
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-15, NO. 3, MAY/JUNE 1985 343 

An Adaptive Stochastic Model for the 
Neural Coding Process 

ALFRED M. BRUCKSTEIN AND YEHOSHUA Y. ZEEVI 

Abstract—Neural encoders translate information on the time-varying 
intensity of stimuli into sequences of membrane depolarization spikes. 
Their output can be considered the realization of a stochastic point process, 
the overall encoder behavior being characterized through ensemble-aver-
aged responses to identical stimuli and environmental conditions. A new 
mathematical model for the coding process is presented and analyzed. The 
model is an integrate and fire-at-threshold scheme, the stochastic features 
of its response resulting from random fluctuations in the firing threshold. 
As a consequence of feedback self-inhibition and threshold control, which 
is assumed to account for adaptive neural responses, the model output is a 
self-exciting point process. An approximate description of the averaged 
encoder response is obtained by considering an ensemble of identical 
coding units as a whole, instead of concentrating on output sample-path 
evolution. This approach overcomes the difficulty inherent in the analysis 
of global behavior of self-exciting point processes. A conceptuaf decoding 
scheme, implementing a coding unit in a feedback configuration, is also 
introduced and discussed. 

The main role of models is not so much to explain and to 
predict, though these are the main functions of science, as 
to polarize thinking and pose questions. Above all, they are 
fun to invent and to play with, and have a peculiar life of 
their own. The "survival of the fittest" applies to models 
even more than to living creatures, they should not, how-
ever, be allowed to multiply indiscriminately without real 
necessity or purpose. 

dendntes 

Mark Kac [36] 

I. INTRODUCTION 

RESEARCH ON sensory coding processes and neural 
communication naturally involves models and tech-

niques from mathematical theory developed for the analy-
sis of man-made communication and information-
processing systems. Physiologists experimentally determine 
input/output relations for various sensory (neural) trans-
ducers, and also seek information on details of the encod-
ing process in terms of ionic flow mechanisms and dy-
namics of excitation at the level of the cell membrane 
[l]-[3]. Through a series of experimental and theoretical 
investigations, Hodgkin and Huxley derived an excellent 
model for excitable membrane dynamics explaining the 
initiation and propagation of neural depolarization spikes 
[1]. Their elaborate theory is, however, unsuitable for the 
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Fig. 1. Neuron as a communication system. 

analysis of more complex structures involving large num-
bers of coding units and interactive processes, which call 
for a probabilistic approach rather than a membrane-level 
description. Under the probabilistic approach, the neural 
spike sequences are regarded as realizations of stochastic 
point processes, and encoder responses are characterized in 
terms of ensemble averages [4]-[6]. 

The nerve cells or neurons, building blocks of the whole 
nervous system, can be considered as basic data-processing 
modules performing the dual task of encoding and trans-
mitting information (Fig 1). Stimuli affecting the coding 
units are translated into sequences of "all-or-none" de-
polarization pulses, called action potentials, which are 
propagated along the axonal channel. This electrical activ-
ity can be recorded and analyzed. 

Experimental findings indicate that action-potential 
pulses are triggered at a certain threshold level of mem-
brane depolarization, and up to the firing moment a 
cumulative stimulus-dependent buildup of subthreshold 
voltage is recorded. The rate of spike occurrence is thus 
modulated by stimulus intensity. At the same time, encoders 
also exhibit adaptive characteristics in the form of sharp 
transient responses to step-like changes in stimulus or 
environmental conditions. At very high stimulus intensity 
the encoder response saturates to a firing-rate level 
determined by the absolute refractory period (the time 
span after an action potential during which the neuronal 
membrane is not retriggerable). 

Simplified mathematical models describing the stimulus-
to-spiking-activity transfer are useful since they provide 
valuable insights into the behavior and performance of 
biological communication systems [7]-[16]. Widely used in 
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this context are models of the "fire-at-threshold" class, 
which are fairly close to physiological descriptions of the 
coding process yet relatively simple and mathematically 
tractable. These models define a deterministic or stochastic 
cumulative processing of "generator currents" (the ionic 
current flow determined by primary stimuli) with resulting 
changes in membrane depolarization; an action-potential 
spike is initiated at a certain threshold level of membrane 
polarization. Following a spike, after a refractory period, 
the cumulative processing of input current restarts, and 
repetitive firing activity is thus generated. 

The above definition of the fire-at-threshold encoder 
model is a simplified representation of basic microscopic 
phenomena associated with the neural coding process. This 
paper introduces and analyzes a model of this type, with 
stochastic adaptive threshold behavior and self-inhibitory 
feedback, providing a good fit to some experimentally-
recorded neural responses [15], [16]. Whereas the random-
ness in neural response is due to both input noise and 
fluctuations in the opening and closing of the various ionic 
channels, it is convenient to lump all these effects and 
represent them by a stochastic threshold behavior. This 
functional representation does not necessarily correlate 
with its biophysical causes. 

II. CHARACTERIZATION OF NEURAL RESPONSE 

Since action potentials are membrane depolarization 
pulses of essentially identical time-courses, the information 
on time variations of stimulus intensity resides in the 
sequence of their occurrence times. Let us denote by SOT

 = 

(7 \ , Γ2, Γ3, · · · } the set of neural event occurrence times 
during some observation period starting at the arbitrary 
moment T0 = 0. The encoder output, the time-course of 
membrane potential at some point along the axonal chan-
nel, can then be expressed as 

/ , ( ' )= Σ q(t-Tk)-q(t) * Σ Ht-Tk) (1) 
Tk G

 -SOT Tk e SOT 

where q(t) describes the shape of a typical action potential 
spike, 8(t) is the Dirac delta function, and the asterisk is 
the convolution operator. 

The information in the waveform fq(t) is obviously 
retained in 

f(t)= Σ S(t-Tk). (2) 
TkGSoT 

The set of occurrence times SOT will be considered a 
realization of the output stochastic point process. We fur-
ther assume that the relevant information, from the bio-
logical viewpoint, resides in the "level of activity" of the 
output stochastic point process. There are various ways to 
define the level of activity of the output process. Corre-
sponding to any realization {Tk}k^N of the output point 
process we can define the associated counting process N(t) 

N(t) = / 7 U V £ = number of events in (0, t) (3) 

and the instantaneous frequency process F(t) 

F(t) = (Tn-T„_iy
1 (4) 

where n is defined implicitly by Τη_λ < t < Tn (over the 
ensemble of responses it is obviously a chance variable). 

In practice, many experiments are performed to obtain 
output sequences of a coding unit in response to identical 
stimuli and environmental conditions, the actual equivalent 
of considering the output of an ensemble of identical 
stochastic encoders. The output sequences are then 
processed off-line, and both N(t) and F(t) are readily 
obtained. 

The level or rate of activity at the moment t, R(t), can 
be alternatively defined as either the occurrence density of 
the output process, 

RN(t) = j-èE[N(OÌ U=< (5) 

or the average instantaneous frequency 

RF(t) = E[F{t)} (6) 

where the operator E denotes ensemble averaging. 
The analysis of the neural output thus involves a set of 

responses of a coding unit to identical stimuli. It is im-
portant to point out that the above definitions for the level 
of activity are not expected to provide the same numerical 
results, and their consistency will be further discussed. 

Stationary and Transient Responses 

The encoder output is generally a nonstationary (non-
uniform) random point process; the rate of activity as well 
as the stochastic structure of the process vary in time, 
following changes in stimuli or environmental conditions. 
It is due to such variations in time in the output process 
that information can be communicated to other centers of 
the nervous system. 

Slow changes in stimuli lead to responses with mod-
ulated spike occurrence rates, whereas jumps elicit sharp 
transients in the neural activity. Steady states are of less 
importance in sensory systems, and adaptive neural 
responses indicate emphasis on stimulus gradients, already 
at the level of the coding process. A sudden stepwise or 
other steep change in stimulus leads to a well-defined 
transient of increase or decrease in the activity level, fol-
lowed by an essentially two-time-constant decay towards a 
steady state [17]-[19]. 

Usually, analysis of the output random point process is 
carried out sequentially over sliding time intervals of length, 
say, Δ* [5]-[8]. When dealing with steady-state responses, 
the firing sequences can be analyzed over long observation 
periods. Based on these data, interspike interval histograms 
are obtained in order to evaluate the stochastic structure of 
the output process and its variability. The normalized 
histograms provide, in this case, an estimate of the global 
interspike interval probability distribution. When rapid 
transients are under investigation, the periods of analysis 
must be reduced below the expected time constants of the 
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changes in the rate of activity, a procedure that prevents 
the smoothing of important details. (This smoothing is 
obviously implicit in histogram techniques.) The large sam-
ple size of inter-events required for statistical analysis is 
obtained in this case by increasing the ensemble of tran-
sients obtained experimentally under identical controlled 
stimuli. Slowly modulated responses are analyzed over time 
windows shorter than the highest expected rates of change 
in input or output. 

Over the period of analysis—the sliding time window of 
a suitably chosen length At—the neural response represen-
tation is considered as part of the realization of a sta-
tionary stochastic point process. This assumption of 
so-called local stationarity is needed for theoretical con-
venience. 

The Response Regularity 

Consider a period of analysis (t — Δί/2, t + At/2). We 
define the output coefficient of variation V^tAi} as the 
ratio of the standard deviation and the mean of interspike 
intervals occurring in this period, namely, 

y{t,At) K') 

where the statistics are inferred from the corresponding 
global histograms [20]-[23] and I{t, At} represents the set 
of interspike intervals occurring over the ensemble of re-
sponses during the period of analysis. Denoting the length 
of the interspike interval by / we can write 

μΙ{ίΛί] = Ε[ΐ\ί^Ι{ίΛΐ}] (8) 

and 

oì{l,At) = E[i2\i^I{t,àt}] -μ\ιΛι]. (9) 

Some experimental results indicate that the coefficient of 
variation is constant during steady-state or slowly mod-
ulated responses [20], [22], [23]. This constancy implies that 
the response becomes more regular, synchronized, as the 
mean rate of activity increases, indicating an interval-dis-
tribution scaling effect (σ follows /x). However, during 
sharp transients in the activity level, the coefficient of 
variation fluctuates, eventually returning to the constant 
steady-state value. The sudden increase in the level of 
activity in response to a positive step in stimulus usually 
occurs along with a transient decrease of ^ , , Δ Ο '

 a n o v e r " 
synchronization effect [22]. 

It should be pointed out that the constancy of the 
coefficient of variation is by no means a universal char-
acteristic of neural encoders. Several experimental results 
indicate, for example, power-law relationships between the 
mean interval and the standard deviation. This would 
imply that V is some function of μ [24]. Other reported 
results show no consistent variability behavior among the 
coding units analyzed [25]. 

Global Interval Distributions and Instantaneous Rates 

The level of activity at the moment t can be evaluated 
using the procedures defined above, but an estimate is also 

obtainable from the global interspike interval distribution 
for a time window about /. We shall next investigate the 
relation between the probability distribution density of 
interspike intervals />/{/, Δ/}(0 as estimated through histo-
grams, and the rate of activity at t as defined by (5) and 
(6). 

Consider for simplicity that over the period (t — At/2, t 
+ At/2) the output can be modeled as a renewal process, 
i.e., the length of successive interspike intervals being reali-
zations of independent identically distributed (i.i.d.) posi-
tive random variables with a distribution density given by 
Pi{t,At\(i)' Assuming that over the time window of interest 
we have realizations of a renewal process in a stationary 
regime, we obtain as immediate consequences of the theory 
of renewal processes that for £ e (t — At/2, t + At/2): 

Ε[Ν(ξ)] = E[N(t - Δί/2)] + |U7{U}(É " ' + Δ ί / 2 ) · 

(10) 

Also, the distribution of intervals including the time t, I(t), 
is given by 

/ W O = M7{U/} Z > /{ / ,A ,} (0 · ( H ) 

The shift towards longer intervals in (11) is due to the fact 
that longer intervals have, over the ensemble of realiza-
tions, a higher probability of "covering" the chosen mo-
ment / [26]. From the above we have that 

κΑ0 = -^Ε[Ν(ξ)]\χί=, = μη,,Α<} 

Ä F ( 0 = £ [ I / / ( 0 ] = M 7 ( U O · (12) 

These results also indicate that, according to both estima-
tors defined in Section II, the level of activity is inversely 
proportional to the mean length of interspike intervals. 

The renewal assumption made in the above analysis 
implies no dependence between consecutive intervals. Such 
a dependence, if present, can easily be detected through 
interval histograms conditioned on preceding intervals, or 
through serial correlation analysis. Experimental results do 
in fact indicate such dependence in some neural coding 
processes [20]. Therefore a first or higher order Markovian 
description of the output sample-path evolution may be 
needed for a better fit to the recorded data [15], [27]. Yet 
the above analysis remains the most appropriate for the 
description of ensemble responses, due to the inherent 
difficulty in the analysis of global behavior for self-exciting 
point processes with realization-dependent sample path 
evolution. 

III. A MODEL FOR THE NEURAL CODING PROCESS 

Models for the neural coding process proposed thus far 
either concentrate on the excitable membrane dynamics 
(and are therefore concerned with the details of ionic flows 
at a microstructural level) or seek simplified schemes di-
rectly concerned with the stimulus-to-spiking-activity 
transfer. Some input-output models are, however, based 
on rough mathematical descriptions of the basic micro-
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scopic processes at the membrane level. We concentrate on 
a particular model of the latter class which, although 
mainly concerned with input-output behavior, also pro-
vides useful insight into, if not explanations for, some inner 
mechanisms of the coding process [9]-[13]. Moreover, some 
of the assumed functional interconnections have physio-
logical interpretations in terms of self-inhibitory and 
cumulative refractoriness phenomena. 

The General Fire-at-Threshold Scheme 

We consider the primary stimuli to be translated, through 
some spatiotemporal preprocessing, into changes in ionic 
current flows. The intensity of these "generator currents" 
controls in turn the process leading to spike initiation by 
the excitable membrane. If λ(/) is the time-varying current 
intensity, the model has to specify either the set of spike 
initiation moments £ ο τ , defining fP(t), or the overall 
characteristics of the output point process, in terms of 

λ(0. 
Let ut > 0 denote the membrane polarization related to 

the resting level u0 = 0. For t e (Tk9 Tk+1] we can write 

un= 0; ut = *{X(è),Tk < ξ < ί;/(η),η ^ t}. 

(13) 
Here ut is an increasing process over the interspike interval 
that depends on the input X(t) through the causal operator 
Ψ{ · } . Note that the behavior of the membrane voltage 
may be output-dependent. 

The occurrence times of the output point process 
{7\, Γ2, Γ3, · · · }, T0 being the arbitrary time origin, are 
defined as the instants when ut first upcrosses a certain 
threshold function Ar Therefore over an interspike inter-
val we have 

ut < At\ = ΑΊ (14) 

A more specific model is obtained through some further 
assumptions on the operator Ψ and on the threshold 
process At (Fig. 3). 

Assumption 1: The membrane integrates an effective 
ionic current of intensity X*(t) that depends on the input 
generator current and also on the output realization up to 
/. Thus we have 

ut = f\*tt)dL f o r r e (Tk9Tk+l). (15) 
JTk 

The effective input is in turn given by the difference 
between the input current and an output-dependent self-
inhibition factor λ,- [18], [34], [35]. 

λ * ( 0 = ( λ ( 0 + λ / { / ( τ ? ) , η < / } ) + (16) 

where ( · ) + denotes a rectifier operation ensuring a non-
negative input to the integrator, thus a nondecreasing ut. 

Assumption 2: The threshold remains constant during 
interspike intervals assuming a new random value at each 
occurrence time, thus 

A, = ak9 foTte(Tk9Tk+l\. (17) 

basic integrate ond fire-at-threshold model 
i Ί 

X(t) + HH-̂  X(t)| 

/ 
u(t) Fire at. 

* | u(t) = a k 

a k 

P A k (a la k ) 

,{f()} 

random threshold generator 

selfinhibition feedback 

f(t) 

Fig. 2. Adaptive integrate and fire-at-threshold model. 

Xk 

A 

A(t) y 

slope X(t) 

V O t • · · Tk · · · 

output proccess 

Fig. 3. Representation of the coding process. 

Here the ak are realizations of random variables Ak, the 
threshold behavior being described by a stochastic process 
with piecewise constant realizations [10], [14]. The random 
values ak are successively drawn according to probability 
distributions dictated by the past realization of the output 
point process, given by 

PAÀ°\°k)> * = 1,2,3, (18) 

where ok formally represents the information content in 
the output and threshold processes, up to the time Tk. 

Since both the effective input and threshold statistics are 
influenced by the past evolution of the coding process, the 
encoder output is a self-exciting point process [28]. Note 
that, as shown in Fig. 2, two output feedback effects are 
assumed in this coding scheme: the self-inhibition de-
termining the effective input, and the influence of the 
output activity on the firing-initiation threshold, modehng 
cumulative refractoriness [15], [16]. 

The above coding model yieldis the following implicit 
formula for the fcth occurrence time of the output process: 

ί *λ*(ξ)άξ = Xk9 where Xk= Σ ar. (19) 

Here the Tk are the moments at which the nondecreasing 
function At = Ι^λ*(ξ)άξ upcrosses the levels Xk (Fig. 3). 
In other words, the encoder output is the image, in the time 
domain, of another point process with interval statistics 
determined by the threshold random variables Ak [10], [11]. 
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Note that the encoder model assumes that integration of 
effective input restarts immediately after firing and thus 
neglects the absolute refractory period. The result is a 
slight increase in the output rate for most of the physiologi-
cal range of activity rates. The absolute refractory period 
may also be regarded as an integral part of the neural 
depolarization event. 

The Self-Exciting Output Point Process 

Since the output of the neural encoder model is a 
stochastic point process with past-dependent sample-path 
evolution, results are mainly obtainable on the local in-
stantaneous-rate process (defined as the conditional prob-
ability, given the past history of the process, of an occur-
rence at the time t). 

Consider the output of the encoder up to the time 
t, {/(η)\η < t}, and define the event Mn as the set of 
output occurrence times (7\ , T2,· · ·, Tn) with n = N(t). 
Assuming that the set Mn and the input X(t) deterministi-
cally define the effective input λ*(ί) for the interval 
(Tn, Tn+1), we have that the process ut is measurable on the 
past, hence the realization of An and the next occurrence 
time uniquely specify each other. The deterministic oper-
ator that yields the effective input from the stimulus inten-
sity, and the past output activity thus makes the threshold 
process At and the encoder output informationally equiv-
alent. 

According to the described encoding procedure, given 
Mn, ut = {τλ*(ξ)αξ should be compared to the realization 
an of a random variable with distribution density pA(<a\Mn). 
The next occurrence time, Tn+l, is the first time at which 
ut = an. Following [28] we can define the "survival prob-
ability" of Tn+l beyond t, given the past output sample-
path evolution, as 

nTmJt) = Pr{TH+l>t\MH). (20) 

As an immediate result we can write 

Π Γ η + ι ( 0 = Pr{ j V U V l < a„|M„} = 1 - PAn((u,)\M„) 

(21) 

where PA is the cumulative distribution function associated 

From TlT (t) one can readily obtain the probability of 
Tn+1 occurring in an infinitesimal interval about t, or the 
instantaneous rate function p(t), defined as 

ρ{ί) = ^Ηΐ^ι±ψ±ΙΜ1_ (22) 

The result is the following [28]: 

P(0 = 
dinUTmJi) 

SÎ 

PA„(u,\Mn) 

{ = 1 1 - PAm(ut\M„) 
\*(t). 

(23) 

This formula shows that the instantaneous rate of the 
output process can be computed as the product of the 

effective input and a similarly defined instantaneous rate 
of the threshold-defined point process at Λ, = Xn + ut (on 
the x-axis of Fig. 3) [10], [11], [14]. Since the encoding 
procedure determines the threshold probability distribution 
and the effective input, we can compute causally the in-
stantaneous probability of firing at t, associated to the 
output / ( / ) . This defines a stochastic process called the 
instantaneous rate process, and in order to find the overall 
encoder response to a given input, one has to find the 
ensemble rate of firing, i.e., the unconditional expected 
value of p(t), which is not always analytically feasible. 
Some further results can be obtained, in the case of an 
exponentially-distributed threshold where the output be-
comes a Poisson process. Also, general renewal-type 
threshold behavior and some Markov dependences yield 
analytically tractable models [11], [15], [27]. 

The straightforward approach to obtain the ensemble 
response is through extensive computer simulations and 
subsequent averaging of the results, either directly on the 
resulting instantaneous frequency and counting processes 
or on the computed local rate process. An alternative 
approach, based on different assumptions on the feedback 
processes in the encoder, leads to an approximate descrip-
tion of the ensemble-averaged behavior and provides fur-
ther useful insights and results. 

Modeling the Ensemble Behavior 

In this section we assume that, for an interval of length 
At, about t, the threshold random variables are indepen-
dent and identically distributed with density pA(t)(a) that 
depends on the history of the output ensemble rate up to t. 
We further assume that X*(t), the effective input, is also 
output rate-dependent but with very slow dynamics so that 
it can safely be considered constant over a period of length 
At. Generally, we write 

pA(t) = HA{R(V);V<t) (24) 

X*(t) = Hx*{R(V),X(V);V<t} (25) 

where HA and 7/λ* are operators describing the control of 
the threshold and of the effective input. Following the first 
assumption of Section III, we write in a more specific way 

# λ . { * , λ } = ( λ - λ , { * } ) + . (26) 

According to the encoding procedure, the following sim-
ple scaling relation between input, threshold realizations, 
and interspike intervals holds over the interval of interest 

\*(t)i = a. (27) 

The interspike interval / is the realization of a random 
variable I{t, At}, and the threshold value a is the realiza-
tion of a positive threshold random variable A(t). By 
virtue of (27), the distribution of the interspike intervals 
over (t — At/2, t + At/2) can be written in terms of the 
threshold distribution. Since the thresholds are assumed to 
be independent identically distributed, so are the successive 
interspike intervals, and their distribution is 

Λ / ( / , Δ Γ ) } ( 0 = ^ ( ο ( ί λ * ( 0 ) λ * ( 0 · (28) 
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H.W.R 

gain control 

selfmhibition feedback I ΝΥ^ΛΙ Γ 

Fig. 4. Model for the ensemble dynamic response. 

Accordingly, we have the following results relating the 
expected values and standard deviations of the threshold 
and interval random variables: 

μ,(,,Δ,} = ( x * ( ' ) ) ~ y « , ) (29) 

°/(,,Δ,} = ( X * ( ' ) r V 4 ( „ · (30) 

This analysis, together with the results of Section II, yields 
for the output rate at t 

R(t) = -±-X*(t). (31) 

Therefore, in order to find the dependence between the 
input λ( / ) and the output rate of activity, one should 
consider the following dynamic system: 

R(t) = G„\*(t) 

G 1 1 

0 μΑ0) HjR(V);r,<t} 

X*(t) = (X(t)-Xi{R(rì);rì<t}) + (32) 

where ΗμΑ describes the output influence on the average 
value of the threshold, i.e., 

H^{R(jl);ri<t}=E[A(t)] (33) 

with respect to the measure HA{R(i))\i) < t). 
The dynamic system (32) describes the ensemble behav-

ior of the encoder, directly providing the output rate of 
activity. Considering Fig. 4, it becomes clear which mecha-
nisms are responsible for transients of adaptation that 
preemphasize sudden changes in the input level. A step 
increase in the input λ(/) immediately increases the effec-
tive input X*(t). The resulting increase in the output rate 
of firing in turn affects the threshold distribution, causing 
an increase in its mean value μΑ, and also the effective 
generator current λ* which subsequently decreases. The 
two factors, however, have different effects on the output: 
the scheme under consideration is a system combining an 
"automatic gain-control" through the threshold dynamics 
with a negative self-inhibition feedback [15], [16]. We note 
that there is ample experimental evidence of having an 
effect of self-inhibitory output feedback [18], [19]. In stretch 
receptors it is mediated by an electrogenic ion pump that 
transports across the membrane the surplus of ions cumu-
lating within the nerve cell due to repetitive firing. How-
ever, experimental physiologists report a two-phase adapta-

o 

RRTE STEP RESPONSES LDG(RflTE-RSS) 

Ό.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Θ.00 
TIME 

Fig. 5. Log-plots of step-response transients in ensemble output rate. 
(Note the transition from exponential to biexponential behavior with 
increase of input amplitude λ0.) 

tion transient in response to step stimuli [18], [19], [22], with 
both the rapid- and the slow-phase adaptation transient 
time-constants being input-dependent. As the input step 
amplitude increases, an increase in the latter is observed 
while the initial rapid decay in firing rate becomes steeper 
and more pronounced. This results in a gradual transition 
from an approximately exponential to biexponential adap-
tation responses. 

The above behavior can be accounted for by hypothesiz-
ing that the threshold control operator has much faster 
dynamics than the self-inhibitory feedback. Further con-
siderations lead to a very simple dynamic system combin-
ing a fast automatic-gain-control with a much slower nega-
tive feedback, which is readily seen to yield the correct 
qualitative features of adaptive transients. A sudden change 
in the input leads to a rapid transient due to gain-control, 
with a time-constant that decreases with higher input am-
plitude, then the self-inhibition feedback comes into action, 
already about an adjusted gain that increases the slow 
transient's time constant (Fig. 5). This dynamic system also 
accounts for the characteristics of modulated and bursty 
neural responses [15], [16]. 

As to the issue of response regularity, the coefficient of 
variation of the output over (t — Δί/2, / 4- Δί/2) is given 
by 

^ „ - ■ ^ i - - - ^ . (34) 

From this result we conclude that V{t,At) does n o t depend 
directly on the self-inhibition process, being determined by 
threshold statistics alone. From the output-dependent ac-
tion of HA we defined the operator H that provides the 
threshold average value and can similarly define the oper-
ator providing its standard deviation as 

oA(t) = HOA{R(V);V<t}. (35) 

The behavior of the coefficient of variation is therefore 
determined by the output-dependent threshold statistics 
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through the operators ΗμΑ and H0A. AS discussed before, 
the variability in firing is found in some studies to be 
constant during slowly-modulated activity, and notable 
changes in V<tAt\ accompany drastic changes in the output 
activity as, for example, in the fast phases of step responses 
[22], [23]. We can account for this behavior by assuming 
that H and H have similar dynamics with slightly 
different time constants. If μΑ(() responds to changes in 
R(t) faster than σΑ(ί), a jump in the output activity level is 
followed by a temporary imbalance in their ratio, account-
ing for transient over-synchronization observed at the ini-
tial phase of step responses. When R(t) changes slowly, so 
that both the dynamics of H0A and ΗμΑ can follow its 
variations, we have that the coefficient of variation is 
constant. 

As we pointed out before, a universal result concerning 
the behavior of the coefficient of variation does not exist. 
The above analysis only stresses the point that, if the 
adaptive integrate-to-threshold encoder is used to model 
the neural response, the threshold behavior can be inferred 
from the output point process. We should also mention 
that models assuming leaky integration predict a depen-
dence of V on the mean rate of firing [29]. 

In summary, the above theory yields an adequate de-
scription of the ensemble behavior and also provides a 
good approximate representation of the individual unit 
response (under the assumptions of the previous section). 
We also note that the pooled response of many identical 
coding units can be considered a modulated Poisson pro-
cess with rate proportional to the predicted R(t), with 
dynamics predicted by (22). 

IV. A DECODER MODEL 

This section introduces a decoding scheme, in fact a 
demodulator information transmitted through the variable 
rate of a point process [5]. The demodulator is interesting 
mainly from a theoretical point of view, since very little is 
yet known about the way the incoming information, coded 
in patterns of spikes, is interpreted by the higher levels of 
the nervous system. Postsynaptic neuronal membranes per-
form some sort of low-pass filtering on the sequences of 
depolarization pulses. The higher level neurons process 
integratively a large number of inputs, and we may safely 
assume that there is no need to recover the analog modulat-
ing signals for further processing. The sequences of spikes 
are, most likely, processed directly to generate responses on 
efferent pathways or on links to other processing centers. 
The decoding scheme is therefore mainly of interest in 
comparing the defined adaptive pulse frequency modula-
tion performance to other pulse modulation techniques and 
evaluating the amount of information recoverable from the 
pulse patterns. 

The Demodulation Scheme 

The main idea in the demodulating scheme is the use of 
a "neural" encoder unit in a feedback configuration, essen-
tially the phase or frequency-lock loop technique (Fig. 6). 
An estimate of the modulating signal \{t\ the decoder 
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Fig. 6. Decoding scheme. 

output, drives a local encoder whose response f(t) is 
compared to the received sequences of spikes. The estimate 
of the encoder input is continuously updated on the basis 
of an error signal generated through comparisons of f(t) 
with f(t). The update procedure consists of a comparison 
of the rates of firing of the remote and local encoders. 
Referring to Fig. 6, we can write 

λ ( ' ) = y/'(/(« -f(0)dè = y(N(t) - N(t)). (36) 

Thus the decoder output is the difference of two counting 
processes, one associated with the encoder output and the 
other with the local encoder response. Now, given that the 
local coding procedure and the primary coding processes 
are known, we wish to evaluate how good an estimate of 
the input X(t) is. Note that, as a difference of counting 
processes, the decoder output will assume values which are 
multiples of γ. Furthermore, no negative values will be 
attained. One could also consider a decoding scheme with 
a long memory filter instead of the integrator; however, 
since in this case the analysis becomes substantially more 
complicated, we shall concentrate of the model presented 
previously. 

Let us assume that the local encoder is nonadaptive and 
yields an output process for which 

Fr{N(t + « ) - N(t) = 1|λ(/)} = \(t)S + ο(δ). 

(37) 

The thresholds are thus taken an independent identically 
distributed random variables (see (23)). 

The input to the decoder is considered a realization of a 
Poisson process with time-varying density or rate of occur-
rence r( /) , carrying information on the primary stimulus 
intensity X(t). The primary encoder is considered an adap-
tive one, thus we have in general r(t) Φ X(t). The output 
rate could be, for example, the ensemble firing rate as 
obtained in the previous section. The decoder output be-
comes, accordingly, a particular type of Markov process: a 
linear nonhomogeneous birth and death process [26]. In-
deed an "excitatory" input pulse, from / ( / ) , increases the 
output by γ, whereas a "self-inhibitory" pulse form / ( / ) 
decreases λ ( / ) by the same amount. The decoder output 
performs a random walk on the levels ky, hopefully con-
verging to and tracking the input intensity. 

Turning to the analysis of this decoding method, we now 
define (following [26]) 

Pn(t) = J>r{\(t) = ny}9 « = 0 , 1 , 2 , . . . , (38) 

and seek the evolution of the defined output level distribu-
tion {Pn(t)}nŒN9 as a function of the stimulus applied to 
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the encoder. From the transition probabilities of the 
Markov process we have 

Pn{t + δ) = ^ ( O K O « + Pn+i(0(n + 1)γ« 

+ P„(t)[l-(r(t) + ny)8] 

P0(t + 8) = P0(t)[l - /·(/)«] + Λ ( / ) γ δ (39) 

which immediately yield the following differential equa-
tions for the evolution of the output distribution: 

d 
dt P„(<) = -Pn(t){r{t) + ny) + Ρ„-ΜΛί) 

jtP0= -ρο(0Κ0 + Λ(0γ· (40) 

These equations provide a complete description of the 
behavior of the decoder output. We next introduce a 
distribution generating functional 

β(Μ)= ΣΛ(0*" 
w = 0 

(41) 

and, using (40), obtain the following partial differential 
equation for it: 

-^Q(s,t) = (s-1) r{t)Q{s,t)-yj-sQ(s,t) 

(42) 

This equation can be solved for some cases of r(t). How-
ever we are interested mainly in the evolution of the first-
and second-order statistics of the decoder output. 

Evolution of First- and Second-Order Statistics 

Let us define the moments of the decoder output-level 
distribution as 

00 00 

Mi = Σ nPn{t), Μ2=Σ n2P„(t). (43) 

For the evolution in time of the above-defined moments, 
(40) yield, through some algebraic manipulation, the fol-
lowing differential equations: 

d 
dt 

M 1 ( 0 + Y M 1 ( / ) = r ( 0 

dt 
M2(t) + 2yM2 = r(t) + Μλ(ί)^{ί) + γ ] . (44) 

Now, since the output mean is yMx(t) and its variance is 
given by y2[M2(t) — M2(t)], we easily obtain the corre-
sponding relations for the decoder output estimating the 
signal X(t) 

d 
dt μχ(0 + Υ/*λ(0 = ϊ Κ 0 

dt [ σ ί ( 0 ] + 2 γ [ σ ί ] = γ 2 [ Γ ( 0 + μ λ ( 0 ] . (45) 

These equations describe the evolution of the output statis-
tics of interest, and for the steady-state case, when r(t) = r0, 
they provide μ\(ί) -> r0, σ^ -> yr0, yielding a signal-to-
noise ratio (mean squared over variance) of r0/y. Thus 

small values for γ result in high accuracy at steady-state 
demodulation but also in poor tracking of changes in r(t), 
while large values yield better tracking at the expense of 
higher steady-state error. Note that the decoder does not 
recover X(t) but rather the resulting level of activity of the 
encoding signal. This, however, is not a problem since for 
slowly changing stimuli, and of course for constant inputs, 
the adaptive encoder produces a good rephca of their 
time-course (multiplied by a known nonlinear static gain 
factor). Rapid changes in the output rate occur, for exam-
ple, as step-responses, and in this case the decoder output 
is not required to track the fast transients in r(t). The 
adaptive responses, following steps in the stimulus inten-
sity, will cause a more rapid step-like transient in λ, a 
desirable feature of the decoder. 

We note that the result concerning the dynamics of the 
decoder output statistics resembles the behavior of a simple 
low-pass-filter demodulator. If a linear system with weight-
ing sequence h(t) is used to filter the sequences of spikes, 
we have from the well-known generalized Campbell laws 
[28] 

M L P F ( 0 = f r(r)h(t-τ)άτ 
• ' - o o 

*LPF = / ' r(r)h2(t - r)dr. (46) 

Accordingly, if h(t) = ye~ytl{t), where 1(0 is the unit-step 
function, we realize that the two demodulation methods 
yield the same behavior for the mean of their output. 
However, for the birth-death process the second-order 
statistics depend also on the behavior of the mean. It is 
interesting to note that the low-pass-filter decoder yields a 
better signal-to-noise ratio at steady state (= 2r0/y); while 
a moving-window counter decoder, with h(t) = 1 for t e 
(0, l / γ ) , yields the same steady-state signal-to-noise ratio 
as the birth-death process. The higher steady-state signal-
to-noise ratio for the nonlinear decoder is due to the fact 
that its output assumes values only at the discrete levels ny 
and therefore there is no smoothing. It is expected that the 
performance of a decoding scheme with a local encoder 
would improve considerably through the use of a smooth-
ing filter in the feedback loop. 

Several other estimation and parameter identification 
techniques for the decoding of information from the output 
of an adaptive neural encoder model were considered in 
[30]. 

V. DISCUSSION AND CONCLUSION 

Considering the neural encoder from a communication-
theoretic viewpoint, it was found that fire-at-threshold 
schemes permit adequate mathematical descriptions for its 
basic function, namely translation of analog stimulus-
strength information into sequences of neural depolariza-
tion spikes. At first sight, the neural encoder may seem to 
resemble certain engineering pulse-frequency-modulation 
schemes [9], [14], but a closer look reveals major dif-
ferences. The biological coding process is highly asynchro-
nous with pronounced adaptive characteristics, which 
maintain the overall activity of the system at a moderate 
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level and at the same time permit an extremely wide 
dynamic range of functioning with high sensitivity. 

In order to reproduce the experimental results on adap-
tive behavior, plausible structural feedback effects in the 
integrate-to-threshold scheme were assumed. Of these, the 
self-inhibition effect is well-supported experimentally, and 
several models dealt with it in a different framework 
[18], [31], [34], [35]. It should be noted, however, that self-
inhibition alone results in an essentially linear input to 
firing rate "signal-transfer." As such it cannot generate 
input-dependent self-adjustment of time constants as ex-
hibited experimentally [18] and reproduced by our model. 
This is a fundamental property of our nonlinear feedback 
scheme with automatic gain-control, which differs from all 
previously proposed neural encoding models. The adaptive 
threshold control, responsible for the AGC effect, is indeed 
a satisfactory functional assumption yielding input-output 
behavior closely reproducing experimental results. It is 
consistent with our understanding of electrically excitable 
membrane biophysics and is further supported by recent 
findings [23]. 

A study of the functioning of the neural coding units, 
and the relevant mathematical models that describe their 
behavior, may yield some engineering insight. The adaptive 
pulse-frequency modulation of the type described may find 
useful applications, for example in optical communication 
systems. Conversely, while the decoder proposed and 
analyzed in the last section of the paper is an engineering 
scheme, with probably little relevance to the modeling of 
processes occurring in the nervous system, we note that, if 
needed, it might easily be implemented by the nervous 
system using available local encoders with inhibitory and 
excitatory synapses. The main purpose of considering a 
decoder was, however, to obtain an estimate of the amount 
of information carried by individual sequences of spikes. 

Once the functioning of individual coding units is more 
or less understood and properly modeled, the way is open 
for analysis of various higher level sensory arrays and their 
responses, like, for example, the retina and the image 
processing performed by it, or the motor, multiunit, and 
multipath communication systems, in which reliability is 
ensured through redundancy, in spite of the relatively poor 
performance of individual channels [32], [33]. 
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