, can be cast as the following constrained minimiza-
tion problem

dGH(QM,SN) = min
ε≥0

q ′
1,...,q

′
N∈T (QM)

s′
1,...,s

′
M∈T (SN)

ε

2

s.t.

⎧
⎪⎨

⎪⎩

|dS(si , sj ) − dQ(q ′
i , q

′
j )| ≤ ε,

|dQ(qk, ql) − dS(s′
k, s

′
l )| ≤ ε,

|dS(si , s
′
k) − dQ(qk, q

′
i )| ≤ ε,

(39)
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with M + N + 1 variables and 2(M2 + N2 + MN) inequal-
ity constraints. The maps si �→ q ′

i and qk �→ s′
k at the mini-

mum define the minimum-distortion full correspondence be-
tween T (SN) and T (QM). Alternatively, one can resort to
the weighted least squares formulation

min
q ′

1,...,q
′
N∈T (QM)

s′
1,...,s

′
M∈T (SN)

∑

j>i

αij · μiμj (dS(si , sj ) − dQ(q ′
i , q

′
j ))

2

+
∑

l>k

βkl · νkνl(dQ(qk, ql) − dS(s′
k, s

′
l ))

2

+
∑

i,k

γik · μiνk(dS(si , s
′
k) − dQ(qk, q

′
i ))

2, (40)

where ν = {ν1, . . . , νM} denotes the discretized measure
of Q, and {αij }, {βkl}, and {γik} are sets of non-negative
weights. Using iterative reweighting, the GMDS problem
can be solved with an arbitrary norm.

6.7 Computation of d̃P and the Partial Correspondence

In the discrete version of problem (20), the membership
functions mS and mQ are replaced by vectors mSN

=
(mS(s1), . . . ,mS(sN )) and mQM

= mQ(q1), . . . ,mQ(qM)).
The fuzzy partiality λ̃(mS ,mQ) is discretized as

λ̃(mSN
,mQM

) = mT
SN

μSN
+ mT

QM
μQM

. (41)

The computation of d̃P(SN,QM) is performed by comput-
ing a finite set of points on the Pareto frontier, by fixing a
value of λ and computing the corresponding dissimilarity,
which can be posed as the following optimization problem,

min
ε≥0

mSN
,mQM

q ′
1,...,q

′
N∈T (QM)

s′
1,...,s

′
M∈T (SN)

ε

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mSN
(si)mSN

(sj )|dS(si , sj ) − dQ(q ′
i , q

′
k)| ≤ ε,

mQM
(qk)mQM

(ql)|dQ(qk, ql) − dS(s′
k, s

′
l )| ≤ ε,

mSN
(si)mQM

(qk)|dS(si , s
′
k) − dQ(qk, q

′
i )| ≤ ε,

D (1 − mQM
(q ′

i ))mSN
(si) ≤ ε,

D (1 − mSN
(s′

k))mQ(qk) ≤ ε,

mT
SN

μSN
+ mT

QM
μQM

≥ 1 − λ.
(42)

If we assume that mSN
,mQM

in problem (42) are fixed,
we can compute d̃GH(mSN

,mQM
) in a manner similar to the

Gromov-Hausdorff distance computation using a GMDS-
like numerical scheme,

min
ε≥0

q ′
1,...,q

′
N∈T (QM)

s′
1,...,s

′
M∈T (SN)

ε

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mSN
(si)mSN

(sj )|dS(si , sj ) − dQ(q ′
i , q

′
k)| ≤ ε,

mQM
(qk)mQM

(ql)|dQ(qk, ql) − dS(s′
k, s

′
l )| ≤ ε,

mSN
(si)mQM

(qk)|dS(si , s
′
k) − dQ(qk, q

′
i )| ≤ ε,

D (1 − mQM
(q ′

i ))mSN
(si) ≤ ε,

D (1 − mSN
(s′

k))mQ(qk) ≤ ε,
(43)

where i, j = 1, . . . ,N and k, l = 1, . . . ,M , the geodesic
distances dS(si , sj ) and dQ(qk, ql) are pre-computed by
FMM and the distances dQ(q ′

i , q
′
k), dS(s′

k, s
′
l ), dS(si , s

′
k)

and dQ(qk, q
′
i ) are interpolated. On the other hand, if we fix

s′
1, . . . , s

′
M and q ′

1, . . . , q
′
N , we can solve problem (42) with

respect to mSN
,mQM

only, where the values mSN
(s′

i ) and
mQM

(q ′
i ) are computed by interpolation.

The computation of d̃P(SN,QM), for every value of λ, is
performed by alternating minimization in two steps: first, we
fix mSN

,mQM
and solve (43). Second, we fix s′

1, . . . , s
′
M and

q ′
1, . . . , q

′
N and solve (42) by optimizing over mSN

,mQM
.

The process is repeated until convergence, which gives us a
single point on the Pareto frontier corresponding to the se-
lected value of λ. The whole scheme is repeated for another
value of λ.

The entire computation is summarized in Algorithm 3.
Selection of larger values of D results in crisper parts.

initialization: d̃P(SN,QM) = ∅.
1. for λ0 = 0,�λ, . . . ,1TμSN

+ 1TμQM
do

initialization: k = 0; m
(0)

SN
= 1, m

(0)

QM
= 1;

s
′(0)
1 , . . . , s

′(0)
M ; q ′

1, . . . , q
′
N .

2. repeat
3. Compute the (k + 1)st iteration solution

s
′(k+1)
1 , . . . , s

′(k+1)
M , q

′(k+1)
1 , . . . , q

′(k+1)
N by

solving problem (43) with fixed m
(k)

SN
,m

(k)

QM
.

4. Compute the (k + 1)st iteration solution
m

(k+1)

SN
,m

(k+1)

QM
by solving problem (42) with

fixed s
′(k)
1 , . . . , s

′(k)
M , q

′(k)
1 , . . . , q

′(k)
N .

5. Set k ←− k + 1.
6. until convergence

7. Set m∗
SN

= m
(k)

SN
,m∗

QM
= m

(k)

QM
.

8. Add a point to the Pareto frontier,

d̃P(SN,QM) = d̃P(SN,QM)

∪{(λ0, d̃GH(m∗
SN

,m∗
QM

))}.

9. end

Algorithm 3 Fuzzy partial dissimilarity computation
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Fig. 9 (Color online)
Visualization of full similarity
between the Tool shapes. Each
point represents a shape, and the
Euclidean distance between
a pair of points approximates the
computed Gromov-Hausdorff
distance between the
corresponding shapes

7 Results

In order to evaluate our approach, we performed three ex-
periments. The first two experiments demonstrate full and
partial matching between articulated shapes. In the third ex-
periment, we show the correspondence problem. In all the
experiments, shapes were represented as binary images and
triangulated using Delaunay triangulation. A typical shape
contained about 2500 points. The inner geodesic distances
were computed using an efficient parallel version of FMM
optimized for the Intel SSE2 architecture (using our imple-
mentation, a matrix of distances of size 2500 × 2500 can be
computed in about 1.5 seconds on a PC workstation).

The similarities between the shapes were computed us-
ing GMDS. We used a multiresolution optimization scheme,
initialized at 5 points at the coarsest resolution. A total of
N = 50 points were used in all the experiments. Note that
such a relatively small number of points is still sufficient for
accurate recognition of shapes.

All the data and codes will be available for academic use
at http://tosca.cs.technion.ac.il after the ap-
proval of the associated patent. Additional experimental re-
sults can be found in Bronstein et al. (2006f).

7.1 Full Comparison

In the first experiment, we used the Tools data set (Bron-
stein et al. 2006f) to exemplify the comparison of articu-
lated shapes. The data set contained seven shapes of differ-
ent tools, each in five articulations. The tools were classified
into four groups: scissors, pliers, pincers, cutters and knife.

The knife had three parts and two joints; all the rest of the
tools had four parts and one joint.

Figure 9 visualizes the shape space with dGH using a
Euclidean similarity pattern. Semantically similar shapes are
clearly distinguishable as clusters in this plot. For example,
the two different types of pliers form two close clusters, and
two types of scissors form another two close clusters. On
the other hand, dissimilar shapes like the knife form a dis-
tant cluster.

7.2 Partial Comparison

In the second experiment, we used the Mythological Crea-
tures data set in order to demonstrate partial matching. The
data set consisted of fifteen shapes of horses, humans and
centaurs, which appeared in different articulations (e.g. dif-
ferent positions of hands and legs), as well as with different
modifications (e.g. centaurs holding a spear, a sword and a
whip).

Figures 10 and 11 depict the Gromov-Hausdorff and the
scalar partial dissimilarity between the shapes. The results
demonstrate the difference between full and partial match-
ing, and show the advantage of the latter. In terms of full
similarity, a horse and a winged Pegasus are dissimilar, since
they are not isometric. However, in terms of partial similar-
ity, these shapes are similar as they have a similar large part
(the equine body).

The difference between full and partial similarity criteria
can be clearly seen in Fig. 12, depicting the set-valued dis-
tances (Pareto frontiers) between the shapes of a man and
a spear-bearer (solid curve), and a centaur (dotted curve).
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Fig. 10 (Color online) Visualization of full similarity (Gro-
mov-Hausdorff distance) between the Mythological Creatures

The values of ε at λ = 0 correspond to the values of dGH;
it follows that the man—centaur dissimilarity (∼0.65) is
nearly 1.5 times larger than the man—spear-bearer dissim-
ilarity (∼0.45). However, if we look at the Pareto frontiers,
we see that the first curve decays significantly faster. This
implies that by removing a small part from the spear-bearer,
we can make it similar to the man’s shape. This information
is captured by the scalar partial dissimilarity (Salukwadze
distance), which differs approximately by an order of mag-
nitude.

7.3 Correspondence

In the third experiment, we used GMDS to solve the corre-
spondence problem. Figure 13 depicts full correspondence
between two articulated horse shapes; the Voronoi cells are
used to represent corresponding points. We can see that the
correspondence is accurate despite strong deformations of
the shapes. Figure 14 depicts partial correspondence be-
tween horse and Pegasus shapes (the crisp parts shown are
obtained by thresholding). The correspondence is accurate,
despite large dissimilar parts.

8 Conclusions

We presented a general framework for the analysis of non-
rigid two-dimensional shapes based on their intrinsic geo-

Fig. 11 (Color online) Visualization of the scalar partial similarity be-
tween the Mythological Creatures

metric properties. Using an axiomatic construction, we de-
fined similarity criteria for shape comparison and studied
similarity criteria proposed in prior works. We thus gave a
theoretical justification to the use of the Gromov-Hausdorff
distance, and also showed that the canonical forms method
(Elad and Kimmel 2001; Ling and Jacobs 2005) has some-
what weaker properties.

As the numerical framework for the efficient computa-
tion of our similarity criteria, we used the GMDS algorithm.
Being a convex optimization method, this algorithm by its
nature is prone to converge to a local minimum. We showed
an efficient scheme for initializing the GMDS in order to en-
sure global convergence. The same numerical methods were
also used for solving the correspondence problem between
non-rigid shapes.

For the problem of partial shape comparison, we intro-
duced the Pareto framework and showed how this idea leads
to a new concept of set-valued distances. Such an approach
is generic, and can be applied to measuring partial similarity
of different objects, such as text sequences.

The presented approach can be extended to finding sim-
ilarity and correspondence between grayscale and color im-
ages by augmenting the geometric similarity criteria with
photometric information.
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Fig. 12 (Color online)
Set-valued partial dissimilarities
between mythological creatures.
The optimal parts corresponding
to points on the Pareto frontier
are shown in black

Fig. 13 Full correspondence
between two articulated objects

Fig. 14 Partial correspondence
between two articulated objects
(parts obtained by thresholding
at 0.2)



86 Int J Comput Vis (2008) 78: 67–88

Appendix

Proof of Theorem 2 Properties (F1) and (F2) hold by defini-
tion of dCF. To show (F3), let S , Q and R be shapes, embed-
dable into (X, dX) by the maps ϕ : S → X, ψ : Q → X and
η :R → X. Let i, j ∈ Iso(X) be isometries in the embedding
space. Since the Hausdorff distance satisfies the triangle in-
equality, we have

dCF(Q,S) = inf
i∈Iso(X)

dX

H (ψ(Q), i ◦ ϕ(S))

≤ dX

H (ψ(Q), j ◦ ϕ(S))

≤ dX

H (ψ(Q), i ◦ η(R))

+ dX

H (i ◦ η(R), j ◦ ϕ(S)). (44)

We define a sequence of isometries {i1, i2, . . .} ⊂ Iso(X) and
{j1, j2, . . .} ⊂ Iso(X) such that

lim
n→∞dX

H (ψ(Q), in ◦ η(R))

= inf
i∈Iso(X)

dX

H (ψ(Q), i ◦ η(R)) (45)

= dCF(Q,R), (46)

and

lim
n→∞dX

H (i ◦ η(R), jn ◦ ϕ(S))

= inf
i∈Iso(X)

dX

H (η(R), i ◦ ϕ(S)) (47)

= dCF(R,S). (48)

Using i = in and j = jn in (49) and taking the limit n → ∞
on the right hand side, we obtain the triangle inequality,

dCF(Q,S) ≤ dCF(Q,R) + dCF(R,S). (49)

To show (F4w), we establish a relation between the
Gromov-Hausdorff and the canonical forms distance. Triv-
ially, dCF(Q,S) ≥ dGH(ψ(Q), ϕ(S)). Assuming that the
embeddings ϕ : S → X and ψ : Q → X have distortions
disϕ ≤ δ and disψ ≤ δ′, respectively, S and ϕ(S) are δ-
isometric. Using property (F4) satisfied by the Gromov-
Hausdorff distance, this implies that dGH(S, ϕ(S)) ≤ 2δ.
Similarly, dGH(Q, ϕ(Q)) ≤ 2δ′. Using the triangle inequal-
ity, we have

dGH(Q,S) ≤ dGH(ψ(Q), ϕ(S))

+ dGH(S, ϕ(S))dGH(Q,ψ(Q))

≤ dGH(ψ(Q), ϕ(S)) + 2(δ + δ′), (50)

from which it follows that

dCF(Q,S) ≥ dGH(ψ(Q), ϕ(S))

≥ dGH(Q,S) − 2(δ + δ′). (51)

Hence, if dCF(Q,S) ≤ ε, then dGH ≤ ε + 2(δ + δ′), from
which we conclude that S and Q are 2ε + 4(δ + δ′)-
isometric. This completes the proof. �

Proof of Theorem 3 In order to show the equivalence, we
have to show that though the maps f : S → Q and g : Q →
S are defined on the entire shapes, their ranges and images
are S ′ and Q′. Given a crisp part S ′, we denote by mS its
characteristic function. The characteristic functions in the
infima terms restrict the ranges,

1

2
inf

f :S→Q
g:Q→S

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
s,s′∈S

mS(s)mS (s′)

× |dS(s, s′) − dQ(f (s), f (s′))|
sup

q,q ′∈Q
mQ(q)mQ(q ′)

× |dQ(q, q ′) − dS(g(q), g(q ′))|
sup
s∈S
q∈Q

mS(s)mQ(q)

× |dS(s, g(q)) − dQ(f (s), q)|
D sup

s∈S
(1 − mQ(f (s)))mS (s)

D sup
q∈Q

(1 − mS(g(q)))mQ(q)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

2
inf

f :S ′→Q
g:Q′→S

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
s,s′∈S ′

|dS(s, s ′) − dQ(f (s), f (s′))|
sup

q,q ′∈Q′
|dQ(q, q ′) − dS(g(q), g(q ′))|

sup
s∈S ′
q∈Q′

|dS(s, g(q)) − dQ(f (s), q)|

D sup
s∈S ′

(1 − mQ(f (s)))

D sup
q∈Q′

(1 − mS(g(q)))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

assuming D = max{diam(S),diam(Q)}.
If f (S ′) � Q′ or g(Q′) � S ′, we have sups∈S ′ (1 −

mQ(f (s))) = 1 (respectively, supq∈Q′ (1−mS(g(q))) = 1);
hence, the values of the above expression will be at least D.
Since the other terms are bounded above by D, it follows
that for f (S ′) ⊆ Q′ and g(Q′) ⊆ S ′, the above expression
will be at most D. As a result, solutions with f (S ′) � Q′ or
g(Q′) � S ′ are always suboptimal, which implies that the
images of f and g are Q′ and S ′, respectively. It follows
that we can rewrite the above expressions as

1

2
inf

f :S ′→Q′
g:Q′→S ′

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
s,s′∈S ′

|dS(s, s′) − dQ(f (s), f (s′))|
sup

q,q ′∈Q′
|dQ(q, q ′) − dS(g(q), g(q ′))|

sup
s∈S ′
q∈Q′

|dS(s, g(q)) − dQ(f (s), q)|

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= dGH(S ′,Q′),

which completes the proof. �
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